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Summary 

 

California has committed to achieve a net-zero carbon economy by 2045. To meet the state’s 

carbon-neutral goal, California will need to rely primarily on forms of energy that do not emit 

greenhouse gases.  

 

Rapid expansion of wind and solar power and electrification of transportation and heating 

underlie an affordable path to a net-zero carbon economy. At the same time, extensive 

electrification and increased reliance on weather-dependent renewable energy sources could 

create new reliability challenges requiring proactive planning. Solar and wind supplies drop by 

some 60% from summer to winter. In some cases, the state can get little output from solar and 

wind generation for weeks at a time. These lulls can also coincide with periods of increased 

demand, further exacerbating the challenge. Today, California relies on natural gas power plants 

(and heating) during these periods. If a net-zero carbon economy cannot continue to depend on 

natural gas to meet this demand, what will the state use instead? 

 

Batteries can be very useful in dealing with the variation in solar and wind power over 

hours-long periods, such as daily cycles in solar power output, but today’s battery technologies 

cannot cost-effectively store enough energy to pull the state through a big winter storm lasting 

many days. Without another source of energy to generate electricity during these periods, 

California’s electrified economy could come to a halt. As renewable energy expands, and as use 

of natural gas for electric generation is eliminated, the state could face a situation much like what 

Texas recently went through in February 2021. Luckily, California has a track record of planning 

for these types of events, and with proactive effort, the state can secure an affordable and 

reliable carbon-free electricity future.  

 

California’s relationship with natural gas is in transition. To ensure grid reliability, California 

needs to replace today’s carbon-emitting gas-fired power plants, which supply over 40% of the 

state’s electricity, with some alternative source of clean electricity that is available on demand, 

for as long as it is needed, whenever it is needed. This type of electricity resource is known as 

“clean firm power.”  Many choices could fulfill this need. Geothermal power takes energy from 

heat in the ground and is available as needed. California’s geology has provided the largest 

geothermal plant in the world and California might expand this resource. Nuclear power can 



2  

provide very large amounts of energy steadily in a small footprint. California could even 

continue to use gas power if the CO2 emissions were captured and sequestered underground. 

Alternatively, gas power plants could be converted to burn clean fuels, such as hydrogen, which 

might be made via electrolysis with solar power, reformed from natural gas while leaving waste 

CO2 to be sequestered underground, or produced from gasification of agricultural and forestry 

residues or crops.  All of these clean firm power sources (and perhaps others) would provide 

critical reliability that could prevent a Texas-sized tragedy. 

 

Even though these clean firm power technologies currently cost more per kilowatt hour than 

solar and wind, this study shows that these resources also deliver greater value, which justifies 

their higher cost. A robust investment in a portfolio of clean firm power options will obviate the 

need for otherwise-redundant renewable energy. As a result, our modeling finds that California 

can reach a 100% carbon-free clean electricity supply by 2045 while keeping consumer costs 

similar to those paid today. An ambitious but achievable investment in clean firm power, with 

installed capacity similar in magnitude to our existing gas fleet—or roughly 25-40 gigawatts—

could eliminate the need for ten times that amount of wind and solar capacity, and significantly 

reduce associated transmission expansion and the land area required for electricity generation 

facilities. What will cost a lot more—both in consumer costs and in reliability—will be not 

having clean firm power at all. A strong portfolio of clean firm power will add reliability to the 

grid, and if California can help utilities recover costs for their clean firm power investments now, 

we can help keep the lights on in the future without incurring a significant increase in electricity 

prices.   

 

Introduction 

California’s government has set ambitious goals to eliminate greenhouse gas emissions, starting 

with electricity. A 2018 law, Senate Bill 100 (SB100), mandated that all retail sales of electricity 

must be provided from carbon free sources by 2045. Jerry Brown, who was then the governor, 

issued a companion executive order Executive Order B-55-18  requiring the entire state, not just 

the electric sector, to zero-out net emissions also by 2045. 

Policymakers in California and also throughout the world have to figure out how to achieve 

similar goals. In recent years, wind and solar power have become much cheaper. They have 

improved more quickly than even optimistic experts thought possible a decade ago, in part due to 

aggressive government mandates for purchase that have created larger markets and allowed rapid 

learning, induced incremental innovation, and rewarded economies of scale. Furthermore, 

markedly improving batteries can store the electricity created by wind and solar for later use, and 

California, of course, benefits from good renewable resources, especially sunshine.  

But how far can wind and solar power alone get us on the path to deep decarbonization of the 

economy through clean electricity? More generally, can California find a decarbonization 

strategy that not only cuts emissions, but also does not markedly increase the cost of electricity 

while preserving the reliability of the electric grid—without sacrificing other environmental 

goals along the way? Recent blackouts in Texas and California especially highlight the need to 

attend to reliability. If such a strategy succeeds in California, it might be imitated around the 

globe. 

http://go.cei.org/e/287682/09-9-10-18-Executive-Order-pdf/fxlf2/193824033
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This challenge is growing. California’s energy planners project that electricity demand in 

California will nearly double from today to 2045, as more end uses in our economy currently 

powered by fossil fuels, from cars to the heating of building, transition to electricity. 

Electrification would increase California’s peak demand for electricity from about 50 gigawatts 

today to about 100 gigawatts midcentury. How will California maintain the affordability and 

reliability of electricity supplies while tackling the twin tasks of decarbonization and 

electrification?  

To answer these questions, we convened a group of energy system experts who used three 

different optimization models of California’s electricity system to quantify the costs of a number 

of different future scenarios for new sources of clean, reliable electric power. Groups from 

Princeton and Stanford Universities ran the first two models; the third was by a group from the 

consulting firm Energy and Environmental Economics (E3).1   

Each model sought to estimate not only how much electricity would cost under a variety of 

scenarios, but also the physical implications of building the decarbonized grid. How much new 

infrastructure would be needed? How fast would the state have to build it?  How much land 

would that infrastructure require?  Although each of these models offered their own depictions of 

the California electricity system and independently explored the ways it would be optimized, 

they all used the same data with respect to past conditions and they all used the same estimations 

of future technology costs. Despite distinct approaches to the calculations, all the models yielded 

very similar conclusions. 

 

Sun and wind and challenges 

 

Wind and solar have become mature technologies and enjoy substantial public support. Batteries 

have also significantly improved. Consequently, wind and solar power and batteries can be the 

cornerstones in an affordable, carbon-free California electricity system.  

 

However, relying to a much greater extent on solar and wind power also present challenges as 

these resources depend on the weather and weather is variable on time frames spanning minutes 

to seasons. Average daily output from current California solar and wind infrastructure in the 

winter declines to 30-40% of the maximum summer production, for example. Periodic large-

scale weather patterns extending over 1,000 kilometers or more, known as “dunkelflaute” (the 

German word for dark doldrums) drive wind and solar output to low levels across the region and 

can last days, or even several months. Average wind and solar outputs also vary from year to 

year, particularly for wind power. Batteries can help make up for fluctuations that last for 

multiple hours, but they cannot make up for these longer-duration variations in wind and solar 

availability. For this reason, having enough wind and solar power to meet demand during the 

slack periods would necessitate building an enormous amount of capacity that would otherwise 

exceed the grid’s demand during more abundant periods.  

 

 
1 Appendix A provides a key to the scenario names and Appendix B provides supplemental material for each of the 

modeling efforts.  Data spread sheets are also found at www.edf.org/cleanfirmpower. 

https://www.ethree.com/projects/deep-decarbonization-california-cec/
https://www.ethree.com/wp-content/uploads/2019/06/E3_Long_Run_Resource_Adequacy_CA_Deep-Decarbonization_Final.pdf
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Since wind, solar and batteries are the most mature and affordable clean energy technologies 

available today to help reach California’s carbon-free electricity goals, our project first sought to 

figure out just how much overcapacity would be needed to ensure reliable electricity 

availability—and how much it would all cost—assuming that wind and solar power and battery 

storage were the only options available for new capacity. We thus modeled a carbon-free 

electricity system with wind, solar and batteries as the only new resources available, and tested 

this system to ensure reliability over hundreds of possible scenarios for the weather over the 

course of a year.  

 

We found that reliably generating the electricity needed in 2045 from wind and solar power 

would require building up to nearly 500 gigawatts of power-generating capacity (along with 160 

gigawatts and 1000 gigawatt-hours of new storage). This is roughly half the capacity of the entire 

U.S. electricity generating system today and about six times the current total generating capacity 

now serving California (about 80 gigawatts), including nuclear, gas and coal generating stations, 

hydroelectric dams, and everything else.  

 

All of this excess capacity would be expensive. We estimate that wholesale electricity rates 

would increase by about 65% over today if currently available renewable energy and storage 

technologies alone were to be utilized to meet demand in 2045. It may not be possible to build 

wind and solar facilities at this scale, even if consumers were willing to pay that premium. Solar 

development will likely dominate the renewable energy portfolio in California, and getting to 

nearly 500 gigawatts by 2045 would require expanding solar capacity at a rate 10 times higher 

than has ever been done before. There may not be enough people, supplies, or land to do this.  

 

This is the great challenge with weather-dependent energy sources. On a dollar per kilowatt hour 

basis, wind and solar power are now cheaper than carbon-intensive sources of electricity like 

coal or even gas. They can thus play a central role in delivering an affordable carbon-free grid. 

But if wind and solar are pushed to do all of the heavy lifting themselves, the system requires a 

lot of excess generating capacity and storage (most of which is seldom used) to provide reliable 

electricity and completely drive out greenhouse emissions. As a result, this strategy ends up 

being much more expensive that it might appear at first glance.  
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Figure 1. The growth of photovoltaic (PV) capacity dedicated to California across a range of scenarios deliverying 

100% carbon-free and reliable electricity supplies by 2045.  All cases shown include variable renewable energy and 

batteries. The case in red labeled “Renewables” did not allow any clean firm power to be built.  Other cases allow 

both renewable energy, batteries and the labeled form of clean firm power. Results shown for mid-range capital cost 

cases and $33/MMBtu generic zero-carbon fuel. The renewable and batteries-only case was only solved by E3’s 

RESOLVE and RECAP models and includes otherwise redundant solar capacity necessary to ensure reliability 

through all weather-years. All other cases show the range of outcomes from the ensemble of three models 

(RESOLVE, GenX, and urbs). 

 

A clean firm solution 

 

There is a better solution. Solar and wind do not need to do the job alone.  There exist carbon-

free alternatives that do not depend on sunshine or wind.  We call these resources “clean firm 

power” defined as zero-carbon power that can be relied on whenever it is needed for as long as it 

is needed. Clean firm resources do not depend on the weather like solar and wind do, and these 

resources do not have limitations in how long they can produce power, as batteries do. 

 

For example, geothermal power takes energy from heat in the ground and is available when 

needed. California’s geology already provides the Geysers, the largest geothermal plant in the 

world.  Advances in geothermal technology could plausibly expand this resource beyond the 

special conditions found at the Geysers.  Clean firm power might include “green” hydrogen split 

from water using renewable electricity or hydrogen split from gas or biomass gasification, 

leaving CO2 to be sequestered underground, or it could entail biofuels made from sustainably-

harvested agricultural or forestry waste or crops.  California could continue to use gas-generated 

power if the greenhouse gas emissions were captured and safely stored permanently 

underground. Nuclear power can provide very large amounts of energy steadily in a small 
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footprint; ongoing advances in nuclear technology could allow the deployment of lower cost, 

much-diminished accident risk with less waste.  

 

Our modeling finds that almost any combination of these resources (or others with supply chains 

that do not result in greenhouse emissions) could deliver a 100% carbon-free electricity supply 

with generation and transmission supply costs of about 7-10 cents per kilowatt-hour, which 

compares well to today’s average generation and transmission costs for California’s investor-

owned utilities (9 cents per kilowatt-hour, Figure 2). Renewable energy can inexpensively 

provide at least half of the carbon-free energy needed by 2045—and more in most cases (Figure 

4)—but clean firm technologies provide a critical complement to weather-dependent renewable 

energy that ensures reliability while keeping whole system costs low. We also find that having 

more than one clean firm power option helps reduce costs even further (Figure 2). This key 

insight will help decision makers planning a decarbonized grid, not just in California, but in 

other parts of the world as well: opening the portfolio to clean firm power as well as wind and 

solar energy goes a long way to keeping the total costs and impacts down. 

 

 

Figure 2. The wholesale generation and transmission costs for 100% carbon-free electricity for the year 2045.  All 

cases shown include variable renewable energy and batteries. The case in red labeled “Renewables” did not allow 

any clean firm power to be built.  Other cases allow both renewable energy, batteries and the labeled form of clean 

firm power. Results shown for mid-range capital cost cases and $33/MMBtu generic zero-carbon fuel. The 

renewable and batteries-only case was only solved by E3’s RESOLVE and RECAP models to ensure reliability of 
this portfolio through all weather-years.  
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A range of sensitivity cases demonstrate that the substantial cost savings from having one or 

more clean firm resources is robust to a range of possible future technology costs (Figure 3). 

Across all modeled sensitivity cases, portfolios with at least one clean firm power option are 

32-53% cheaper than the renewable energy and batteries only portfolio.  

 

 
Figure 3:  Price sensitivity results show that modeled 2045 California electricity system costs are relatively 

insensitive to the cost of clean firm power; all cases with at least one clean firm power option are 32-53% cheaper 

than the variable renewable energy and batteries only portfolio (see Figure 2). 

 

We find that most of the energy supplying California in 2045 comes from inexpensive renewable 

resources (Figure 4), mainly solar in California.  But when the sun doesn’t shine for many days 

at a time, the clean firm resources are worth their relatively expensive price.  
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Figure 4. Percent of modeled 2045 California electricity supply coming from various resources for portfolios with 

clean firm power. 

 

 
Figure 5. Installed capacity of California electricity resources in 2045 for portfolios with clean firm power. 
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A clean firm power portfolio 

 

California today has 48 gigawatts of total firm power capacity, most of which (42 gigawatts) 

come from natural gas fired powerplants.  The remaining gigawatts come from nuclear power, 

geothermal and a small amount from coal.  California plans to decommission its last nuclear 

power plant at Diablo Canyon in 2025 taking 2.2 gigawatts of firm and zero-carbon capacity 

offline.   

 

Our modeling concludes an ambitious but achievable investment in clean firm power capacity, 

essentially replacing the gas fleet with 25-40 gigawatts of clean firm power will minimize costs 

while maintaining reliability (Figure 6) and substantially reduce the amount of renewable energy 

capacity that must be deployed (Figures 1 & 5 above). By 2045 the clean firm power portfolio 

could eliminate the need for some 250 to 400 gigawatts of additional renewable energy. 

  

 

 

Figure 6. Clean firm power capacity needed to ensure reliability and affordability in 100% carbon-free cases.  

All models include variable renewable energy and batteries and account for existing contracts. Results shown for 

mid-range capital cost cases and $33/MMBtu zero-carbon fuel.  GenX optimizes Western Interconnect-wide 

dispatch and thus generally requires less firm capacity in California than other models.   

 

Each of these clean firm power resources would play a different role in eliminating overcapacity 

(Figure 7).  For example, nuclear power would act as a “flexible base” power source, generally 

providing a steady amount of electricity but reducing output during the height of solar output, 
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enabling nuclear plants to conserve their fuel for longer refueling cycles. Although we did not 

model geothermal generation explicitly, we would expect it to act quite similarly to nuclear 

power as it also has large up-front costs and minimal variable expenses. The models find it 

economical to ramp output from natural gas plants with CO2 capture and storage down and up 

from day to night and to shut these plants down for longer stretches in the spring. Power plants 

using more costly carbon-free fuels would be utilized only occasionally when solar, wind and 

storage options were unavailable. As a result, we find that having many options for clean firm 

power available results in the least cost solutions because each resource is able to operate at the 

ideal utilization rate, resulting in the lowest-cost mix of clean firm resources (Figures 7 & 7).2 

Any of these resources could adjust to fill the gap during times of dunkelflaute, resulting in the 

substantial cost savings shown in Figures 2 & 3.  

 

Figure 6.  Each type of clean firm power would play a slightly different role in meeting demand.  Daily 

generation pattern of the three models on an example September day for each scenario. Nuclear power would act as 

a “flexible base” power source but conserving fuel by reducing output during the height of solar output. Natural gas 

generation with CO2 capture and storage would ramp up at night when solar ramps down. Use of costly carbon-free 

fuels would only run when solar, wind and storage options were unavailable. Any of these resources could fill the 

gap during times of dunkelflaute. Each clean firm resource shows distinct daily operations that are consistent across 

all three models. Note: Representative September day used for RESOLVE, average generation profile for September 

days used for urbs, and average generation profile of representative September weeks used for GenX. GenX imports 

indicate net imports into California, and may include imports of power from clean firm resources operating outside 

of California.  (Figure taken from Baik et al. “What is different about different net-zero carbon electricity systems?”, 

manuscript EGYCC-D-20-00141 (under review) in Energy and Climate Change). 

 
2 For more, see Baik et al. “What is different about different net-zero carbon electricity systems?”  

manuscript EGYCC-D-20-00141 (under review) in Energy and Climate Change. 
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Figure 8.  Operating shares of various resources in a year. ZCF is gas turbine power plants using zero-carbon fuel; 

CCS is natural gas power plants with carbon capture and storage. The least cost solution is achieved when many 

options are available for clean firm power so that the marginal cost curve can follow the lowest cost resource at each 

utilization rate.  The lowest cost portfolio is highlighted.  The more types of clean firm power that are available, the 

lower the total cost.  At one end, power plants burning high cost zero carbon fuels but with low capital costs are 

suited to act as quick flexible response and to operate only occasionally when needed. At the other end, nuclear 

power or other options with high fixed costs and low variable costs are suited to operating at high utilization rates 

(above 70% of the hours of the year). In the middle, CCS provides a good way to regularly provide the least 

expensive power option at night and will generally back off during the day when solar is available.  Net load is the 

load net renewables and storage that these clean firm resources have to meet. The figure shows that each of the clean 

firm resources takes a chunk of the net load that has to be met. In the net load graph – the shaded area under the 

curve (MW * % hours operating) multiplied by 8760 hours in a year should approximately be the MWh of 

electricity each resource generates. (Figure taken from Baik et al. “What is different about different net-zero carbon 

electricity systems?”, manuscript EGYCC-D-20-00141 (under review) in Energy and Climate Change). 

 

Advantages of a portfolio with Clean Firm Power 

Decarbonized electricity systems with clean firm power have other key advantages over systems 

that are solely based on variable renewable energy and batteries (Table 1). Portfolios that include 

clean firm power alongside renewables in a 100% carbon-free electric system require between 

625 and 2500 square miles dedicated to utility scale solar and wind. Without clean firm power, 

3-10 times as much land would be required — more than 6250 square miles. Recent assessments 

of the solar resource in California indicate that 6250 square miles may exceed the amount of land 

https://www.scienceforconservation.org/products/power-of-place
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fit for utility-scale solar not subject to legal restrictions and without high conservation value. 

Other limitations that will make 100% renewable systems difficult to deploy include difficulty in 

obtaining transmission right of ways or spatially explicit deployment needs or geographic 

challenges that have yet been factored in and these would amplify the value of clean firm 

capacity.  These conclusions would become even more extreme should the existing out-of-state 

supplies of hydro and nuclear power become unavailable.  

Table 1.  Summary of issues related to the need for clean firm power. 

Issue 
With Clean Firm 

Power 

Without Clean 

Firm Power 

Costs for generation and transmission  
 

California transmission and distribution costs are 

currently about 9 cents/kWh  

~9 cents/kWh ~15 cents /kWh 

Solar and Wind Capacity 
 

Entire U.S. electric generating capacity is ~1100 GW 

25 – 200 GW  470 GW 

New Storage*  
 

Largest battery facility now being 

built is 0.6 GW /2.4 GWh.  

CA expects to have 2 GW battery 
capacity in 2021 

New short-term 

battery power 

capacity 

20 -100 GW  160 GW 

New short-term 

battery energy 

storage capacity 

100-800 GWh   1000 GWh  

Land Use 
 

CA land area is ~164,000 sq miles  

625- 2500 sq miles 6250 sq miles 

Transmission 
 

CA currently has ~ 15 million MW-miles (26,000 
circuit miles) of transmission 

2 – 3 million MW-

Miles 

~9 million MW 

Miles 

*Energy storage beyond existing pumped hydro  

Including clean firm power also reduces the need for millions of megawatt-miles of transmission 

lines. California currently has approximately 15 million megawatt-miles of transmission.  All 

portfolios that include clean firm power add 2-3 million megawatt-miles of new in-state 

transmission lines to meet the goal of zero emissions by 2045. Some of this might be built along 

existing right of ways, but any siting and permitting this amount of transmission for timely build 

out will present challenges.  Eschewing new clean firm power could at least triple this need to 9 

million megawatt-miles even with West-wide coordination of electricity supplies.   
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Our models built a significant amount of battery storage in addition to California’s existing 

pumped hydro storage capacities. Models with clean firm power built approximately 20-100 

gigawatts of new battery storage with 100-800 gigawatt-hours of energy storage capacity. 

Without clean firm power, the models built about 160 gigawatts of short-term battery storage to 

deliver nearly 1000 gigawatt-hours of energy. California has a large battery-focused policy under 

way, and some of the world’s biggest battery installations have followed.  California will have 

about 2 gigawatts of battery storage in 2021; the largest single battery storage facility being built 

anywhere has a capacity of 0.6 gigawatts at Morro Bay and will be able to provide power for 4 

hours, or 2.4 gigawatt-hours. Portfolios that depend solely on wind and solar build the equivalent 

of nearly 1000 energy storage facilities of this size and, even with clean firm power, the models 

build hundreds of facilities this size.  Future energy storage facilities will likely include a lot of 

batteries but might also include different configurations of technologies, including pumped hydro 

or novel systems.  

 

Increasingly better batteries play a key role in a carbon-free grid, but like all resources, forcing 

them to play roles they are ill-suited to adds cost and challenge.  Batteries provide flexibility on 

hourly and diurnal time scales, and all three modeling approaches choose to install storage—

modeled as batteries, though in the real world an array of options would be used. But in none of 

these solutions do batteries economically fill the entire need for clean firm resources.  Batteries 

make sense for shorter duration uses (e.g, shifting solar from midday into the evening) but 

cannot cost-effectively sustain discharge for weeks at a time. We did examine a class of 

technologies called “long duration storage” to see if these could substitute for clean firm power.  

Long duration storage technologies, such as electrolysis and underground storage of hydrogen or 

advances in ultra-cheap metal-air batteries could potentially provide storage for longer than a 

few days. Modeling for this study and other recent work indicates these resources play their best 

role as partial substitutes or even complements, rather than true alternatives to clean firm power; 

they provide another useful arrow in the quiver, but systems with clean firm power remain 

meaningfully less expensive (Figure 9). 
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Figure 9. The impact of long duration energy storage (LDES) on 2045 California electricity generation and 

transmission cost. Costs on the left are for systems that either have clean firm power or clean firm power plus 

LDES.  Those on the right have only variable renewable energy, batteries and long duration storage.  Having LDES 

does not substantially reduce costs if clean firm power is available, but low-cost long-duration storage options can 

diversify the portfolio of options and reduce reliance on clean firm capacity moderately. Systems which substitute 

LDES for clean firm power entirely are significantly more expensive. Note that these scenarios without clean firm 

power were not modeled across multiple weather years, which could require additional storage and renewable 

energy capacity (and greater cost) to meet reliability requirements across years. 

 

Finally, some have argued that California could continue to deploy its existing gas fleet to 

provide firm, but not clean, power and then offset the resulting emissions with negative emission 

technologies (NETs) such as direct air capture and sequestration or bioenergy with carbon 

capture and storage (BECCS) to meet its economy-wide carbon neutrality goal. We found this 

solution will likely cost more and produce more direct CO2 emissions than a system that includes 

both NETs and clean firm power. Even if the state wants to consider NETs, developing clean 

firm power is a “no regrets” strategy that positions California to meet its economy-wide 

decarbonization goals by retaining available NETs to offset more-difficult-to-decarbonize sectors 

such as agriculture, industry, or heavy-duty transport.  Also, NETs technologies have common 

ground with CCS and hydrogen from gas or biomass for clean firm power in that they all require 

sequestration of CO2.  Having CO2 sequestration capacity in California will therefor enable both 

clean firm power and several negative emission technology options. 
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Conclusion 

 

Weather-dependent renewable resources like wind and solar will play a starring role in 

California’s low carbon energy future. Even with substantial clean firm power installations, our 

models generally find that at least 60% of California’s electricity in 2045 could be produced with 

renewable resources.  Our model results show that, moving towards 2045, even without clean-

firm power, California can abate a lot of emissions by building out renewable energy and 

providing firm, but not clean, power from gas plants. Until then, existing natural gas-fired 

generators could act as firm power, albeit with continued emissions, and thus used only when 

these generators are essential.  But by 2045, emissions need to drop to zero and California will 

need to replace these carbon-emitting resources or retrofit them to either capture and store CO2 or 

burn clean fuels in a zero-carbon economy. Our model results show that squeezing out the last 

increments of CO2 from power generation while maintaining affordability and reliability will 

require clean firm power.  

 

An ambitious but achievable investment in clean firm power, on the order of California’s 

existing gas fleet could, on the upside, eliminate the need for ten times that amount of renewable 

energy and thus help keep generation and transmission costs in line with today, cut the land area 

needed for utility scale solar facilities and energy storage by a factor of ten, and reduce 

transmission infrastructure needs by a factor of four by 2045. These advantages will help 

increase the likelihood of achieving climate goals in California. 

 

California needs to start planning early to obtain clean firm power supplies.  It may seem as 

though 2045 is a long way off, but from an infrastructure investment and technology 

development perspective, it is really the day after tomorrow. California could initially target 

deployment of approximately 30 gigawatts of clean firm power by 2045, with interim milestones 

along the way in order to avoid high system costs and loss of reliability in the future. 

Deployment will require policy support because these technologies are currently more expensive 

per kilowatt hour than wind and solar energy and all face implementation challenges. Managing 

this issue requires early innovation, investment, and political conversations to choose viable 

clean firm power systems. It takes a long time to develop new technologies and to get regulators 

to approve them; waiting a decade to get to work will put California at risk of failure. As all 

these technologies keep costs low, California can work to scale several of these clean firm 

options simultaneously and expand whichever ones ultimately prove most feasible and cost-

effective. 

 

We don’t yet know the best choices and mixes of clean firm power. Consequently, the state 

should design an adaptive investment strategy—one that proactively deploys and tests a diverse 

portfolio of clean firm power choices until experience identifies the best and most feasible 

choices. A broad portfolio approach increases chance of success, helps to avoid technological 

cul-de-sacs, and thus will help ensure affordability and reliability in the long run. California’s 

government could require utilities to build some form of clean firm power now and allow cost 

recovery for their implementation. Leaving the form of clean firm power up to the utilities 

themselves—with oversight from California’s regulators focused on evaluating what the utilities 

do on the ground—will allow experimentation and learning.   
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The federal government can also help, not just California, but the entire nation, by making 

sizeable investments in clean firm power—including investment in innovations needed for the 

next generations of these sources.   

 

There’s a lot at stake not just for California.  Across the planet—in diverse places such as India, 

China, Chile, Europe and many others—governments and electric system planners are pushing 

hard to deploy vast quantities of renewable power.  California can help the planet achieve those 

visions—and thus help the planet cut global emissions and slow climate change—by showing 

how these power sources can be integrated reliably with clean firm power while meeting other 

goals such as wise land stewardship, environmental justice, and containment of costs.     
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Appendix A. Scenario definitions 

Scenario Names Technologies allowed for expansion 

Renewables (ReB) Solar PV+Wind+Battery Storage 

Gas/CCS (ReBC) Solar PV+Wind+Battery Storage+CCS 

Nuclear (ReBN) Solar PV+Wind+Battery Storage+Nuclear 

Fuels (ReBF) Solar PV+Wind+Battery Storage+Zero Carbon Fuel 

All (ReBCNF) Solar PV+Wind+Battery Storage+CCS+Nuclear+Zero Carbon Fuel 

Gas/CCS+Nuclear 

(ReBCN) 

Solar PV+Wind+Battery Storage+CCS+Nuclear 

Gas/CCS+Fuels 

(ReBCF) 

Solar PV+Wind+Battery Storage+CCS+Zero Carbon Fuel 
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A. Common Modeling Assumptions 
 

All three models shared common assumptions on load, future resources availability and future 

resource costs. The following section summarizes the common assumptions made across all 

three models. All common assumptions are derived from E3’s RESOLVE modeling work.  

1. Load Growth Assumptions 

 

California electricity loads and hourly load shapes assumed in this study result from sector 

allocated emissions based on E3’s modeling of economy-wide greenhouse gas emissions 

reduction targets as set by California to achieve an 80% greenhouse gas emissions reduction 

below 1990 levels by 2050 3. Table 1 shows loads expected to be considerably higher in 2030 

and 2045 than today due to electrification of vehicle and building loads.  

Table 1: Load growth assumptions for modeled years 

California Load Growth 
Assumptions 

20194 2030 2045 

Annual Load [TWh/yr] 
(includes BTM PV) 

~250 317 475 

 
2. Resources Considered for Expansion 

 

California has several resources that can be considered for its future decarbonized electricity 

sector. All three models’ optimization capabilities allow them to select from among a wide range 

of potential new resources. In this study, the options for new investments considered are defined 

by the scenarios and include technologies that are commercially available today as well as 

technologies that are assumed available in the near and long-term: by 2030 or 2045. The full 

range of resource options considered in this study is shown in Error! Reference source not f

ound..  

Table 2: Candidate resource options considered  

Candidate 
Resource 
Option 

Available Options Functionality 

Natural Gas 
Generation 

 Simple cycle gas 

turbines 

 Reciprocating engines 

 Dispatches economically based on heat 

rate, subject to ramping limitations 

 
3 https://www.ethree.com/wp-
content/uploads/2018/06/Deep_Decarbonization_in_a_High_Renewables_Future_CEC-500-2018-012-1.pdf  
4 https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber=20-IEPR-03  

https://www.ethree.com/wp-content/uploads/2018/06/Deep_Decarbonization_in_a_High_Renewables_Future_CEC-500-2018-012-1.pdf
https://www.ethree.com/wp-content/uploads/2018/06/Deep_Decarbonization_in_a_High_Renewables_Future_CEC-500-2018-012-1.pdf
https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber=20-IEPR-03
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 Combined cycle gas 

turbines (CCGT) 

 Combined cycle gas 

turbines with Carbon 

Capture & Storage 

(CCS) 

 Contributes to meeting reserve 

requirements and ramping needs 

 CCGT combined with CCS is an RPS 

eligible resource 

 CCGT with CCS has flexible ramping 

constraints and can capture 90-100% of 

greenhouse has emissions 

Nuclear 
Generation 

 New advanced nuclear 

generation 

 New nuclear plants are assumed to be 

dispatchable pressure-water-reactors5 

Renewable 
Generation 

 Geothermal 

 Wind (inc. Out-of-State 

and Offshore) 

 Utility Scale Solar PV 

(inc. Out-of-State) 

 Distributed Solar PV 

 Variable generation generates as 

available; geothermal assumed to run as 

baseload 

 Dynamic downward dispatch of variable 

renewable resources to help balance load 

Energy Storage  Batteries (> 1 hour) 

 Pumped hydro storage 

(> 12 hours) 

 Stores excess energy for later dispatch 

 Contributes to meeting reserve 

requirements and ramping needs 

Flexible Loads  Advanced shift demand 

response (e.g., 

controllable AC) 

 Allows the model to shift load from one 

timepoint to another 

 

  

 
5 https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf  

https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf
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The modeling exercise includes the following generation technologies6: 

o ‘‘Fuel-saving’’ variable renewable energy (VRE) resources. They harness renewable energy inputs 

(wind, solar insolation, water) that vary on timescales ranging from seconds to hours to seasons, have 

zero (or near-zero) variable costs, and have no fuel costs. At lower penetration levels, they may 

displace the need for firm capacity, but, at higher shares, capacity needs are driven by periods with 

low VRE availability. At high energy shares, these technologies therefore contribute value primarily 

by displacing other higher variable cost generating technologies whenever available and reducing the 

total fuel consumption and variable costs of the system. These include  

 wind power,  

 solar photovoltaics (PV),  

 concentrating solar power  

 run-of-river hydropower.  

o ‘‘Fast-burst’’ balancing resources. These are either energy constrained (storage, demand flexibility) 

or have very high variable cost (demand curtailment). These technologies are therefore poorly suited 

to operating continuously over long periods of time and are better used during high-value periods 

when relatively fast bursts of power or quick demand adjustments are needed to balance supply and 

demand. These include  

 short-duration energy storage (e.g., Li-ion batteries),  

 flexible demand (or schedulable loads), and  

 demand response (or price-responsive demand curtailment).  

o  ‘‘Firm’’ low-carbon resources. These are technologies that can be counted on to meet demand 

when needed in all seasons and over long durations (e.g., weeks or longer) and include  

 nuclear power plants capable of flexible operations,  

 hydro plants with high-capacity reservoirs,  

 coal and natural gas plants with CCS and capable of flexible operations,  

 geothermal power, and  

 biomass- and biogas-fueled power plants.  

 
3. Technology Costs 

 

Most technology cost assumptions for available resources are taken from NREL’s 2018 Annual 

Technology Baseline. Assumptions on capital and fixed O&M costs for resources, as well as 

associated financing assumptions are included in Supplementary Information file Cost and 

Financing Assumptions.xlsx. An example of assumed costs for resources in 2045 are summarized 

in Table 3.  

Note that modeled costs for the modeled timesteps are taken as averages of capital costs for the 

time frame for which they are being modeled. For example, for modeling time frames from 2030 

to 2045, capital costs assumptions for 2031-2045 are averaged and are input into the model.  

  

 
6 This taxonomy was originally developed in Sepulveda, et al. 2018, “The Role of Firm Low-Carbon Electricity 
Resources in Deep Decarbonization of Power Generation,” Joule 2(11). https://doi.org/10.1016/j.joule.2018.08.006 
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Table 3: Candidate cost assumptions for 2045 

 

While California has a wide variety of resources for its decarbonization, it has limited capacity of 

some resources. Notably, onshore wind, geothermal, and offshore wind resources are limited, so 

most of future capacity growth in-state is dominated by solar PV and battery storage. Assumed 

availability of future resources are summarized in Table 4.  
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Table 4: Resource Assumptions 

Category Assumption Study Assumption 

Candidate Resource Limits Solar PV Limited to 266,963 MW in-state 
and 45,684 MW out-of-state 
(UT/NV/NM/AZ) 

Wind Limited to 2,586 MW in-state and 
12,000 MW out-of-state 
(WY/NM/PNW) 

Geothermal Limited to 1,808 MW in-state and 
1,152 MW out-of-state (NV/PNW) 

Pumped storage Limited to 4,000 MW 

Battery storage Unlimited availability 

Demand Response Up to 4.9 GW 

CCS Available in specific scenarios 

Zero Carbon Fuel Incremental cost of $33/MMBtu 
in 2045 

Other Behind-the-meter PV Baseline installed capacity of 
15,335 MW by 2030 and 24,742 
MW by 2050 (forced in). Model 
can select up to 36,749 MW of 
additional BTM PV.  
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Table 5: Three models used and summary of key differences 

 RESOLVE  urbs GenX 

Model Type 
Linear Programming 

Model 
Linear Programming 
Model 

Linear Programming 
Model with linear 
relaxation of unit 
commitment 
constraints 

Temporal 
Resolution  

37 representative days 
1 year in hourly time 
steps (8760 hours) 

16 representative 
weeks with hourly 
resolution time steps 
(2,688 hours) 

Spatial 
Resolution 

3 zones: CA, SW, NW 
10 CA zones; 2 out of 
state zones (SW, NW) 

2 CA zones; 7 out of 
state WECC zones 

Capacity 
Decisions 
Optimized  

California California WECC-wide 

Policy 
Assumptions for 
Neighboring 
Regions 

Neighboring states 
assumed to adopt 
deep decarbonization 
measures, which are 
reflected in their 
assumed resource 
build  

Neighboring states 
assumed to adopt 
deep decarbonization 
measures, which are 
reflected in their 
assumed resource 
build 

All states within WECC 
adopt the same energy 
and carbon policies 

Imports/Exports 
to/from CA 

2000 MW of firm 
imports assumed 
Unspecified imports 
are treated as gas 
resources with a CA 
carbon adder applied 
at 0.43 tCO2/MWh 

Firm imports modeled 
and unspecified 
imports treated as gas 
resources with a CA 
carbon adder applied 
at 0.43 tCO2/MWh 

Co-optimized subject 
to inter-regional 
transmission network 
flow constraints and 
endogenous 
transmission capacity 
expansion 

 
  



25  

B. RESOLVE  
 

E3’s RESOLVE (Renewable Energy Solutions) is a resource investment model that is well 

known to utilities and utility commissions across the US, having been used extensively for 

resource planning needs including most recently: in California (CPUC 2017), the Northwest 

(Energy Northwest 2020, PSE IRP 2017), Hawaii (PSIP 2016), the Southwest (El Paso Electric 

Utility 2020), the Midwest (Xcel Minnesota 2019 IRP) as well as jurisdictions on the East Coast. 

RESOLVE is a linear optimization model that identifies optimal long-term generation and 

transmission investments in an electric system, subject to reliability, technical, and policy 

constraints such as annual greenhouse gas emissions levels and clean energy portfolio standards 

(E3 2020, Ming et al 2019). In this study RESOLVE optimizes California’s resource portfolio 

for least system cost while modelling interactions with external regions (including the Northwest 

and Southwest) based on price signals from their generation profiles. Resource portfolios for 

neighboring regions are input based on E3’s Aurora Market Pricing work for the WECC 

assuming environmental policy constraints like that of California by 2045. E3 also complements 

this analysis using their Renewable and Energy Capacity Planning Model (RECAP) to develop a 

zero carbon-emitting portfolio built solely on renewables and battery-storage additions (duration 

of 4-8 hours), referred to in the text as “ReB” scenario. RECAP assesses generation resource 

adequacy for a power system based on loss of load probability analysis and through an iterative 

process can be used to build a portfolio of variable and storage resource that will meet its 

probabilistic limits on reliability. All E3 portfolios presented in this study are assessed for their 

reliability using RECAP and meet the 2.4 hours per year loss of load hours electric reliability 

standard. 

RESOLVE is a resource investment model that identifies optimal long-term generation and 

transmission investments in an electricity system, subject to reliability, technical, and policy 

constraints. In this study, it is used to develop least-cost resource portfolios for California that 

meet SB100 defined by achieving 100%+ RPS by 2045 and meeting various decarbonization 

targets.   

This study utilizes the California-wide RESOLVE version that was developed for the CEC’s 

deep decarbonization project to evaluate long-run (2045) electricity portfolios for the state. A 

separate version of RESOLVE is used by the California Public Utilities Commission (CPUC) to 

evaluate near-term (2030) optimal resource portfolios for the CAISO footprint within the context 

of the CPUC’s Integrated Resource Planning (IRP) proceeding7.   The principal differences 

between the models are the footprint (state of California vs. CAISO area) and the time frame 

(2045 vs. 2030) over which resource investment is optimized.  

Neighboring regions to California, the Northwest (NW) and Southwest (SW), are also modelled 

as part of the system with optimized investment. Given recent policy adoptions by Washington 

State, Colorado, New Mexico and Arizona, we assume that these regions will have a resource 

build that matches an equivalent to California’s 80% greenhouse gas emissions reduction target 

by 2050 from 1990 levels. RESOLVE assumes that 10,000 MW of resources from out of state 

regions can contribute to meeting Resource Adequacy needs in California.  

 
7 http://cpuc.ca.gov/General.aspx?id=6442457210 

https://www.cpuc.ca.gov/General.aspx?id=6442457210
https://www.energy-northwest.com/Documents/E3%20Study%20Executive%20Summary%20final.pdf
https://www.ethree.com/wp-content/uploads/2017/01/RESOLVE-Appendix-12-22-2016-E3-FINAL.pdf
https://www.utilitydive.com/news/el-paso-electric-sees-record-low-solar-prices-as-it-secures-new-mexico-proj/578113/
https://www.utilitydive.com/news/el-paso-electric-sees-record-low-solar-prices-as-it-secures-new-mexico-proj/578113/
https://www.ethree.com/in-minnesota-xcel-lays-out-clean-energy-vision-with-e3-support/
https://www.ethree.com/tools/resolve-renewable-energy-solutions-model/
https://www.ethree.com/wp-content/uploads/2019/06/E3_Long_Run_Resource_Adequacy_CA_Deep-Decarbonization_Final.pdf
http://cpuc.ca.gov/General.aspx?id=6442457210
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RESOLVE considers both the fixed and operational costs of different portfolios over the lifetime 

of the resources and is specifically designed to simulate power systems operating under high 

penetrations of renewable energy and electric energy storage. By co-optimizing investment and 

operations decisions in one stage, the model directly captures dynamic trade-offs between them, 

such as energy storage investments vs. renewable curtailment/overbuild. The model uses 

weather-matched load, renewable and hydro data and simulates interconnection-wide operations 

over a representative set of sample days in each year. The objective function minimizes net 

present value (NPV) of electricity system costs, which is the sum of fixed investment costs and 

variable plus fixed operating costs, subject to various constraints.  Figure 1 provides an overview 

of the model. 

Figure 1: Overview of RESOLVE Model 

 

RESOLVE scenarios are designed to ensure reliability under all high renewable penetration 

cases with the following features:  

• Economic Retirement Functionality: This logic allows RESOLVE to retire existing resources if 

the going-forward costs of maintaining the resources is greater than the fuel, O&M, ancillary 

service and capacity savings the resources produce when operating.   

• Seasonal Energy Sufficiency Requirement: This constraint ensures the system can produce 

sufficient energy across extended periods (up to 3 weeks) and anomalous periods of low 

renewable output that are not captured in the limited set of sample days used for operations in the 

model. In most electricity systems today, which meet significant shares of demand with firm 

resources that can be dispatched throughout the year when needed, this type of constraint is not 

significant. However, in a system that relies heavily on intermittent renewables, the capability to 

serve load during prolonged periods of low renewable output is a key reliability consideration.  

In addition to the common assumptions and resources modeled, E3 considers 55 GWh/day of 

flexible loads in the form of Advanced shift demand response (e.g., controllable AC) that allows 

the model to shift load from one timepoint to another.  

It is worth noting that RESOLVE is not designed to answer detailed reliability questions in 

systems without sufficient firm capacity. The RESOLVE modeling framework is limited to a set 

of 37 representative sample days, which does not have enough data points to make robust 

conclusions on reliability events that happen infrequently, potentially less than once per year. In 
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addition, the sample days are independent (not connected) and therefore do not capture the 

potential need for multi-day or seasonal storage.  

RESOLVE does however include both a Planning Reserve Margin (PRM) constraint to ensure 

that sufficient resources are maintained to meet an assumed long-run reliability standard as well 

as an Energy Reserve Margin (ERM) constraint to ensure an equivalent loss of load expectation 

(LOLE) below 2.4 hours/year (per CAISO’s definition of a reliable system).  The PRM and 

ERM standards are developed exogenously and incorporated into RESOLVE as an assumption. 

For systems in which firm capacity is available to be selected, the capacity expansion model 

selected sufficient resources to meet energy and capacity needs plus a defined reserve margin to 

ensure sufficient capacity during adverse weather events.  

For the ReB scenario in which firm capacity was not available for selection, a more robust 

approach to resource adequacy was required in which a much wider range of potential load, wind 

and solar conditions was considered. For this case, E3 used RESOLVE to develop an initial 

portfolio that meets energy needs during the 37 selected days. E3 then used its RECAP model, 

which combines loss-of-load-probability modeling with a capacity expansion heuristic, to 

identify additional wind, solar and battery resources needed to meet a 1-day-in-10-year Loss-of-

Load Expectation standard. This more exacting approach was not utilized for all scenarios 

because (1) the analysis is very time- and resource-intensive and was beyond the scope of this 

project, and (2) E3’s experience in prior studies has been that the simpler reserve margin 

approach generally produces portfolios that meet resource adequacy standards when sufficient 

firm capacity is available for selection by the capacity expansion model. 

The Renewable Energy and Capacity Planning (RECAP) model is a loss-of-load-probability 

model developed by E3 that has been used extensively to test the resource adequacy of electric 

systems across the North American continent, including California, Hawaii, Canada, the Pacific 

Northwest, the Upper Midwest, Texas, and Florida. RECAP was developed specifically to 

address the needs of a changing electricity sector by incorporating the unique characteristics of 

dispatch-limited resources such as wind, solar, hydro, battery storage, and demand response into 

the traditional reliability framework.  

RECAP calculates a number of reliability metrics by simulating the electric system with a 

specific set of generating resources and loads under a wide variety of weather years, renewable 

generation years, and stochastic forced outages of electric generation resources and imports on 

transmission. Correlations enforced within the model capture linkage among load, weather, and 

renewable generation conditions. Time-sequential simulation tracks the state of charge and 

energy availability for dispatch-limited resources such as hydro, energy storage, and demand 

response. By simulating the system thousands of times with different combinations of these 

factors, RECAP provides a robust, stochastic estimation of loss of load expectation (LOLE), 

target planning reserve margin (PRM), individual resource effective load carrying capability 

(ELCC), and other reliability statistics. An overview of this process is provided below. RECAP 

conducts a Monte-Carlo time-sequential simulation of loads and resource availability, and the 

general steps in RECAP’s algorithm are shown below. 
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Figure 2. Overview of RECAP model  
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C. urbs 
 

urbs is a dispatch and capacity expansion model that designs large-scale power systems to meet 

policy standards while minimizing total costs. For capacity expansion, urbs determines what type 

and how much of generation, transmission, or storage capacities need to be added to each region 

to construct the optimal power system in California. For hourly dispatch, urbs utilizes generation, 

transmission, or storage resources from all regions cost-optimally to cost-optimally meet the 

hourly demand profiles in each region. Modeling reliability on urbs is limited to meeting the 

given load in the modeled year.  

The model solves a linear optimization problem that is formulated in Python and solved by 

Gurobi. The optimization goal is to minimize the societal costs of the system which involves 

annualized capital cost for new capacities built, as well as fuel costs, and fixed and variable 

operational costs for a given year. The optimization is subject to operational constraints of 

generation, transmission, and storage technologies, as well as policies such as a RPS, a CO2 tax, 

or a CO2 regulation. In this study, urbs is used to model California’s power system to meet it 

2045 SB100 goals. A more detailed description of the model can be found on the urbs GitHub 

page (TUM, 2017). 

1 Geographical Extent 

Within the model, the California power system is represented by ten distinct regions. Each region 

is a set of contiguous counties that are grouped to resemble California’s balancing authority areas 

and local reliability areas. The designated regions also take into consideration the distribution of 

transmission networks such that there are well-connected transmission lines within a single region. 

Electricity transmission and distribution within a region is assumed to be lossless. Each region has 

its own distinct set of generation capacities, transmission line capacities, storage capacities, and 

demand load profile.   
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Figure S1. Modeled extent of California and its surrounding regions in urbs 

The out-of-state (OOS) regions are divided into two separate regions: the Northwest (Washington, 

Oregon, Montana, Idaho, and Wyoming) and the Southwest (Arizona, Nevada, and Utah). Energy 

imports from these regions occur through import from out-of-state power plants owned by 

California balancing authority areas, power purchase agreements, and general electricity imports 

from which the generation source is unknown. The California Air Resources Board (CARB) 

imposes an 0.428 ton/MWh emissions intensity for unspecified imports. Two additional OOS 

regions are modeled to capture defined imports from the Northwest and Southwest, which don’t 

have an emissions intensity involved such as hydro and wind power from the Northwest, and PV 

imports from the Southwest. The transmission capacity between an out of state region and 

California is divided equally for defined and undefined resources. Existing and future generation 

and storage technology capacities for the out of state regions are taken from E3’s assumptions, 

which assume 80% emissions reduction in the Northwest and Southwest regions by 2045 relative 

to 1990 levels.  

Expansion of resources dedicated to California in out of state regions are limited to 10,000 MW 

of wind (5,000 MW each from the Northwest and Southwest) and 10,000 MW of Southwest PV. 

Additional 1,152 MW of geothermal from the Northwest is also allowed as an expansion 

candidate.  
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2 System Scenarios  

The modeling is conducted in a two-step process- one from 2020-2030 and another from 2030-

2045. A single 2020-2030 capacity expansion and dispatch model is run with a policy constraint 

of meeting expected load in 2030 as well as the 60% RPS requirement as set out by SB100. The 

results of the 2030 modeling run are then utilized as inputs for the 2045 capacity expansion 

modeling. Figure S2 summarizes the results of the 2030 modeling.  

 

Figure S2. Optimized system capacity and generation in California 2030. 

 

3 System Data and Assumptions 

3.1 Generation  

Generation technologies are divided into dispatchable and non-dispatchable resources. 

Dispatchable generation sources are conventional energy sources such as coal, nuclear, gas, 

biomass, geothermal, and CCS-enabled power plants from which generation can be controlled 

from an operator’s perspective. Non-dispatchable generation resources, such as solar and wind, 

are generation resources that cannot be turned on or off to meet the operator’s needs. For non-

dispatchable generation sources, hourly capacity values are provided for generation source and 

region. Generation technologies are also divided between renewable and non-renewable resources 

as defined under California’s Renewable Portfolio Standard, and is summarized in Table S5. 
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Table S1. Delineation of renewable generation under California’s RPS 

Renewable Solar, Onshore Wind, Biomass, Geothermal, Offshore Wind, Small 

Hydro (<30 MW), Biomass-CCS 

Not Renewable Gas, Coal, Large Hydro, Nuclear, Gas-CCS 

 

Regional distribution of generation resources are based on EIA’s 2018 Form 860, information on 

generators in 2018 (EIA, 2018). The capacities of generating power plants are aggregated based 

on regions and generation source as defined by urbs. In cases when the total capacity did not match 

RESOLVE inputs, the overall capacities in each region were scaled to match the total generation 

capacity in RESOLVE. A 15% planning reserve margin is included in the analysis as well.  

Hydro is modeled in a two step-process to represent its seasonal variation and limitations, but also 

the flexibility in generation. 70% of the total hydro capacity in a region is considered a non-

dispatchable resource that has must-run generation patterns based on historical 2018 generation 

from EIA (US Energy Information Administration, 2018). 30% of the total hydro capacity is 

modeled as a flexibly dispatchable resource, only limited in operation by an annual capacity factor 

of 25%. 

3.2 Transmission  

Transmission lines between regions are distinguished between Alternating Current (AC) and 

Direct Current (DC) lines, and existing transmission line capacities above 115kV are aggregated 

to one large transmission corridor between two different regions. Depending on the length of the 

transmission lines between regions, AC transmission lines have a range of efficiency loss of 89-

99%, while the DC transmission lines have a range of efficiency loss of 93-97% (Clair, 1953). 

Existing transmission line data in Western U.S. is obtained from Hart Energy Publishing (Hart 

Energy Publishing, 2015). Transmission line capacities above 115 kV are used and the capacities 

of the transmission lines are calculated based on voltage level and length (Kerala State Electricity 

Board Engineers’ Association, 2015). The transmission capacities between regions are aggregated 

as a single corridor between regions.  See attached modeling input excel sheet to see transmission 

capacities between modeling regions. Spur line costs for solar and gas-CCS are calculated based 

on GenX spur line cost assumptions and added to the total system cost post optimization.  

3.3 Translating E3 RESOLVE Resources Zones in urbs  

Each region in urbs has 1-2 wind and solar profiles that are consistent with E3 RESOLVE’s 

candidate renewable resource zones. Table S2 summarizes the how the solar and wind resources 

from E3 RESOLVE’s candidate zones were applied to modeling regions in urbs. For an urbs region 

with two RESOLVE zones, additional solar and wind profiles are modeled as ‘Added Solar’ and 

‘Added Wind’.  

  



33  

Table S2. Wind and Solar profiles from E3 utilized in urbs model per region. Two zones that are 

applicable two possible potentials and resources profiles were input.  

Urbs region RESOLVE ZONE 1 RESOLVE Zone 2 

CCT Solano  Greater Carrizo 

CVA Central Valley North Los Banos  

ECA California  

ELU Riverside East Palm Springs Southern California Desert 

FRE Westlands Tehachapi 

LAX Tehachapi Kramer Inyoken 

NCT Northern California  

NVA Northern California  

PAC Northern California  

SDG Greater Imperial  

SW SW Arizona 

NW NW Utah 

 

3.4 Load  

The load in each region is assessed by dividing the aggregate California load assumptions from 

E3, by the population density in each region as summarized in Table S3. The aggregate capacity 

for distributed solar is also proportionally attributed to each region by its population. In each 

region, the net load profile is obtained by subtracting the assumed distributed PV generation (based 

on regional solar profiles from E3) from the overall load.  
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Table S3. Population distribution across urbs regions  

urbs region % of Population 

CCT 18.2% 

CVA 11.4% 

ECA 0.1% 

ELU 19.7% 

FRE 4.0% 

LAX 33.2% 

NCT 2.7% 

NVA 1.7% 

PAC 0.3% 

SDG 8.9% 

 

Figure S3 shows the location of each region modeled in urbs.  

 

Figure S3. Location of each region modeled in urbs 
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3.5 Calculating System Cost 

The total system cost calculated for California consists of capital, fixed, and variable costs for in-

state generation and out of state resources dedicated to California. In addition, costs/revenues from 

import and export of electricity with neighboring state is assessed. In each region the marginal cost 

of generation in that region is multiplied by the energy level of exports in that region to find the 

system import/export costs. For California, exports from California are considered a net revenue, 

while imports from Northwest and Southwest regions are considered costs. Note that in 2045, there 

are no unspecified imports due to the CARB carbon adder, so only net revenue from exports is 

considered within the total system cost.  

4  Additional Technology Assumptions  

4.1 CCS Retrofit Cost Assumptions  

In addition to building new NGCC units, urbs allows California’s existing NGCC units to be 

retrofit with post-combustion carbon capture. Capital costs for retrofitting existing NGCC plants 

with carbon capture and storage (CCS) is assumed to be the difference in capital costs between 

and NGCC units and NGCC units with CCS. The capital cost assumptions for NGCC-CCS are 

consistent with RESOLVE and GenX, while the capital cost for NGCCs are based on NREL’s 

2018 Annual Technology Basis for NGCCs. Other fixed and variable operational costs for 

retrofit CCS plants are assumed to be consistent with RESOLVE and GenX. Once retrofit, the 

NGCC power plant that was retrofit has its peak capacity reduced by 25% to account for the 

energy penalty of carbon capture. New NGCC-CCS units are modeled by allowing the system to 

build more NGCC capacity that can then be retrofit by the system.  

4.2 Offshore Wind Assumptions  

The capacity factors and generation profiles are taken from a BOEM analysis on potential 

offshore resources in California (Musial et al., 2016). Average capacity factors for each region is 

taken from the BOEM study and the offshore wind generation profiles for the five regions that 

have potential (CCT, LAX, NCT, NVA, PAC) taken from Renewable.Ninja is scaled to match 

the capacity factor identifies in the BOEM study.  

4.3 BECCS Assumptions  

In modeling BECCS, only existing biomass power plants in California are allowed to be retrofit 

with carbon capture, and so expansion capacity is limited by the existing biomass capacity in-

state. Cost assumptions for bioenergy retrofit with carbon capture are taken from the 2012 NETL 

Analysis on coal and biomass analysis. Fixed O&M costs for BECCS power plants are taken 

from the fixed costs for case P.A.1 power plant with 100% biomass feed with 90% Capture. 

Retrofit capture costs are taken to be the difference in overnight capital costs from Case P.A.1. 

(100% biomass feed) and Case P.N.1. (100% biomass feed with 90% Capture).  

All 2007 $s are converted to 2018 $ to be consistent with capital cost assumptions for other 

generation and storage resources.  No learning curve is assumed for BECCS across time.  
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Table S4. Modeling assumptions for BECCS in urbs 

Description Values 

Overnight Capital Costs $2,483,000/MW (NETL, 2012) 

Fixed O&M $128,000/MW-year (NETL, 2012) 

Variable O&M $12.4/MWh (NETL, 2012) 

CRF 0.095 

Heat Rate 15,100 MMBtu/MWh (NETL, 2012) 

CO2 emissions -841 kg/MWh (NETL, 2012) 

Retrofit Power Penalty 25% 

 

5 Cost Sensitivities 

A range of cost for expansion technologies were assessed as sensitivity cases. The high, low, and 

reference cost cases assessed are summarized in Table S5. Additional lower and higher zero 

carbon fuel prices at $16.5/MMBtu and $50/MMBtu were also modeled.  

Table S5. Range of cost sensitivities for technologies considered for expansion. The costs are 

representative average capital costs between 2030 and 2045.  

 High/Low relative to reference costs 

Nuclear 

Capital Cost 
+/- 25% 

CCS (retrofit) 

Capital Cost 
+/- 20% 

Zero Carbon Fuel 

Fuel Cost 
+/- 25%, 50% 

Solar 

Capital Cost 
Based on NREL’s High and Low cost estimates 

Wind 

Capital Cost 
Based on NREL’s High and Low cost estimates 

Battery 

Capital Cost 
+25% /-33% 
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D. GenX  
 

GenX Model Overview 

GenX is an electricity resource capacity expansion planning model. It is a highly configurable 
optimization modeling framework designed to incorporate a wide range of state-of-the-art 
methods to provide improved decision support capabilities for a changing electricity landscape. 
For a detailed description of the model, including complete mathematical formulation, see Jenkins 
and Sepulveda (2017) and Jenkins (2018) Chapter 3. A brief description of the model and its 
configuration and use in this study follows. 

GenX is a constrained optimization model that simultaneously optimizes the mix of electricity 
generation, storage, and demand-side resource investments and retirement decisions, network 
investment decisions, and operational decisions (at hourly resolution) to meet electricity demand 
and maximize social welfare in a future planning year. The objective of the model is to minimize 
the cost of electricity supply subject to hourly demand-balance constraints at all locations in the 
system and a set of engineering and policy-related constraints on power system operations and 
investments. 

GenX uses a least cost optimization framework as a proxy for maximizing social welfare by 
including the opportunity cost of any non-served electricity demand in the objective function. 
The hourly own-price elasticity of electricity demand is approximated through a series of price 
responsive demand segments, each representing a set of consumers with different willingness to 
pay for electricity consumption. In other words, if the marginal cost of supply rises above the 
willingness to pay of any segment in a given hour, demand is reduced by the aggregate 
consumption of that segment of consumers, and the foregone utility of consumption is 
incorporated as a cost in the objective function. 

GenX is a ’static’ investment planning model, in the sense that its objective is not to determine 
when investments should take place over time, but rather to produce a snapshot of the 
minimum-cost generation, storage, and transmission capacity to meet some future planning year. 
The model can be run sequentially and myopically (without foresight), with outputs from one 
planning period serving as inputs (e.g. starting generation, storage, and network capacity) for 
subsequent planning periods. In this study, we run the GenX model in sequence for the period 
from 2020-2030 and then use results from the 2030 planning year as inputs for a 2031-2045 
planning period. In this paper, we only present the results for 2045. 
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Fig 1: Diagram of sequential (myopic) expansion planning periods used in GenX SB100 
Pathways Project cases 

The appropriate level of model resolution with (1) regards to chronological variability of 
electricity demand and renewable energy availability; (2) power system operational detail and 
unit commitment constraints; and (3) transmission and distribution network representation each 
vary for a given planning problem or policy question. As such, GenX is designed to be highly 
configurable, with several different degrees of resolution possible on each of these three key 
dimensions. 

In this study, we employ a simplified zonal transport model, which explicitly represent key 
transmission network constraints between zones or regions (with 9 regions, as detailed in Section 
1.1). Transmission power flows between regions are constrained to a maximum transfer capacity, 
which can be expanded via endogenous transmission expansion decisions. As these paths 
represent a simplified abstraction of real AC networks, we do not apply optimal power flow 
constraints (e.g. parallel flow constraints or voltage angle limits). We do not model distribution 
networks in this study (e.g. modeled demand represents bulk power system demand at the 
primary transmission substation level, inclusive of estimated losses in distribution voltage levels). 

Additionally, to improve computational tractability we configure the model herein to consider 
a reduced number of representative hours within the future planning year, selected using k-means 
clustering technique along with a selection of peak period based on the method in Mallapragada 
et al. (2018). We first identify the week containing the peak load and remove it from the original 
time series data. We then apply k-means clustering on the remaining time series to obtain the set 
of typical time periods. Instead of selecting the center of the cluster as the typical period, we 
track the data point that is closest to the center. The k-means clustering algorithm provides the 
weight of each cluster, which signifies the total number of hours in the year represented by each 
hour in the cluster (with the sum of weights in each hour equal to 8,760, or a full year of 
operations). In this study, we select 16 representative 7-day periods (weeks), based on analysis 
of a 3-zone Western Interconnect model using the same inputs as this study that demonstrated 
that with 16 representative weeks, cost results are accurate within 0.5% of the cost of a case using 
a full year (52 weeks) and capacity results for any resource type are accurate within 2% of peak 
demand (Figure 2). 
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Fig 2: Abstraction error by resource for western electricity coordinating council (WECC) wide 
system Finally, we employ a linear relaxation of discrete unit commitment decisions for 
thermal generators 

Thermal power plants (e.g. large coal, gas, and nuclear power plants) face important constraints 
on cycling decisions (start-up and shut-down) and minimum operating levels when online or 
“committed.” In addition, large thermal units can only be added in discrete increment sizes 
(e.g. a 450 MW combined cycle power plant of 1,100 MW nuclear reactor), are thus most 
accurately modeled as integer expansion decisions. In this study, these integer unit 
commitment and capacity addition variables for thermal units are replaced with continuous 
variables while maintaining the full set of unit commitment constraints (e.g. minimum up and 
down times after cycling, minimum stable output levels while committed) and incorporating 
start-up costs in the objective function. That is, the model is configured as a linear program (LP) 
where the feasible region represents the convex hull of the mixed integer linear programming 
(MILP) formulation inclusive of discrete unit commitment and investment decisions for thermal 
units. Jenkins (2018) demonstrates that this linear relaxation of unit commitment decisions offers 
a significant improvement in computational tractability (run-times are improved by roughly 60-
80%) with minimal error in key outcome variables (e.g. less than 0.25% error in total cost and 
capacity outcomes within 1% of peak demand for most resources, see Jenkins (2018), Chapter 3). 
Additionally, by employing the full set of unit commitment constraints and associated costs, this 
linear relaxation produces more accurate results than a simple linear economic dispatch 
formulation that entirely ignores unit commitment decisions more typically applied in capacity 
planning models (i.e., ignoring start-up, shut-down, minimum output, etc. and constraining only 
ramp rates and maximum output). 
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Fig 3: Summary of GenX model configuration for this study. Possible configurations are depicted 
in light blue, and the specific configuration used in this study in dark blue. 

1.1 Data and Assumptions 

The power system model analyzed in this paper is a case study that approximately represents 
the U.S. portion of the Western Electricity Coordinating Council (WECC) or Western 
Interconnection that includes California, New Mexico, Oregon, Washington, Montana, Arizona, 
Utah, Wyoming, Nevada, Idaho, and Colorado. We divide WECC into 9 transmission zones or 
regions as shown in Figure 4. Each region represents an aggregation of the base model regions in 
the EIA IPM model database (EPA, 2018). Table 1 provides the mapping between IPM zones and 
the regions defined for the modeling of WECC system. 
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Fig 4: Western Electricity Coordinating Council map aggregated into 9 zones with transmission 
paths showing inter-regional transmission limits for the existing network 

Table 1: Mapping from IPM zones to GenX model regions for this study 

 

  

Model Region 

CA N 

CA S 

AZ 

CO NM 

ID MT 

NNV 

SNV 

PNW 

UT WY 

IPM zones 

WEC CALN, WEC BANC, 

WECC SCE, WEC LADW, WEC SDGE, WECC IID 

WECC AZ 

WECC CO, WECC NM 

WECC ID, WECC MT 

WECC NNV 

WECC SNV 

WECC PNW 

WECC UT, WECC WY 
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1.2 Transmission data 

The power flow within each zone is unconstrained and power flow between the zones is 
subject to explicit transmission flow constraints. The 9 regions are connected by 17 transmission 
paths. We define length, existing capacity, transmission loss and maximum potential 
reinforcement for each transmission line. Based on Cohen et al. (2019), we assume transmission 
losses are 1% per 100 miles, transmission expansion cost is 1350 $/MW-mile and weighted 
average cost of capital is 7%. The cost assumption in Cohen et al. (2019) is converted from 
reported 2013 USD to 2018 USD using 1.0792 inflation rate based on the BLS Consumer Inflation 
Index. We assume that the financial asset life of transmission lines is 40 years. We apply a cost 
multiplier for transmission reinforcement cost within California of 2.25 times the cost in the rest 
of WECC based on (Cohen et al., 2019). The reinforcement cost for transmission paths between 
California and other regions in WECC is assumed to be average of the the within California and 
rest of the WECC costs. The following table 2 provides details of the transmission network 
considered in this study. We limit transmission capacity expansion to 200% of the starting capacity 
along each path in each of the two sequential planning periods (2020-2030 and 2031-2045). As 
such, a path can be expanded by no more than 400% (but only if the model chooses to expand 
the line to the maximize extent allowed in both planning periods). 
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Table 2: Transmission network details for WECC 

 

Transmission Path 

Name 

Path Max 

Flow [MW] 

Path distance 

[Miles] 

Transmission 

Loss [%] 

Path Max Re- 

inforcement 

[MW] 

Path Reinforce- 

ment Cost [2018 

USD/MW-yr] 

CA N - CA S 3675 309.33 3.1 7350 81716 

CA N - NNV 100 319.46 3.2 200 60950 

CA N - PNW 4200 248.80 2.5 8400 47469 

CA S - AZ 4794 387.22 3.9 9588 73878 

CA S - PNW 2858 401.48 4 5716 76598 

CA S - SNV 6697 159.78 1.6 13394 30484 

CA S - UT WY 1920 591.06 5.9 3840 112767 

AZ - CO NM 2400 393.32 3.9 4800 46179 

AZ - SNV 4785 237.18 2.4 9570 27847 

AZ - UT WY 250 247.67 2.5 500 29078 

CO NM - UT WY 2400 232.19 2.3 4800 27261 

ID MT - NNV 350 347.23 3.5 700 40767 

ID MT - PNW 4850 541.91 5.4 9700 63625 

ID MT - UT WY 4675 255.44 2.6 9350 29991 

NNV - PNW 300 307.56 3.1 600 36110 

NNV - UT WY 360 533.89 5.3 720 62683 

SNV - UT WY 250 431.34 4.3 500 50643 

 

1.3 Load data 

To model the hourly load variation for 2030 and 2045, the historical load data for year 2011 
from  EPA (2018) are scaled up using region-specific growth rates. To consider the regional 
variation in demand growth, we aggregate the 9 modeled zones into 3 broader regions: 
California (CA), WECC Northwest (WECC NW) and WECC Southwest (WECC SW). WECC NW 
includes Oregon, Washington, Montana, Utah, Wyoming, Northern Nevada, and Idaho while 
WECC SW includes Arizona, New Mexico, Southern Nevada, and Colorado. To synchronize inputs 
with RESOLVE and urbs models, we use the same regional growth rates for WECC NW and WECC 
SW from E3, assumed to be 14.8% and 17.6% through 2030 and 31.7% and 38.3% through 2045, 
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respectively. For these two regions, we use historical demand profiles and increase demand each 
hour by the regional percent growth rate, which reflects a business as usual growth projection. 

For California, demand projections are also from E3 (the same as used in RESOLVE and urbs 
modeling for this study) and assume significant end-use electrification of transportation and 
heating loads. As such, we cannot use the historical demand profiles from EPA (2018), and instead 
use the hourly per unit profiles from E3’s RESOLVE inputs for this study. As E3 input data is for total 
California load, we disaggregate the total statewide load into CA N and CA S model regions based 
on each region’s share of total 2011 demand in EPA (2018). As a result, CA N and CA S has the 
same load profile shape and growth rates with different absolute load value. Figure 5 depicts the 
total annual modeled load in each model region in 2030 and 2045 planning years. 

To consider distributed generation (DG) adoption reflective of solar policies in California, 
Arizona and Colorado, we remove estimated production from DG solar from the load profile (as 
modeled demand reflects load at the transmission substation). E3 assumes total T&D losses of 
7.33% for California and EPA’s IPM model assumes 2.88% transmission losses in WECC. As such, we 
model the reduction in transmission-level load from behind the meter solar production assuming 
average avoided distribution losses of 4.53%. The total capacity of DG solar for California is 
assumed to be same as E3 RESOLVE assumptions used in this study while the capacity for Arizona 
and Colorado is assumed to be sufficient to meet DG solar carve-out requirements in the existing 
state RPS policies. We assume 35 degree fixed tilt, south facing systems, with 15% system losses 
and generate DG solar profiles from Renewables.Ninja for weather year 2009 (Pfenninger and 
Staffell, 2016). The modeled locations for DC solar in CA N, CA S, WECC AZ and WECC CO are 
Sacramento, Los Angeles, Phoenix and Denver, respectively. 
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Fig 5: Total annual modeled load in 2030 (purple) and 2045 (red) by model region 

We assume that the value of lost load (or involuntary demand curtailment) is 9000 $/MW. 
Additionally, we assume 7.5% of load in each hour is willing to voluntarily curtail demand 
(demand response) at an opportunity cost of 600$/MWh, as per the ‘CA Shed DR’ resources 
modeled by RESOLVE. 

1.4 Generation and Storage 

For this analysis, we model the existing generator fleet by clustering individual generators 
within each model region into 10 generator types and one storage type per model region based on 
2018 installed capacity data from (EIA, 2018): coal, nuclear, natural gas combined cycle (NGCC), 
natural gas ‘peakers’ (combining existing combustion turbine, steam turbine, and reciprocating 
engine generators), geothermal, solar PV (single axis tracking), onshore wind, small hydro (run of 
the river units less than 30 MW), large hydro (combining reservoir and run-of-river units), 
biomass and hydroelectric pumped storage. We create two clusters each of NGCC and peaker 
plants for CA N and CA S to consider the variation in heat rates. We omit less than 2 GW of 
installed concentration solar power (CSP) capacity to reduce model dimensionality. We also model 
all existing small hydro, biomass, and geothermal energy resources as must-run generators with 
modeled capacity equal to the average output of these units to reduce decision variables. 
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Additionally, we consider new build construction of onshore wind (10 different 
locations/profiles across all model regions), solar PV (20 different locations/profiles across all 
model regions), offshore wind (3 locations/profiles, one each in PNW, CA N, and CA S), geothermal 
(4 locations/profiles in CA N, CA S, PNW, and SNV), and lithium-ion batteries (all regions) in all 
cases. In select cases, we also permit construction of natural gas combined cycle (NGCC), natural 
gas combustion turbine (NGCT), natural gas combined cycle with post-combustion carbon 
capture and sequestration (NGCCS) at both 90% and 100% net capture rate, natural gas Allam 
cycle with CCS (Allam cycle NG) at 100% net capture rate, new advanced nuclear (small modular 
reactors), long-duration hydrogen storage, and long-duration aqueous-air/metal-air storage. Due 
to geological constraints (lack of available geologies suitable for underground storage), NGCCS 
and Allam cycle NG are not permitted in AZ, NNV, SNV or PNW and hydrogen storage is not 
permitted in the low cost cases (which assume underground storage) in ID MT, NNV, and PNW. 

Finally, in zero-carbon fuel (ZCF) sensitivity cases, we assume existing or new build NGCC and 
NGCT plants can be reconfigured (at nominal cost) to run on biogas, hydrogen (e.g. produced via 
electrolysis or methane reforming with CCS) or another zero-carbon fuel (e.g. ammonia or 
synthetic methane) (see Section 1.5 for cost details). 

The following table 3 shows the availability of new build technologies for each model region. 
Depending on the sensitivity case, the resulting WECC power system model has up to 179 eligible 
resources with 75 thermal units subject to linearized unit commitment constraints, 14 energy 
storage resources, 9 long duration energy storage resources, 9 large hydro resources, 22 biomass, 
geothermal and small-hydro resources (modeled as must-run generators), and 50 dispatchable 
variable renewable resource sites/profiles. 
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Table 3: Availability of new technologies by region 

Technology CA N CA S AZ CO NM ID MT NNV PNW SNV UT WY 

Onshore wind ✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

Offshore wind 

Solar PV 

Geothermal 

NGCC 

NGCT 

Li-ion battery 

NGCC CCS∗ 

Allam cycle NG∗ 

Nuclear∗^ 

Hydrogen long duration energy storage∗$ 

Aq-air/Metal-air long duration energy storage∗ 

  

* - Available only in select cases; ^ - only available in California after 2030. $ - hydrogen storage is not permitted in the low cost cases (which 

assume underground storage) in ID MT, NNV, and PNW. 

The projected capital, fixed and variable operations and maintenance (O&M) costs for most 
new-build resources are consistent with those detailed above for E3 RESOLVE inputs and 
generally based on NREL (2018). Lithium-ion battery storage costs are based on Lazard (2018). 
Costs are converted to region-specific costs using NREL Annual Technology Baseline regional cost 
multipliers (NREL, 2019). 

In addition to the mid-range cost scenarios included in RESOLVE runs, we model low nuclear 
cost and low CCS cost sensitivity cases with investment costs 25% and 20% lower than the base 
case assumptions, respectively. We also consider three scenarios with availability of Allam cycle 
natural gas plants with CCS (at 100% capture rate). Our high-cost Allam cycle scenario uses 
investment cost (2014 $/kW), fixed O&M cost (54 $/kW), and heat rate (7.08 MMBtu/MWh) from 
White and Weiland (2018), with reported costs converted from 2011 to 2018 USD using 1.13 factor 
(based on BLS CPI). The variable O&M cost for Allam cycle is assumed to be 70% of the variable 
O&M for NGCT with post combustion CCS based on the ratio of O&M costs for Allam cycle and 
post-combustion capture reported in White and Weiland (2018) (or 4.42 $/MWh). A low-cost 
Allam cycle scenario assumes 25% lower investment and fixed O&M costs than the mid-cost case, 
and an improved heat rate (6.82 MMBtu/MWh) based on Scaccabarozzi et al. (2017). A very low-
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cost Allam cycle case is run based on installed cost (1000 $/kW) and heat rate (6.42 
MMBtu/MWh) claims from NET Power, an Allam cycle developer, for Nth of a kind installations. 

We scale up the fixed O&M of existing power plants by 1.5 times the cost for new build plants 
to reflect increased costs of maintenance for aging units, and we scale variable O&M of existing 
power plants proportionate to the ratio of heat rate for existing thermal unit clusters and the 
heat rate of new build units of the same type.  

We also assume minimum output power for thermal units with unit commitment decisions, 
which is 20%, 30%, 50% and 60% for NGCC, NGCT, nuclear and NGCC CCS plants, respectively, 
consistent with E3 RESOLVE assumptions. Moreover, thermal units, biomass plants, geothermal 
and small hydro are assumed to have 100% availability. 

A full description of all cost and performance parameters for the new generation technologies 
are given in the “Resources 2030” and “Resources 2045” worksheets of the GenX input data 
supplement provided along with this SI. Long duration energy storage assumptions are detailed 
below in Section 1.8 below. 

1.5 Fuel data 

Regional values for fuel cost for coal, natural gas, and uranium and their CO2 content are 
consistent with E3 RESOLVE inputs and taken from EIA Annual Energy Outlook (EIA, 2018) and 
defined for 3 aggregated regions: California (CA), WECC Northwest (WECC NW) and WECC 
Southwest (WECC SW). Table 4 presents fuel price and CO2 content for fuels by region. Biomass 
fuel costs are assumed to be 10 $/MMBtu as per E3 RESOLVE assumptions. 

In select cases, we also model two levels of zero-carbon fuel (ZCF) costs. A high cost scenario 
assumes a ZCF cost of approximately 33 $/MMBtu reflective of E3’s RESOLVE cost assumptions for 
marginal biomethane prices in 2045. Additionally, low-cost ZCF cases with prices of 
approximately 15 $/MMBtu are based on techno-economic assessment of potential hydrogen 
production costs from steam methane reforming of natural gas with carbon capture and 
sequestration (so-called “blue hydrogen”) based on IEA GHG Pro- gramme (2017) and assuming 
a 50% reduction in CAPEX for the carbon capture module by 2040. While modeled based on a 
techno-economic study of hydrogen from methane reforming with CCS, this low cost ZCF 
case is consistent with any clean hydrogen supplied at a delivered cost of approximately 
$1.60-1.75/kg (e.g. including renewable electrolysis). Regional hydrogen fuel costs in this low-
cost case parallel natural gas regional price differences to reflect similar cost of fuel delivery. CO2 

emissions for hydrogen are assumed to be zero based on direct combustion emissions (note that 
upstream GHG emissions for natural gas-based hydrogen production paths may be non-zero). For 
derivation of these fuel cost assumptions, see the “Blue H2 Costs” sheet in the GenX input data 
supplement provided along with this SI. 
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Table 4: Price and CO2 content assumptions for fuels by region 

Fuel Price [$/MMBtu] CO2 content 

[tons/MMBtu] 

 
CA 

2030 

NW 

SW CA 
2045 

NW 

SW 
 

Coal 2 2 2 2 2 2 0.094 

Uranium 0.7 0.7 0.7 0.7 0.7 0.7 0 

Natural gas 5.8 5.06 5.3 6.9 6.05 6.3 0.053 

Biomass 10 10 10 10 10 10 0 

Zero-carbon fuel - High cost (e.g. biomethane) - - - 32.73 32.73 32.73 0 

Zero-carbon fuel - Low cost  

(e.g. H2 at ~$1.60-1.75/kg delivered cost) 

- - - 15.84 14.58 15.04 0 

SMR w/CCS - Steam methane reforming with carbon capture and sequestration; NW - WECC NW; SW - WECC SW 

The fuel prices above are modified by applying a 45 $/ton CO2 price to all fuels in 2030 based 
on E3’s mid-range CO2 price trajectory from California IRP proceedings (rounded to the nearest 
whole dollar). Additionally, fuel costs for CCS plants built in 2021-2030 planning period receive a 
50 $/ton CO2 subsidy to reflect the 45Q tax credit for carbon capture and sequestration. For 2045 
cases, either a 0 emissions cap is applied (in baseline cases), with no carbon price, or a 200 $/ton 
CO2 price is applied to all fuels to reflect the potential marginal cost of negative emissions to off- 
set residual emissions from natural gas units in 2045 in a net-zero emissions (carbon neutral) 
economy, consistent with California Executive Order B-55-18. 

1.6 Wind and solar resource clusters 

For potential capacity expansion of solar and onshore wind, we define multiple clusters per 
region based on E3 RESOLVE inputs (see Table 5). Additionally, three offshore floating wind 
turbine resource clusters are added with profiles from Pfenninger and Staffell (2016) and 
maximum capacity per site from Musial et al. (2016). See the “Generator Variability” sheet in the 
GenX input data supplement provided along with this SI for hourly capacity factor profiles for 
each resource cluster. 

To consider the cost of electricity transmission from solar and wind sites to demand centers, 
we add spur line costs to inflate the base investment cost. In this way, we implicitly account for 
transmission costs within model regions, where transmission constraints are not explicitly 
considered. Spur line distances are based on driving distances from sites to major metropolitan 
areas as estimated by Google Maps. See comments in “Resources 2045” sheet of the GenX data 
supplement for route assumption details. We used driving distances (as opposed to straight-line 
distances) to approximate realistic routes considering topological and jurisdictional constraints 
that may face transmission routes. Where renewable sites are assumed to deliver to metropolitan 
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areas in another model region (e.g. Montana wind delivering to Portland, Oregon metro area), we 
subtract the explicitly modeled inter-regional transmission distance from the site to metro 
distance. Spur line costs per mile are from Cohen et al. (2019), and as per the reference, spur line 
costs in California are assumed to be 2.25 times more costly than in other regions. Table 5 
presents the assumption for the new solar and wind clusters. 

(Note that spur line costs are also added to new nuclear and CCS units, reflecting expected 
siting locations for these resources. See “Resources 2045” sheet of the GenX data supplement 
for details.) 
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Table 5: Solar and wind resource clusters 

 

* - Spur line cost for 

California wind sites 
included in annualized 

wind cluster investment 

cost provided by E3. 

 

  

Technology Region Cluster Max Capacity 

[MW] 

Spur Line Dis- 

tance [miles] 

Transmission 

cost [$/MW-yr] 

Onshore wind CA N 1 643 * * 

 CA N 2 146 * * 

 CA S 1 1094 * * 

 CA S 2 416 * * 

 AZ 1 2897 185 56522 

 CO NM 1 10000 150 45829 

 CO NM 2 34580 110 33608 

 ID MT 1 5633 108 33024 

 PNW 1 10048 120 36663 

 UT WY 1 33816 223 68024 

Solar CA N 1 78817 20 13749 

 CA N 2 14914 20 13749 

 CA N 3 5056 20 13749 

 CA N 4 28088 20 13749 

 CA S 1 15237 20 13749 

 CA S 2 4318 20 13749 

 CA S 3 17337 20 13749 

 CA S 4 15448 20 13749 

 CA S 5 14310 20 13749 

 CA S 6 36553 20 13749 

 AZ 1 15020 20 6110 

 CO NM 1 664 20 6110 

 CO NM 2 15000 20 6110 

 ID MT 1 1065 20 6110 

 PNW 1 7556 20 6110 

 PNW 2 9211 180 54994 

 SNV 1 15000 20 6110 

 UT WY 1 15020 20 6110 

Offshore wind CA N 1 2397 75 53160 

 CA S 1 3702 34 46970 

 PNW 1 5256 144 78700 
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1.7 Hydropower 

The input data for reservoir hydro includes initial level of the water in the reservoir, inflow 
data and minimum reservoir level. We assume that hydro reservoirs are half full at the beginning 
and constrain the water level at the end of the year to be same as at the beginning of the year. 
The EIA-923 report provides monthly historical inflow data for reservoir hydro for each state. Due 
to lack of hourly profiles, we aggregate the state level data into model regions and equally 
distribute the inflow over each hour. Minimum power share from hydro reservoirs is set equal to 
the minimum of hourly values. Based on validation of modeled dispatch against historical 2009 
CAISO aggregate hydro dispatch, we set reservoir capacity for California resources to 2 times the 
average hourly average inflow rate. Lacking data for validation for other states, we assume 
reservoir capacity in the Southwest states (AZ, NV, CO, NM) are equal to that in California (2 times 
average hourly inflow) and reservoir capacity in the Northwest states (OR, WA, ID, MT, UT, WY) are 
twice that of California (4 times the average hourly inflow) based on the relative flexibility of hydro 
units in E3’s RESOLVE inputs (expressed in RESOLVE as daily water budgets). See the ’Hydro 
Variability’ sheet in the GenX data supplement for more detail. 

 

1.8 Long duration energy storage 

In select sensitivity cases, we include two types of potential long duration energy storage 
technologies. First, we model a long duration hydrogen energy storage pathway. Capacity 
decisions are made independently for charge power capacity (electrolysis), energy storage 
capacity (underground or tank H2 storage), and discharge power capacity (combustion turbine). 
Three cost assumption levels are considered for hydrogen electrolysis and storage capacity 
costs. Low storage capital costs represents underground storage in large salt caverns based on 
estimate from Lord et al. (2014); Mid cost represents underground storage based on “future” 
underground cost estimate from Steward et al. (2009). High cost represents above ground steel 
tanks “future” cost from Steward et al. (2009). Electrolysis costs for 2040 represent interpolation 
of 2025/2030 and 2050 cost projections from the literature. Low electrolysis cost is based on 
2030 estimate from Saba et al. (2018) (397 EUR/kW) and 2050 forecast from Dolf Gielen and 
Miranda (200 $/kW). Mid cost is based on the lowest 2025 estimate from Taibi et al. (480 
EUR/kW) and lowest 2050 estimate from Michalski et al. (2017) (334 EUR/kW). High cost is 
based on the highest 2025 estimate from Taibi et al. (700 EUR/kW) and highest 2050 estimate 
from Michalski et al. (2017) (607 EUR/kW). EUR converted to USD at an exchange rate of 1.11:1. 
Electrolysis fixed operations and maintenance costs vary across sensitivity scenario as well, based 
on Michalski et al. (2017). As discharge costs reflect mature combustion turbines, no cost 
sensitivity is considered for this cost component and capital, fixed O&M and variable O&M costs 
are the same as those modeled for new build stand-alone combustion turbines from NREL (2018). 
Capital cost and performance assumptions for hydrogen storage are summarized in Table 6.   
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Table 6: Cost and performance sensitivity assumptions for hydrogen long duration 
energy storage 

Attribute Low   Mid.           High  

 

Storage component (underground caverns or above-ground tanks) 

Capex [$/kWh] 1   5 10 

Asset Life [years] 30 

Energy to power ratio permitted 48–2000 

Charge power component 

(electrolysis) 

Discharge power component 

(combustion turbine) 

Capex & Opex [$/kW-yr] 123 

Single-trip Efficiency [%] 40 

Additionally, we model cases exploring a speculative range of cost and performance 
assumptions that may be achieved by low-cost aqueous-air or metal-air electro-chemical long 
duration energy storage technologies, as detailed in Table 7. These technologies are assumed to 
have use the same capacity for charging and discharging and have independently sizable energy 
storage capacity decisions. 

Table 7: Cost and performance sensitivity assumptions for aqueous-air or metal-air electro-
chemical long duration energy storage 

Attribute Low High 

Energy Capex [$/kWh] 4 12 

Power Capex [$/kW] 300 1300 

Energy to power ratio permitted 100-200 12-48 

Round Trip Efficiency [%] 45 50 

OpEx [$/kW-yr] 30 40 

Lifetime [years] 25 25 

 

  

Capex [$/kW] 321 452  726 

OpEx [$/kW-yr] 14 30  46 

Single-trip Efficiency [%]   67  

Asset life [years]   25  
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Data sets 
• Data Supplement Inputs on GenX 

• Data Supplement Inputs on URBS 

• Data Supplement Inputs on Resolve 

• Data Supplement Results on GenX 

• Data Supplement Results on URBS 

 

 

 

https://www.dropbox.com/scl/fi/s8rw4633yg5bp0zoq6d7k/SI-inputs-data-supplement-GenX.xlsx?dl=0&rlkey=rigd8c26si2iktfapt2pmhh09
https://www.dropbox.com/scl/fi/d059hc5zwxj87b1zn3phy/SI-inputs-data-supplement-urbs.xlsx?dl=0&rlkey=czuj95kjjzlzv1e4yv7y2b2kh
https://www.dropbox.com/scl/fi/5kgdib8m9ab41yeq09euf/SI-inputs-data-supplement-RESOLVE.xlsx?dl=0&rlkey=htxuw9puutvajwds7ykj6luu8
https://www.dropbox.com/scl/fi/2dti75codsr5hrwjxmzid/SI-results-data-supplement-GenX.xlsx?dl=0&rlkey=a0yuvzhm219wsef97h7uqcnfw
https://www.dropbox.com/scl/fi/2dti75codsr5hrwjxmzid/SI-results-data-supplement-GenX.xlsx?dl=0&rlkey=a0yuvzhm219wsef97h7uqcnfw
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