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Executive Summary 
Traditional marginal abatement cost (MAC) curves have become the de facto starting point for 

comparing emission reduction measures since being popularized by McKinsey & Company more 

than a decade ago. However, traditional MAC methodologies are ill-suited to the task of today 

— analyzing the coordinated deployment of low- and zero-carbon measures required to reach 

net-zero energy systems by 2050. Prior methodologies have failed to assess cross-measure 

interactions and measure deployment across a range of marginal abatement costs, and they have 

relied on a comparison of measures to a counterfactual that does not reflect the dynamics of a 

decarbonizing energy system. This paper presents a new methodology that embraces the aspects 

of traditional MAC curves that make them so compelling (e.g., simplicity and accessibility) while 

also addressing their limitations. By utilizing the latest energy optimization models and systems-

level analysis, our new approach produces a MAC curve that is more sophisticated and better 

suited for informing policy decisions around achieving net-zero. 

Our approach models changes in the U.S. energy system between today and 2050 as marginal 

abatement costs increase. It produces a MAC curve that is more relevant for analyzing the trends 

and interactions associated with net-zero by making three critical improvements:  

1. Capturing critical interactions between measures and across sectors, including how the 

order of deployment influences the cost and emissions reductions of subsequent 

measures. A classic example of this type of interaction is how the emissions reduction 

potential and marginal abatement cost of electric vehicles (EVs) depend on their 

adoption as well as the simultaneous deployment of clean electricity resources (i.e., 

emissions reductions from EVs are greater when the grid has cleaner electricity). This 

interdependency of measures is integrated into the analytical framework used to 

produce our MAC curves, resulting in more accurate estimates of measure emission 

reductions and cost. 

  

2. Using a systems-level methodology to provide insights into the differing costs of 

deploying an individual measure under different contexts. The marginal abatement cost 

of a given measure can vary considerably depending on its level of deployment and the 

deployment of other measures in the energy system. For example, while solar PV might 

be a low or even negative cost measure in many areas of the country today, increasing 

its deployment will eventually require supporting resources (e.g., new transmission 

lines, batteries, or hydrogen electrolysis) to enable its integration — increasing its 

relative cost. Whereas traditional MAC curves generally depict the average cost of each 

measure, our approach shows how each measure could be deployed across a range of 

marginal abatement costs. By highlighting the importance of context and interactivity, 

our approach illustrates  there is no single silver bullet solution for deep decarbonization 

and underscores the importance of coordinated measure deployment. 
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3. Expanding the array of relevant measures to include those that only become cost-

effective once there is significant deployment of other measures. For instance, electric 

boilers would not be included as an emissions reduction measure using a traditional 

MAC curve because deploying the measure today tends to increase emissions, even 

though it has the potential to decrease emissions if the electricity grid becomes cleaner. 

Since traditional MAC curves are primarily developed by assessing measures against a 

fossil-dominated counterfactual, they do not address how measures perform in an 

energy system with much lower emissions. This in turn limits what these approaches 

can say about when and which measures become cost-effective, as well as, how 

changes in the energy system drive these economics. By evaluating all measures over 

many marginal abatement costs, our new methodology can show the contexts in which 

measures like electric boilers become important, thereby offering deeper insights into 

the ultimate scale of measure deployment for deep decarbonization. 

Figure 1 shows the results of our new methodology, a MAC curve of measures to reduce CO2 

emissions from the U.S. energy and industry system in 2050. The curve shows annual emission 

reductions from measures relative to a baseline scenario1 as a function of marginal abatement 

cost. At the high end of the cost range in the figure,2 the measures included in this analysis could, 

if deployed in coordination, collectively achieve net-negative CO2 levels in line with net-negative 

greenhouse gas emissions across the whole economy.3  

 

 

1 The baseline reflects estimated measure deployment based on existing policy through the beginning of 2020. 

2 This range of marginal abatement costs fits with recent studies of achieving net-zero energy and industry CO2 

emissions for the U.S. by 2050 at modest cost, where annual energy system costs as a percentage of GDP are 

comparable or lower than recent energy system costs, including a paper on US Carbon-Neutral Pathways, and the 

Princeton University Net-Zero America study. As a specific example from the Princeton study, several scenarios 

achieve net-zero greenhouse gas emissions by 2050 at a modest incremental cost in the range of 1-3% of GDP. All 

these scenarios have 2050 marginal abatement costs in the range of $250 to above $350 per ton, with the 

differences driven by assumptions about the availability of key technologies. 

3 See the net-negative emission scenario in the recent US Carbon-Neutral Pathways study, where 2050 CO2 net-

emissions from industry and energy are -500 million tons. 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020AV000284
https://environmenthalfcentury.princeton.edu/sites/g/files/toruqf331/files/2020-12/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020AV000284
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Figure 1 – A 2050 MAC curve developed using the new approach, shows annual reductions from measures 
for U.S. energy and industry CO2, where reductions are relative to 2050 emissions for a baseline scenario. 
Each segment represents an individual measure, and colors correspond to related groupings of measures.  

 

This new approach offers key measure-specific insights in terms of deployment levels and 

emissions reductions by 2050. These are organized by ranges of marginal abatement cost: 

• Less than or equal to $0 per ton  

Several measures are cost-effective at marginal abatement costs of $0 per ton or less — 

including several electric vehicle classes, electric efficiency, high-quality solar PV and 

onshore wind resources, and nuclear relicensing. Together, the measures in this range 

Click on the text for a 
description of the 

underlying measures. 
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represent more than a gigaton of potential annual emission reductions by 2050. However, 

achieving these reductions will require addressing several non-cost barriers limiting 

deployment, including the slow rate of change of consumer awareness and market 

structures that would incentivize their deployment.  

• $0 to $60 per ton 

In this range, an additional gigaton of annual reductions could be achieved, primarily 

driven by electricity measures including solar PV, onshore wind, and offshore wind. 

Among all measures in our analysis, these renewable generation measures offer the 

greatest opportunity for dramatic emissions reductions at a modest cost — reinforcing 

the policy imperative to support ongoing electricity decarbonization. 

• $60 to $90 per ton 

As marginal abatement costs rise to $60-$90/ton, diminishing marginal returns begin to 

materially impact the cost-effectiveness of deployed measures. Incremental deployment 

of renewables continues in this range but at a much slower rate, involving resources with 

higher integration costs (e.g., new transmission lines, energy storage) and lower energy 

generation for the same installed capacity. Several measures to support the integration 

of variable renewable generation start to become cost-effective in this range, including 

electric boilers, hydrogen electrolysis, and power-to-liquids. New advanced nuclear 

power deployment also becomes cost-effective and represents significant annual 

emission reduction potential by providing zero-carbon electricity for regions with 

constrained renewable resources.4 

• $90 to $150 per ton 

Zero-carbon fuel measures, particularly those derived from biomass, become a significant 

driver of emission reductions in the $90-$150/ton cost range. Biomass-derived fuel 

measures (e.g., biomass pyrolysis and fischer-tropsch diesel) that capture their carbon 

emissions also interact with power-to-liquids measures and begin enabling the 

deployment of synthetic fuel technologies by providing them with required carbon 

feedstocks. Increases in the scale of low carbon hydrogen production also drive 

meaningful emission reductions as both biomass H2 with carbon capture and gas H2 with 

carbon capture become cost-effective. Electric boilers come online as an industrial heat 

alternative and enable substantial emission reductions, both by displacing natural gas 

boiler emissions and by interacting with the electricity sector to support renewable 

integration.  

• $150 to $180 per ton 

As marginal abatement costs rise to the $150-$180/ton range, zero-carbon fuel measures 

become the major emission reduction driver. Deployment of biomass pyrolysis and 

 

4 The MAC analysis behind the curve represents the U.S. as 14 regions, which enables this approach to offer 

insights on when regional resource potential constraints drive the deployment of particular measures in a region. 
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fischer-tropsch diesel continues, but with higher marginal abatement costs due to supply 

constraints driving higher-cost biomass feedstocks. Power-to-liquids and electric boilers, 

both of which depend on linkages to other sectors that face the same higher marginal 

abatement costs, are large contributors to emissions reductions in this range as well.  

• $180 per ton and above 

Deployment of direct air capture with sequestration plays a central role at costs 

exceeding $180/ton, where deployment could drive large-scale emission reductions. The 

abatement cost estimates for direct air capture with sequestration are primarily driven 

by the availability and cost of zero-carbon electricity, which depends on the interaction 

of electricity decarbonization measures with those supporting renewable resource 

integration. 

Across the range of marginal abatement costs, this updated curve provides deeper insights than 

traditional MAC approaches into the suite of measures needed to achieve large emission 

reductions. These advantages become increasingly clear as abatement costs rise and the scale of 

measure deployment creates new dynamics that influence the next phase of deployment. Based 

on these insights, key takeaways for policymakers include: 

• Significant emissions reductions are available at low or even negative costs if non-cost 

barriers can be addressed.5 Under a supportive policy framework, zero-emissions 

vehicles, building efficiency and electrification, and electricity decarbonization measures 

(such as wind and solar deployment and nuclear relicensing) could save over two 

gigatons of CO2 in 2050 – roughly 50% of the way to net-zero CO2 emissions from 

industry and energy use – at marginal abatement costs ranging from negative to very 

modest costs (less than $60 per ton).  

• Decarbonization beyond these initial two-plus gigatons will require further coordinated 

measure deployment. In the transportation sector, zero-emissions-vehicle deployment 

expands to more challenging vehicle classes and consumer segments. In the power 

sector, additional electricity decarbonization becomes more expensive due to 

integration needs and diminishing marginal output potential. Effective policy 

formulations will anticipate the need for both low-cost and higher-cost measures to 

meet ambitous decarbonization goals and focus on enabling the high levels of electric 

vehicle and renewables deployment that are required. Policy interventions, like 

streamlined transmission siting rules and efficient electricity rate design, will be 

essential for achieving these measures’ full potential. 

• Fuels decarbonization, including hydrogen and liquids fuels, could save a little over one 

gigaton of CO2 by 2050 – roughly 20% of the way to net-zero CO2 emissions from 

industry and energy use – but will require the deployment of technologies that are not 

yet commercial or not currently deployed at a significant scale. Support for these 

 

5 Examples of non-cost barriers include lack of consumer awareness or incentive structures. These can be 

addressed with targeted policy or programs, such as electric efficiency incentive programs. 
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technologies today, through research and development, early-stage commercialization, 

and ultimately large-scale deployment, will be important to achieve net-zero emissions.  

• Direct air capture (DAC) has a potentially significant role as a backstop technology. Cost-

effective deployment of DAC could begin well before emissions from the U.S. energy 

and industry system are close to net-zero. The possibility of DAC playing this role should 

be anticipated, and policy should support near-term commercialization so the 

technology is available to be deployed at scale when it becomes economical for 

decarbonization (i.e., at higher levels of electricity decarbonization and marginal 

abatement costs).  

A systems-level approach to MAC curves can be a valuable addition to the toolkit of policymakers 

who are formulating ambitious decarbonization policy. Our methodology improves on traditional 

MAC approaches to better estimate the cost and performance of measures over a range of 

marginal abatement costs as the energy system transforms. This type of analysis highlights the 

importance of the coordinated deployment of measures. It can help policymakers understand 

how measures must build upon one another to unlock deeper reductions on a path to net-zero 

emissions. Additional results from the analysis, discussed in the body of the paper, offer insights 

into the necessary scale and timing of measure deployment, illustrating how the energy system 

evolves at different marginal abatement costs in 2030, 2040 and 2050. This new MAC approach 

can serve as a foundation for developing decarbonization roadmaps, playing a central role in 

informing R&D, market transformation priorities, and measure deployment strategies to reduce 

emissions at the least cost. 
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Introduction 
This paper proposes a novel methodology for constructing marginal abatement cost (MAC) 

curves and presents initial results, which offers insights on the cooperative and differentiated 

roles of carbon abatement measures as the economy deeply decarbonizes through 2050. This 

new approach seeks to build on the fluency policymakers have with MAC curves by addressing 

some of the limitations of traditional MAC methodologies when analyzing systems that approach 

or achieve net-zero CO2 emissions by mid-century. Our initial implementation of this new 

approach examines measures for reducing CO2 emissions from energy and industry in the US, but 

future work can adapt this analysis to incorporate more sectors and non-CO2 emission reduction 

measures.6 

For policymakers seeking to understand the relative costs and impact of the menu of carbon 

abatement strategies, the MAC curve has become one of the preferred tools. Traditional MAC 

analyses assess a group of emission reduction measures and provide a sequence of abatement 

actions ordered by increasing cost based on the analysis of each measure’s marginal cost and 

emission reduction potential. The primary result from these analyses is a MAC curve, which 

distills the calculations from the analysis into a single figure that shows both the total abatement 

potential and marginal abatement cost of each measure.  

MAC curves often appear deceptively simple, obscuring the nuances and limitations in the 

analysis behind the chart. While well-executed and appropriately caveated MAC curves can make 

for an effective communication tool, there are significant intrinsic limitations to traditional 

methodologies, including difficulty capturing cross-measure interactive effects and estimating 

context-specific measure costs. These underlying limitations become more problematic when 

analyzing emission reduction targets that could be compatible with the Paris Agreement, which 

will require a sustained effort over multiple decades along with many measures working together 

in coordination. Our new methodology can address these limitations and capture the dynamics 

between critical measures for achieving deep decarbonization. 

The next section of the paper addresses the compelling features of traditional MAC curves. The 

following section lays out the intrinsic limits of current MAC approaches that make them ill-suited 

for supporting ambitious emission reductions. We then provide an overview of the new 

methodology, with a more detailed formulation in the appendix. And the final section of the 

paper presents the results, including key insights for policymakers.  

 

6 This initial demonstration of our methodology focuses on energy and industry CO2 emissions since they represent 

more than 80% of current US greenhouse gas emissions (https://www.epa.gov/sites/production/files/2020-

04/documents/us-ghg-inventory-2020-main-text.pdf). Our MAC approach offers distinct advantages for assessing 

measures in the system that produces energy and industry CO2 as it has strong interactive effects between 

measures, and the order of deployment can be critical. Measures for other sectors, like agriculture and other land 

uses, and for reducing other greenhouse gases could be incorporated into future analyses with additional 

modeling tools or results from other analyses, such as https://www.epa.gov/global-mitigation-non-co2-

greenhouse-gases. 

https://www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf
https://www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf
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The Power of MAC curves 
To date, MAC curves have served as a starting point for comparing different measures and 

technologies on an equivalent emission reduction basis. These curves have figured prominently 

in climate policy discussions. They have remained a compelling means of presenting measure 

reductions and cost (or savings) since the inception of this form of curve nearly forty years ago.7 

Since then, MAC curves in an emission reduction context have primarily been used to inform 

decisions about prioritizing between a wide array of options when achieving modest reductions 

over a near to medium term.  

Figure 2 – 2030 marginal abatement cost curve from McKinsey & Company’s 2007 study “Reducing US 
greenhouse gas emissions: How much at what cost?” 

 

Traditional MAC curves all follow a similar form as Figure 2, which shows one of the best-known 

examples of a MAC curve from a 2007 McKinsey & Company analysis.8 These curves order all the 

measures included in the analysis along the x-axis, where the width of each measure indicates 

the estimated emission reduction and the height along the y-axis represents the measures’ 

estimated MAC. Measures with a negative marginal cost are, in theory, cost-effective at a 

marginal abatement cost of zero; they would reduce emissions and save money if they can be 

 

7 Meier, A., J. Wright, et al. (1981). "Supply Curves of Conserved Energy for California's Residential Sector." Energy -

- The International Journal 7: 347-358 

8 https://www.mckinsey.com/business-functions/sustainability/our-insights/reducing-us-greenhouse-gas-

emissions 
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deployed. The area swept by the curve through the targeted emission reductions estimates the 

policy cost to achieve those reductions. 

The structure of the curve is both simple and accessible, even for audiences that are not fluent 

with the details of the MAC analysis that generated the results. MAC curves have also had success 

in helping readers better understand the relative costs and scale of reduction potential for 

different measures. 

While traditional MAC curves directly present potential abatement and associated cost, they do 

not necessarily show the reader what order measures should be adopted. The curve’s apparent 

simplicity can leave some readers to infer, incorrectly,9 that the figure is a supply curve. 

Interpreting a MAC curve as a supply curve suggests that it shows the preferred order of adoption 

and that measures should be deployed sequentially by abatement cost, moving from the left side 

of the curve to the right. Many factors beyond marginal cost influence the order of measure 

deployment that will lead to decarbonization at the least cost, including interactive effects 

between measures and the time needed to develop mature markets to deliver technologies at 

scale.  

  

 

9 Vogt-Schilb, Adrien & Hallegatte, Stéphane. (2011). “When Starting with the Most Expensive Option Makes 

Sense: Use and Misuse of Marginal Abatement Cost Curves.” The World Bank, Sustainable Development Network. 
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Traditional MAC Curve Limitations  
There are structural issues with traditional MAC methodologies that make them ill-suited for 

analyzing the multi-decade effort needed for deep decarbonization. Previous work has identified 

some of the limitations of traditional MAC curves.10 We summarize the issues for ambitious 

decarbonization into three main categories:  

1. Traditional MAC methodologies fail to capture critical interactions between measures 

and across sectors, neglecting how the order of deployment influences the costs and 

emission reductions of subsequent measures (e.g., the cost and emission reductions 

from electric vehicles (EVs) depends on their level of adoption as well as the 

simultaneous deployment of clean electricity resources); 

2. Traditional MAC curves poorly address how a measure’s costs are highly context-specific 

(e.g., early solar PV additions might be a low or even negative cost measure, but at 

higher levels of deployment, the measure will require supporting resources, like storage 

or new transmission, which increases the cost of additional deployment). Typically these 

approaches struggle to represent how different levels of a measure's deployment 

influence its cost or provide limited insights on how the scale of deployment shapes the 

least-cost mix of measures; 

3. Traditional MAC approaches typically exclude measures that can be critical components 

for deep decarbonization but only become cost-effective once there is significant 

deployment of other measures (e.g., electric boilers are often excluded as a measure 

because they tend to increase emissions in today’s energy system, but they have the 

potential to decrease emissions if the electricity grid becomes cleaner). 

These issues make traditional MAC curves poorly suited to address important questions about 

how measures interact as emissions decline and how to scale and sequence investments for deep 

emission reductions at the lowest cost.  

The failure to capture interactive effects is illustrated most acutely with methodologies that 

assess measures in isolation. This approach can work for systems with limited interactive effects 

between measures. These are systems where the order of measure deployment has little or no 

impact on the marginal cost or achieving reductions (minimal ‘path-dependency’). While this can 

be useful for simple systems, in practice, cross-sectoral interactions are the rule and not the 

exception for energy systems. The path-dependency of measures becomes more pronounced as 

emissions from the energy system decline, further complicating the application of traditional 

MAC approaches to deep decarbonization. 

Updates to this MAC approach have used a pre-determined order for applying measures 

(sometimes using the isolated deployment methodology above), where each subsequent 

measure assumes the deployment of all others before it. This approach captures some degree of 

 

10 Kesicki, F. and Ekins, P. (2011). “Marginal Abatement Cost Curves: a Call for Caution.” Climate Policy. Vol. 12, 

Issue 2. 219-236. https://doi.org/10.1080/14693062.2011.582347 
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interactivity. However, with marginal cost and abatement potential being path-dependent, the 

pre-determined order heavily influences the results, and determining the sequence of measures 

can be as much art as science. For example, if electric vehicles come after the deployment of 

renewables, the grid is cleaner and more carbon gets abated. By contrast, if electric vehicles come 

before the deployment of renewables, abatement from electric vehicles will appear smaller. 

Questions of allocating emission reductions are present in all MAC analyses, but because these 

approaches cannot deploy more than one measure at once, they face significant allocation 

challenges, and their results are difficult to interpret. 

Not being able to model the deployment of concurrent measures at a single abatement cost is 

tied to the second structural issue for traditional MAC approaches, which is an inability to address 

highly context-specific measure costs. While many measures may have initial deployments that 

are cost-effective at low MAC, as their deployment increases their MAC rises. The reason for 

these increasing costs is the diminishing marginal returns of abatement measures. All emission 

abatement measures in an energy system show declining marginal impact and increasing 

marginal cost as their deployment grows. This is because all energy commodities exist on a supply 

curve where scarcity in an underlying resource (land for renewables, available biomass, oil wells) 

drives an increasing marginal cost with increasing volume.11 

In a net-zero energy system with high renewable deployment, multiple terawatts of wind and 

solar might be deployed. However, this deployment will be accompanied by other measures that 

interact with renewable generation (e.g., electrification, deployment of batteries, construction 

of transmission). To properly assess cost and emission reductions, these measures need to be 

considered as a system that can fully account for cross-measure interactions and diminishing 

marginal returns. Instead, traditional MAC curves assess one measure (e.g., solar PV) and deploy 

its full potential before moving to the next measure. By neglecting cross-measure interactions 

and simplifying diminishing marginal returns, these analyses create an illusion of a definite 

sequence of deployment that implies policy priorities for ordering measures. In reality, measure 

deployment is more complicated; as increasing amounts of solar are deployed, its marginal value 

as a measure decreases and its marginal costs increase.  As more electrification occurs demand 

for clean electricity increases raising the marginal value of new additions, this in turn creates 

room for more solar additions, making new solar deployment economical. 

A partial solution to the diminishing marginal returns problem for traditional MAC curves is to 

break a single measure into multiple sub-measures, each representing a smaller portion of the 

total deployment. However, this often makes interpretation of the curve more complicated and 

does not necessarily provide new information about how and which measures should be 

deployed together. Our new methodology expands on this idea of sub-measures by allowing all 

measures to increase (or decrease) deployment at a single marginal abatement cost and re-

 

11 This ignores ‘technological learning’ whereby greater deployment leads to cost reductions. This does not dispute 

the fact that all energy commodities exist on a supply curve but merely creates a countervailing trend within some 

resources after introducing a time dimension. 
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envisioning the resulting MAC curve to provide digestible information about concurrent measure 

deployment. 

The final major limitation of traditional approaches is the exclusion of measures that can provide 

meaningful emission reductions once there is deployment of other measures at-scale. Traditional 

MAC methodologies assess measures against a mostly static counterfactual, which means 

measures are compared against a fossil-dominated counterfactual. This disadvantages measures 

that can only cost-effectively reduce emissions when the energy system has already started to 

decarbonize.  

For example, electric boilers are often not included as an emissions abatement measure using a 

traditional MAC curve because deploying the measure today or in a system that looks a lot like 

today tends to increase emissions. However, electric boilers have significant potential to 

decrease emissions once the electricity grid becomes cleaner. Even modified MAC approaches 

that assume a sequence of measure deployment to capture some of the path-dependent effects 

can have issues with these kinds of measures, as the modelers may assume an order of measure 

deployment that never gives these measures an opportunity to become cost-effective. This 

structural issue with traditional approaches ends up excluding measures, limiting what they can 

tell us about which measures become cost-effective and how changes in the energy system drive 

these economics. 

The limitations discussed above muddy the effectiveness of traditional MAC curves to inform 

policymakers. Addressing them can improve the accuracy of cost and emissions reduction 

estimates while also providing clearer insights about the most cost-effective order and bundling 

of measure deployment within a complex system.  

The methodology presented in this white paper tries to embrace the aspects of MAC curves that 

make them so compelling (e.g., simplicity, accessibility) while also addressing these limitations. 

By utilizing the latest energy optimization models, our approach creates a MAC analysis that is 

more sophisticated and better suited for informing policy decisions around achieving deep 

decarbonization.  
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A MAC Methodology for Deep Decarbonization 
The core of our MAC methodology is a comparison of least-cost systems over multiple years at 

different marginal abatement costs. The MAC curve from this approach offers deeper insights 

over a much longer time horizon than traditional approaches, assessing 2030, 2040 and 2050 

over a range of marginal abatement costs. By comparing how changes in the marginal abatement 

cost affect the deployment of all measures, rather than stitching together the changes from 

examining a single measure at a time, this approach can address the limitations of traditional 

MAC methods and capture the dynamics within a system as it evolves to reach low, or even 

negative, levels of emissions. 

Developing a MAC curve based on incremental changes in the least-cost energy system as cost 

increases contrasts significantly with previous MAC analyses. Many past studies have focused on 

narrow scopes and near-term abatement decisions. Generally, these have focused on addressing 

one or more of the following categories: retrospective or near-term prospective evaluation of 

the cost of specific policies,12 characterizing the incremental addition of a select set of measures 

within a narrowly defined set of scenarios,13 or exploring the retrofit of particular resources 

within the existing energy system.14 

Compared to these other approaches, our methodology provides broader insights into the MAC 

of different measures over a 30-year time horizon by more explicitly incorporating path-

dependent, cross-sector interactions, the diminishing returns of marginal measures, and 

considering measures that become cost-effective when other measures are deployed at scale. By 

addressing the limitations of previous approaches, this methodology provides better estimates 

of cost and emission reductions while also making the timing and optimal order of measure 

deployment an explicit result. With these methodological improvements, this approach can 

better internalize the complicated dynamics of decarbonizing the energy system at a level 

compatible with ambitious climate targets.15 

Implementing this approach requires a different overall structure than previous MAC analysis. 

Whereas previous MAC work considered the change in cost and emissions associated with 

 

12 For a recent example, including a meta-analysis of studies in this category, see: Gillingham, Kenneth, and James 

H. Stock. 2018. "The Cost of Reducing Greenhouse Gas Emissions." Journal of Economic Perspectives, 32 (4): 53-72. 

13 For a recent example, see: Friedmann , S. Julio, and Zhiyuan Fan, Zachary Byrum, Emeka Ochu, Amar Bhardwaj, 

Hadia Sheerazi. 2020 “Levelized Cost of Carbon Abatement: An Improved Cost-Assessment Methodology For A 

Net-Zero Emissions World.”  

14 For a recent example, see the CCUS economics portion of: National Petroleum Council. 2019. “Meeting the Dual 

Challenge: A Roadmap to At-Scale Deployment of Carbon Capture, Use, and Storage in the United States.” 

https://dualchallenge.npc.org/downloads.php. 

15 While our new methodology addresses key limitations for using a MAC curve to understand deep 

decarbonization strategies, as with other MAC implementations it does not represent the non-financial costs that 

impede the adoption of measures, including measures that would reduce costs (represent a savings) while also 

reducing emissions.  



   

 

 15 © 2020 by Evolved Energy Research 

implementing a single measure, this methodology considers all the system changes driven by 

changes in the marginal abatement cost. Under this approach, each incremental change in the 

marginal abatement cost drives measure deployment from a broader set of available measures. 

This requires a two-step process: 

(1) Modeling the least-cost systems over the range of marginal abatement costs to find the 

changes in emssions and in measure deployment; and  

(2) Allocating emission reductions to each measure, where reductions are allocated based 

on which measure is most proximal to the cause of the reductions. 

The appendix expands on these two steps with a detailed discussion of the methodology, 

including the modeling requirements for the methodology's first step. While this approach 

requires more steps than a traditional MAC analysis, its implementation adds a small amount of 

complexity compared to traditional approaches but yields more insightful results. Key insights 

from this new methodology include: 

• The impact of cross-measure interactions as energy-consuming sectors increasingly 

rely on electricity. Tighter coupling of energy-using sectors to the electricity sector, 

through electrification of transportation, buildings, and industry, along with hydrogen 

from electrolysis, will create new dynamics in the energy system. Large-scale energy 

conversion loads, like electrolysis for hydrogen production and industrial electric boilers 

for steam production, can have significant cross-measure interactions by supporting 

electricity balancing for high renewable systems and lowering marginal abatement 

costs for additional renewable deployment. Our approach captures these systems-level, 

sector-coupling interactive effects, and the results reflect better estimates of MAC for 

all measures in addition to capturing the differing costs of deploying a measure under 

different contexts. 

• The dynamics of cost-effective fuel-switching. The cost-effectiveness of fuel-switching 

measures (e.g., light-duty electric vehicles, air-source heat pumps, medium-duty fuel-

cell vehicles) depends on various factors as the energy system transforms, including 

how measure costs evolve and the cost of the low-carbon fuel that substitutes for the 

conventional fuel. Other measures—including low-carbon electricity, hydrogen, and 

decarbonized fuel measures—play a significant role in determining the cost-

effectiveness of fuel-switching. Understanding when fuel-switching measures become 

an economical option for decarbonization can only be done by assessing a range of 

measures at a system-wide level. Our approach is built around the needed systems-

level analysis to consider the many factors shaping the economics of fuel-switching. 

• Flexilibity’s role in a reliable electricity system. Ensuring reliable hourly operation of 

the electricity system as emissions decline will require a changing set of resources with 

different utilization. An increasing share of variable renewable energy production 

technologies will create new dynamics in the electricity system. These dynamics will 

increase the value of flexibility and quick responses to system needs and, at the same 

time, lower the value of inflexible technologies. These changes impact the MAC 
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estimates of many different measures. For renewable generation measures increasing 

needs for integration resources like battery storage and transmission resulting in higher 

marginal abatement costs. For measures that depend on the availablity of zero-carbon 

electricity (e.g., electrficaiton of industrial heat and electrolysis), their ability to offer 

flexiblity to a high renewable system can improve their economics. A robust assessment 

of MAC and emission reductions requires need to address these flexibility dynamics. 

Our approach captures this, and ensures that MAC estimates reflect the costs of 

maintaining reliability in a high renewable electricity system.  

• Balancing tradeoffs between regional resource constraints and the cost of moving 

energy between regions. Every geographical region faces resource constraints for 

renewable generation, geological carbon sequestration, and biomass feedstocks. A key 

planning question for deep decarbonization is how to manage the tradeoffs of meeting 

a region’s energy demand with potentially higher cost local resources or investing in the 

ability to transfer energy into the region (e.g., new electricity transmission, new 

pipelines, or biomass transportation costs). Our approach considers these regional 

constraints and finds the tradeoffs that enable decarbonization at the least cost, 16 

factoring the cost of energy transfers into the MAC of measures (e.g., the cost of 

incremental deployment of renewable measures reflects when new transmission 

upgrades are required). 

• The optimal order and timing of measure investments. Over the next thirty years, 

declining resource costs and the range of potential marginal abatement costs can 

significantly impact the timing and order of measure deployment for the system, which 

is a critical component of effective climate policy. Our approach accounts for declining 

resource cost dynamics by modeling mutlipe years for each MAC, sheding light on 

difficult questions around the order and timing of measure deployment. These aspects 

of our new MAC approach are captured in additional results that suppliment the re-

envisioned MAC curve, see the Additional Results and Insights section. 

The analysis for this white paper includes a baseline scenario in addition to the range of least-

cost systems at each marginal abatement cost. This scenario reflects what measure deployment 

looks like in the absence of policy intervention. The transition from the baseline scenario to the 

initial step in the range of marginal abatement costs shows how some measures are cost-

effective even at negative marginal abatement costs if enabling policy is in place. 

  

 

16 Regional results are not shown in this initial demonstration of our new MAC approach. One example of where 

this insight can been found in the results presented here is the deployment of new advanced nuclear, which 

becomes cost-effective as a measure when regions with limited renewable resource potential face higher MAC and 

make tradeoffs between importing more clean electricity or building new nuclear. 



   

 

 17 © 2020 by Evolved Energy Research 

MAC Curve 2.0 
Figure 3 shows a MAC curve of measures to reduce US energy and industry CO2 emissions 

developed with the methodology presented in this whitepaper. Rather than showing MAC 

against emission reductions like a traditional MAC curve, this curve plots reductions against MAC 

to make it easier to follow emission reductions for measures across multiple MAC. Color 

corresponds to a category of measures, and individual wedges provide measure level detail. 

Figure 3 – A 2050 MAC curve for US energy and industry CO2 where emission reductions are relative to a 
baseline scenario. The MAC ranges on the chart (e.g., I., II.) are addressed in the following section. 

 

VI. I. II. III. IV. V. 

Click on the text of a 
measure for its description. 
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Figure 3 shows how emissions decline as more measures become cost-effective at higher 

marginal abatement costs.17 At the high end of the cost range in the figure,18 the measures 

included in this analysis could, if deployed in coordination, collectively lower emissions to net-

negative CO2 levels. The left-most point on the x-axis represents emissions from the baseline 

scenario. 

The chart illustrates how our systems-level approach makes three critical improvements over 

traditional MAC approaches: multiple measures can be deployed at any marginal abatement cost, 

which means a measure’s emission reduction potential depends on the deployment of other 

measures; deployment of each measure takes place over a range of marginal abatement costs 

depending on what is going on in the rest of the energy system rather than at a single cost level, 

which shows the importance of coordinated deployment for achieving the least-cost mix of 

measures; and the curve provides robust insights about how these measures could collectively 

reduce 2050 CO2 emissions to net-zero, or even to net-negative levels by also including measures 

that only become cost-effective once there is significant deployment of other measures. 

Insights by Marginal Abatement Cost Range 
The curve in Figure 3 shows measure costs and emission reduction potential, just as traditional 

MAC curves do, but also illustrates how an increasing marginal abatement cost will drive system-

wide effects and the relative strengths of our updated MAC methodology. To demonstrate how 

these are represented in the curve, the x-axis of Figure 3 has been divided into six different cost 

ranges. The following section discusses key insights for each range along the curve and explains 

the dynamics of additional emissions reduction in these cost ranges.  

 

17 The structure of the chart is analogous to climate stabilization wedges charts popularized by Stephen Pacala and 

Robert Socolow (https://science.sciencemag.org/content/305/5686/968), but this MAC curve shows reductions 

against marginal abatement cost rather than reductions against time. 

18 This range of marginal abatement costs fits with recent studies of achieving net-zero energy and industry CO2 

emissions for the US by 2050 at modest cost, where annual energy system costs as a percentage of GDP are 

comparable or lower than recent energy system costs, including a paper on US Carbon-Neutral Pathways, and the 

Princeton University Net-Zero America study. As a specific example from the Princeton study, several scenarios 

achieve net-zero greenhouse gas emissions by 2050 at a modest incremental cost in the range of 1-3% of GDP. All 

these scenarios have 2050 marginal abatement costs in the range of $250 to above $350 per ton, with the 

differences driven by assumptions about the availability of key technologies. 

https://science.sciencemag.org/content/305/5686/968
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020AV000284
https://environmenthalfcentury.princeton.edu/sites/g/files/toruqf331/files/2020-12/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf
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Figure 4 – The change in measure emission reductions over range I, which spans the Baseline to a 
marginal abatement cost of $0 per ton (including negative costs), representing a decrease of 1 
gigaton. 

 

I. Measures within this range are cost-effective at marginal abatement costs at or less than 

$0 per ton and represent emissions reductions that can be achieved at a cost savings. We 

do not assume these are achieved in our baseline because they may still require 

additional policy support. Though cost-effective across many vehicle classes, electric 

vehicles still need support in the form of enabling policies (EV charger investment, 

efficient electricity rate design, etc.). Electric efficiency may also not be deployed without 

incentive or awareness programs, even when such investments are cost-effective. Finally, 

as heat pump technology improves, these measures may still necessitate market 

transformation programs in areas where they are not prevalent today or not understood 

to be cost-effective. Specifically, some regions where older technologies were not cost-

effective, like the Northeast, may require policy support even if future measure 

deployment is cost-effective.  In electricity, negative cost reductions are available through 

the deployment of high-quality solar PV and onshore wind resources. Nuclear relicensing 

for the existing fleet up to 80 years is a negative cost measure that may not be achieved 

given existing market and incentive structures. Together, the measures in this range 

represent more than a gigaton of annual emission reductions that could be achieved at 

cost savings if the non-cost barriers that prevent their adoption can be addressed. While 

other MAC approaches also find negative cost measures, a fundamental improvement in 

our approach is tracking the continued deployment of these measures at higher MAC. Our 

systems-level approach offers insights on how changing energy system dynamics make it 

cost-effective to deploy more of these measures at higher abatement costs. 
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Figure 5 – The change in measure emission reductions over range II, which spans marginal abatement 
costs of $0 to $60 per ton, representing a decrease of roughly 1.3 gigatons. 

 

II. In this range, $0-$60/ton, electricity decarbonization represents the majority of modest 

cost emissions reductions. Roughly one gigaton of annual reductions in CO2 is available by 

2050 at modest marginal abatement costs. Even current technology costs suggest an 

approaching tipping point where aggressive electricity decarbonization policy becomes a 

low-cost means of reducing emissions. This decarbonization is achieved with the 

additional deployment of solar PV and onshore wind as well as offshore wind (which 

increases from effectively no deployment). Whereas traditional MAC approaches can 

present complications in understanding if the order  measures were assessed is driving a 

similar result, our methodology directly resolves this issue and provides more robust 

findings that account for cross-measure interactions. 
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Figure 6 – The change in measure emission reductions over range III, which spans marginal abatement 
costs of $60 to $90 per ton, representing a decrease of half a gigaton. 

 

III. Additional electricity decarbonization is available in the $60-$90/ton range. Higher 

marginal cost measures result from lower energy production for the same installed 

capacity as the supply of the highest-quality and lowest-cost resources is exhausted, along 

with growing integration needs as renewable penetration increases.  These integration 

solutions take the form of battery storage, new transmission, electric boilers, hydrogen 

electrolysis, and power-to-liquids. The interactions of these measures with the increasing 

deployment of electricity decarbonization measures drive their cost-effectiveness. The 

same dynamics that slow the deployment of renewables, principally the oversupply of 

renewable energy in some hours, improve the economics of these integration measures. 

The ability to capture how cross-measure interactions impact the costs and emission 

reductions from all measures represents an improvement over traditional MAC 

approaches. Market structures that encourage investment in these types of integration 

solutions that do not currently exist at scale and are not supported in electricity markets 

today will be imperative to achieving renewables at this scale. Deployment of new 

advanced nuclear power becomes cost-effective at this level, providing electricity in areas 

with constrained renewable resources. Additional heat pump deployment in regions with 

less conducive climates to heat pump performance and electric efficiency also become 

available in this range. 
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Figure 7 – The change in measure emission reductions over range IV, which spans marginal abatement 
costs of $90 to $150 per ton, representing a decrease of roughly 0.9 gigatons. 

 

IV. Zero-carbon fuels make more significant emissions contributions from $90-$150/ton with 

the increased deployment of biofuels, specifically biomass pyrolysis and fischer-tropsch 

diesel (increasing from no deployment). Biomass H2 with carbon capture contributes to 

the decarbonization of hydrogen supplies that would be produced from natural gas 

reformation at lower marginal abatement costs. Reformation with carbon capture also 

contributes to hydrogen decarbonization to supply industry as well as the growing use of 

hydrogen in transportation applications (fuel-cell medium-duty and heavy-duty trucks). 

Decarbonization of industrial heat with electric boilers contributes to additional emissions 

reductions due to its ability to link the supply of steam, which otherwise would come from 

natural gas boilers, to the electricity sector. This linkage, referred to as “sector-coupling,” 

lowers industrial emissions while also helping to integrate more renewables on the 

electricity grid. Additional power-to-liquids is also deployed in this range to displace liquid 

fossil fuels. At marginal abatement costs of this level and above, our methodology 

provides marked improvements over traditional approaches since interactive effects 

between measures become a significant driver of MAC and emission reductions of each 

incremental measure. 
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Figure 8 – The change in measure emission reductions over range V, which spans marginal abatement 
costs of $150 to $180 per ton, representing a decrease of 0.4 gigatons. 

 

V. Zero-carbon fuels in the form of additional biomass pyrolysis and fischer-tropsch facilities 

become the major emission reduction driver at $150-$180/ton. This set of biofuel 

measures is more expensive due to the rising costs of zero-carbon feedstocks driven by 

supply constraints. Additional electric boilers and power-to-liquids, both of which depend 

on linkages to other sectors that all face the same higher marginal abatement costs, are 

also significant contributors to emissions reductions in this cost range. As with the 

previous range of costs, the improvements in our methodology enable the analysis to 

generate these insights. Traditional MAC approaches cannot determine when the shift in 

focus from electricity to fuel decarbonization occurs because this depends on how costs 

change with a lower emission electricity grid. These measures only become cost-effective 

once there is already large-scale deployment of other measures. Traditional MAC 

approaches rely on assessing measures against counterfactuals that have higher emissions 

and do not reflect the same large-scale deployment of other measures on the system. 
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Figure 9 – The change in measure emission reductions over range VI, which spans marginal abatement 
costs of $180 per ton or above, representing a decrease of roughly 1.3 gigatons. 

 

VI. Direct air capture plays a central role at costs exceeding $180/ton, where direct air 

capture with carbon sequestration is deployed. Direct air capture for utilization (power-

to-liquids) is deployed at lower costs as well as in this range, but for additional emission 

reductions through sequestration, marginal costs need to approach $200/ton to deploy 

these measures. The abatement cost estimates for direct air capture with sequestration 

are primarily driven by the availability and cost of zero-carbon electricity, which depends 

on the interaction of electricity decarbonization measures with measures that support the 

integration of renewable generation. Without a systems-level approach, it is difficult to 

assess the MAC of direct air capture with sequestration under very-low or even net-

negative CO2 emissions. Within this cost range, industrial solar thermal heat also becomes 

an option to displace natural gas usage in certain regions with high solar insolation. 

Key Takeaways from the New Curve for Policymakers 
We represent a curve with emission reductions measures in excess of what is needed to achieve 

net-zero energy and industrial CO2 in 2050. Net-zero energy and industrial CO2 is consistent with 

a net-zero economy for all emissions (including non-energy, non-CO2 emissions).19 It is an 

important caveat to note that the curve represented here, despite achieving net-zero emissions, 

is not exhaustive of the potential pathways for doing so. Specifically, significant reductions may 

be available from measures that are not represented in our analysis, such as carbon capture in 

industries like cement as well as iron and steel; additional process heating electrification may be 

available in industry; and there are additional efficiency, electrification, and fuel-switching 

reductions that may be available in off-road transportation (aviation, freight rail, shipping, etc.). 

 

19 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020AV000284 



   

 

 25 © 2020 by Evolved Energy Research 

These measures may be lower-cost than some of the fuel substitution or direct air capture 

opportunities represented in the curve’s higher-cost regions. They could be incorporated into the 

curve with additional analysis and modeling tools.  

Even with the appropriate caveats, the messages for policymakers from the curve are clear: 

1. Significant emissions reductions are available at low or even negative costs if non-cost 

barriers can be addressed. With policy action, zero-emissions vehicles, building 

efficiency, and electrification, and electricity decarbonization measures, such as wind 

and solar deployment and nuclear relicensing, could save over two gigatons of CO2 in 

2050 from a baseline scenario at marginal abatement costs ranging from negative to 

very modest costs (less than $60 per ton).  

2. Decarbonization beyond these initial two-plus gigatons will require further coordinated 

measure deployment. Zero-emissions-vehicles are deployed to more vehicle classes and 

to energy consumers who are more reluctant to adopt vehicles with higher up-front 

costs even if they are cost-effective over their lifetime. Additional electricity 

decarbonization becomes more expensive. This is due to rising marginal abatement 

costs of renewables as penetration increases, caused by the need for more renewable 

integration solutions, such as new transmission lines or energy storage, and lower 

energy production for the same installed capacity as the supply of the highest quality 

resources declines. To meet ambitious decarbonization goals, both low-cost and higher-

cost measures will be needed to achieve the necessary scale of deployment. Effective 

policy formulations will anticipate this need and focus on enabling very high levels of 

electric vehicle and renewables deployment. Policy interventions, like streamlined 

transmission siting rules and efficient electricity rate design, will be essential for 

achieving these measures’ full potential. 

3. Fuels decarbonization, including hydrogen and liquids fuels, will require the deployment 

of technologies that are not yet commercial or not currently deployed at a significant 

scale. Support for these technologies today, through research and development, early-

stage commercialization, and ultimately large-scale deployment, is necessary to achieve 

net-zero emissions.  

4. Direct air capture (DAC) has a potentially significant role as a backstop technology. Cost-

effective deployment of DAC could begin well before emissions from the US energy and 

industry system are close to net-zero. The possibility of DAC playing this role should be 

anticipated, and policy should support near-term commercialization so the technology is 

available to be deployed at scale when it becomes economical in a low-carbon future.  

Additional Results and Insights 
Our novel approach can also provide much more detail about the amount of emission reductions 

from each measure across a range of marginal abatement costs than traditional analyses. These 

results are presented by measure below, in Figure 10, with the bars representing the emission 

reductions from each measure and the colors corresponding to the range of marginal abatement 

costs. Dark blue represents our lowest cost measures, and dark red represents our highest cost 
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measures. The measures are ordered by the total emissions in 2050. This measure level 

presentation of the results reflects the critical insights discussed in the previous section. In Figure 

10, electrification, efficiency, and electricity decarbonization represent nearly all of the dark blue 

in the chart as the lowest cost group of measures, while fuels decarbonization, direct air capture 

with sequestration, and industrial heat decarbonization represent the greatest emission 

reductions from higher-cost measures. 

Even within a single measure, there is significant heterogeneity in cost. The ability to capture how 

measures deploy over a range of abatement costs is a critical structural advantage of this 

approach as opposed to previous MAC approaches, which assessed reductions from largely static 

baselines. Our methodology deploys measures dynamically as part of a changing system. The 

results from this technique illustrate that for almost all measures, they are deployed over a range 

of costs, and different marginal abatement costs drive different levels of emission reductions, 

not a point estimate. 

This range for a single measure can be extremely large and represents how the dynamics of the 

system influences multiple measures. Power-to-liquids, for example, shows reductions at a cost 

as low as $40/ton. At this cost, power-to-liquids measures utilize renewable energy that would 

otherwise be oversupply and curtailed to operate hydrogen electrolysis (and eventually 

synthesize liquids fuels). However, measure costs rapidly rise at higher volumes since this 

renewable oversupply is a limited resource. Eventually, at higher costs, additional power-to-

liquids necessitates new dedicated renewable facilities to produced hydrogen from electrolysis. 
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Figure 10 – An alternative presentation of the same MAC curve results in Figure 3, showing 2050 emission 
reductions by measure across the range of marginal abatement costs. The text to the right of each bar is 
the average MAC for each measure. 

 

Click on the text of a 
measure for its description. 
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Another advantage of our new approach is that it offers much more insight into the overlapping 

roles of measures and timing of deployment as the physical transformation of the system unfolds. 

With multiple measures being deployed at nearly all marginal abatement costs, the order and 

timing of measure deployment are critical for developing effective policy. Our MAC approach 

provides insights on the timing of measure deployment, a marked improvement over traditional 

MAC curve approaches that typically leave it to the reader to determine when and what order 

measures should be deployed. Understanding the evolution of measure deployment through 

2050 can support policy and regulatory mitigation strategies that can differentiate between a 

near-term focus of scaling existing commercial solutions and a longer-term focus that includes 

technologies that are not yet deployed at a commercial scale. 

Figure 11 shows an additional visualization of the results with the timing of major infrastructure 

changes. This figure compares measure deployment at 2030, 2040, and 2050, with measure 

deployment organized into categories and normalized to maximum deployment for the category 

across all years and marginal abatement costs. It is important to note that the chart illustrates 

the scale of measure deployment for least-cost decarbonization at each year and marginal 

abatement cost, but not the time required to deploy measures.20 The figure shows both the 

change in technology composition for particular categories (e.g., the decline in conventional 

vehicles, “reference technology,” as electric and fuel cell vehicle adoption increases over each 

decade at the same marginal abatement cost) and the increase of particular categories over time 

and marginal abatement cost (e.g., the market for decarbonized fuels grows significantly 

between 2040 and 2050).  

 

20 Our methodology captures several factors that shape the time required to deploy a measure, including 

construction time and stock turnover dynamics to ensure there is no early retirement. 
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Figure 11 – Measure deployment in 2030, 2040, and 2050 as a share of the maximum deployment across 
all marginal costs and years for each category. “CC” is an abbreviation for carbon capture. 

 

The insights around the timing of measure deployment from Figure 11 reinforce the policymaker 

takeaways discussed above. Heat pump and efficiency measures see significant deployment 

across all marginal abatement costs in 2030 and beyond, while renewables and zero-carbon 

generation measures play a central role in lowering electricity emissions over most marginal 

abatement costs as early as 2030 and expand in later decades. As the vehicle fleet turns over and 

technology prices decline, there is a major increase in electric vehicles’ deployment, and higher 

marginal abatement costs can drive this deployment in earlier periods. On the other hand, 

decarbonized fuel measures and clean hydrogen, which is the driver for significant hydrogen 

production increases in 2050, do not begin meaningful deployment until 2040. Direct air capture 

with sequestration measures are also not deployed until 2040 at very high marginal abatement 
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costs or until 2050 at high marginal abatement costs. This evolution of measure deployment 

illustrates the timing of additions of critical enablers of emission reductions.  

New MAC curves, built on a systems-level approach to estimating the cost and emission 

reduction potential of mitigation measures, can provide critical insights for achieving ambitious 

emission reduction targets. Our novel approach shows what actions will be needed to follow a 

pathway to achieve emission reductions necessary to align with Paris Agreement targets and 

how to bundle measures together and time their deployment to decarbonize at least cost. This 

approach and the resulting visualizations can help policymakers develop strategies for near-

term action and a roadmap to ensure R&D and long-term investments are ready for when they 

are needed in future decades. 
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Technical Appendix 

Measure Descriptions 

  Measure Description Data Source 
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ASHP: Space 
Conditioning 

Technologies that utilize an air-source heat 
pump (ASHP) to provide space conditioning 
(both heating and cooling) with electricity. 
ASHP heating technologies can achieve 
much higher efficiency than fuel 
combustion or electric resistance 
technologies. Packaged heating and cooling 
units achieve comparable to or better 
cooling performance than standalone air 
conditioning. 

Jadun, Paige, Colin McMillan, Daniel 
Steinberg, Matteo Muratori, Laura 
Vimmerstedt, and Trieu Mai (2017). 
Electrification Futures Study: End-Use Electric 
Technology Cost and Performance 
Projections through 2050. Available at: 
https://www.nrel.gov/docs/fy18osti/70485.
pdf 

ASHP: Water Heating Technologies that utilize an air-source heat 
pump (ASHP) to heat water with electricity. 
ASHP heating technologies can achieve 
much higher efficiency than fuel 
combustion or electric resistance 
technologies. 

 

Boiler Electrification This technology can supply heat directly to 
industrial processes from electricity rather 
than fossil fuels burned directly in the 
boiler. 

EU ASSET (2018). Technology Pathways in 
Decarbonisation Scenarios.  
Available at: https://asset‐ec.eu/wp‐
content/uploads/2019/07/2018_06_27_tech
nology_pathways_‐_finalreportmain2.pdf 
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 Efficiency: 

>$75/MWh 

A suite of energy efficiency measures for 
buildings and industry where the levelized 
cost of saved electricity is less than $75 per 
MWh.  

Assumed 2.5% of load could be reduced for 
$100 and 5% of load could be reduced for 
$125 levelized cost of efficiency. Also 
assumed $50/MWh distribution cost savings 
for each range. 

Efficiency: 

<$75/MWh 

A suite of energy efficiency measures for 
buildings and industry where the levelized 
cost of saved electricity is greater than $75 
per MWh.  

Assumed 2.5% of load could be reduced for 
$25, $50, and $75 levelized cost of 
efficiency. Also assumed $50/MWh 
distribution cost savings for each range. 

 

Solar Thermal Heat This technology can supply heat directly to 
industrial processes by collecting the sun’s 
thermal energy directly. It can avoid the 
use of fuel in industrial processes that are 
overwhelmingly provided by fossil fuels 
today.  

IRENA (2015). Solar Heat for Industrial 
Processes. Available at:  
https://www.irena.org/publications/2015/Ja
n/Solar-Heat-for-Industrial-Processes 
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Electric Vehicles: 

Heavy-Duty 

Battery electric heavy-duty vehicles. Vehicle battery pack costs adjusted based 
on: Cole, W. and A.W. Frazier (2019). Cost 
Projections for Utility-Scale Battery Storage. 
Available at: 
https://www.nrel.gov/docs/fy19osti/73222.
pdf 
 

Electric Vehicles: 

Light-Duty Autos 

Battery electric light-duty cars. 

Electric Vehicles: 

Light-Duty Trucks 

Battery electric light-duty trucks. 

Electric Vehicles: 

Medium-Duty 

Battery electric medium-duty vehicles. 

https://www.irena.org/publications/2015/Jan/Solar-Heat-for-Industrial-Processes
https://www.irena.org/publications/2015/Jan/Solar-Heat-for-Industrial-Processes
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Fuel Cell Vehicles: 

Heavy-Duty 

Fuel cell vehicles are powered by fuel cells 
that consume hydrogen to generate 
electricity to run the vehicle’s drivetrain.  
Heavy-duty trucks are amongst the set of 
mobile applications where current fuel cell 
technologies and projections suggest the 
technology will be most competitive, 
particularly for specific use cases. 

Costs are derived from International Council 
on Clean Transportation (2017). 
Transitioning to Zero-Emission Heavy-duty 
Freight Vehicles.  Available at: 
https://theicct.org/sites/default/files/public
ations/Zero-emission-freight-trucks_ICCT-
white-paper_26092017_vF.pdf 
and 
Whiston, Michael, Inês L. Azevedo, Shawn 
Litster, Kate S. Whitefoot, Constantine 
Samaras, and Jay F. Whitacre (2019). Expert 
assessments of the cost and expected future 
performance of proton exchange membrane 
fuel cells for vehicles. 

Fuel Cell Vehicles: 

Light-Duty Trucks 

Fuel cell vehicles are powered by fuel cells 
that consume hydrogen to generate 
electricity to run the vehicle’s drivetrain.  
Light-duty trucks are amongst the set of 
mobile applications where current fuel cell 
technologies and projections suggest the 
technology will be most competitive, 
particularly for specific use cases. 

Fuel Cell Vehicles: 

Medium-Duty 

Fuel cell vehicles are powered by fuel cells 
that consume hydrogen to generate 
electricity to run the vehicle’s drivetrain.  
Medium-duty vehicles are amongst the set 
of mobile applications where current fuel 
cell technologies and projections suggest 
the technology will be most competitive, 
particularly for specific use cases. 
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 Biomass Power  Biomass-fired generation NREL 2019 Annual Technology Baseline 
(ATB) Available at: 
https://atb.nrel.gov/electricity/2019/ 

Biomass Power 

w/Carbon Capture 

Biomass-fired generation with carbon 
capture capabilities 

NREL ATB 2018 with adjustments based on 
coal with CCS from NREL ATB 2018 

 Coal to Gas 

Redispatch 

Gas-fired generation displacing coal-fired 
generation 

Driven by the economics of coal and gas 
generation 

 New Hydro New stream reach development and 
upgrades 

Data from NREL ReEDS model 

N
u

cl
ea

r 
(N

ew
 &

 R
el

ic
en

se
d

) New Advanced 

Nuclear 

A range of advanced nuclear technologies 
that incorporate advantages such as 
modularization. 

Based on Energy Options Network (2018). 
What Will Advanced Nuclear Power Plants 
Cost? A Standardized Cost Analysis of 
Advanced Nuclear Technologies in 
Commercial Development. Available at: 
http://www.innovationreform.org/wp-
content/uploads/2018/01/Advanced-
Nuclear-Reactors-Cost-Study.pdf 

Nuclear Relicensing Extension of existing nuclear licenses. $500/kW for a 20-year extension 

O
ff

sh
o

re
 W

in
d

 

Offshore Wind: Fixed Fixed offshore wind technologies NREL 2019 Annual Technology Baseline 
(ATB) mid values. Available at: 
https://atb.nrel.gov/electricity/2019/ 

Offshore Wind: 

Floating 

Floating offshore wind technologies 

https://theicct.org/sites/default/files/publications/Zero-emission-freight-trucks_ICCT-white-paper_26092017_vF.pdf
https://theicct.org/sites/default/files/publications/Zero-emission-freight-trucks_ICCT-white-paper_26092017_vF.pdf
https://theicct.org/sites/default/files/publications/Zero-emission-freight-trucks_ICCT-white-paper_26092017_vF.pdf
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Onshore Wind: 

High-Quality (TRG 1-3) 

High-quality onshore wind, representing 
techno-resource groups 1-3 in NREL ATB 
2019 

NREL 2019 Annual Technology Baseline 
(ATB) mid values. Available at: 
https://atb.nrel.gov/electricity/2019/ 
 

Onshore Wind: 

Low-Quality (TRG 7-10) 

Low-quality onshore wind, representing 
techno-resource groups 7-10 in NREL ATB 
2019 

Onshore Wind: 

Medium-Quality (TRG 

4-6) 

Medium quality onshore wind, 
representing techno-resource groups 4-6 in 
NREL ATB 2019 

 Solar PV Solar photovoltaic generation. 

H
yd

ro
ge

n
 

 Biomass H2 

w/Carbon Capture 

Technologies that derive hydrogen from 
biomass and have carbon capture. This 
hydrogen production is zero-emission and 
can result in net-negative emissions if the 
captured carbon is sequestered. 

Princeton Net Zero America Project  
Available at: 
http://netzeroamerica.princeton.edu 

 Gas H2 w/Carbon 

Capture 

Technologies that derive hydrogen from 
natural gas at facilities with carbon 
capture. 

International Energy Agency (2019). The 
Future of Hydrogen. Available at: 
https://iea.blob.core.windows.net/assets/a0
2a0c80-77b2-462e-a9d5-1099e0e572ce/IEA-
The-Future-of-Hydrogen-Assumptions-
Annex.pdf 

 H2 Electrolysis Hydrogen production technologies that 
convert clean electricity into hydrogen and 
oxygen by splitting water. This measure 
only uses zero-carbon electricity as an 
input. 

Fu
el

 

Ze
ro

-C
a
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o

n
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u
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Cellulosic Ethanol Advanced ethanol production technologies. IEA Bioenergy (2020). Advanced Biofuels – 
Potential for Cost Reduction. Available at: 
https://www.ieabioenergy.com/blog/publica
tions/new-publication-advanced-biofuels-
potential-for-cost-reduction/ 

Corn Ethanol 

w/Carbon Capture 

Facilities that produce ethanol from corn 
feedstocks with carbon capture. 

NETL (2017). Carbon Capture Retrofit 
Analyses. Available at: 
https://www.netl.doe.gov/projects/VueCon
nection/download.aspx?id=70379c6b-e2e2-
4410-91db-
f01a9c371a21&filename=CarbonCaptureRet
rofitAnalysisPresentation_080917.pdf 

FT Diesel w/Carbon 

Capture 

Technologies that produce synthetic diesel 
using biomass in a Fischer-Tropsch (FT) 
process. 

Agora Verkehrswende (2018). The Future 
Cost of Electricity-Based Synthetic Fuels. 
Available at: https://www.agora-
energiewende.de/en/publications/the-
future-cost-of-electricity-based-synthetic-
fuels-1/ 

Haber-Bosch 

(Ammonia) 

Technologies to produce ammonia from 
hydrogen and captured nitrogen, used as a 
zero-carbon liquid fuel. 

Bartels, Jeffrey Ralph (2008). A feasibility 
study of implementing an Ammonia 
Economy. Available at:  
https://lib.dr.iastate.edu/cgi/viewcontent.cg
i?article=2119&context=etd 

Power-to-Liquids Technologies that produce synthetic liquid 
fuels from hydrogen and captured carbon. 

Agora Verkehrswende (2018).  

Pyrolysis Technologies that produce biomass-derived 
replacements for very long-chain 
hydrocarbons, like lubricants or petroleum 
coke. 

Princeton Net Zero America Project  
Available at: 
http://netzeroamerica.princeton.edu 

Pyrolysis w/Carbon 

Capture 

Technologies that produce biomass-derived 
replacements for very long-chain 
hydrocarbons, like lubricants or petroleum 
coke. These technologies include carbon 
capture.  

https://iea.blob.core.windows.net/assets/a02a0c80-77b2-462e-a9d5-1099e0e572ce/IEA-The-Future-of-Hydrogen-Assumptions-Annex.pdf
https://iea.blob.core.windows.net/assets/a02a0c80-77b2-462e-a9d5-1099e0e572ce/IEA-The-Future-of-Hydrogen-Assumptions-Annex.pdf
https://iea.blob.core.windows.net/assets/a02a0c80-77b2-462e-a9d5-1099e0e572ce/IEA-The-Future-of-Hydrogen-Assumptions-Annex.pdf
https://iea.blob.core.windows.net/assets/a02a0c80-77b2-462e-a9d5-1099e0e572ce/IEA-The-Future-of-Hydrogen-Assumptions-Annex.pdf
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D
A

C
 

 Direct Air Capture 

w/Sequestration 

Technologies that directly capture CO2 
from the atmosphere and sequesters it. 

Rhodium Group (2019). Capturing 
Leadership: Policies for the US to Advance 
Direct Air Capture Technology. Available at: 
https://rhg.com/research/capturing-
leadership-policies-for-the-us-to-advance-
direct-air-capture-technology/ 

 

Overview of Key Modeling Inputs 

Input Source/Notes 2050 Value 

Natural Gas Prices Annual Energy Outlook 2020 - High Oil 

& Gas Supply 

Henry Hub: 

$2.54/MMBTU 

Oil Prices Annual Energy Outlook 2020 - High Oil 

& Gas Supply 

Brent Spot Price: 

$91/Barrel 

Biomass Availability Princeton Net Zero America  1.0 BDT 

Annual Sequestration Injection 

Potential 

Princeton Net Zero America 1.9 Gt CO2 

Onshore Wind Potential NREL REEDS (2019); 25% of available 

technical potential 

2.0 TW 

Offshore Wind Potential NREL Reeds (2019); 25% of available 

technical potential 

1.0 TW 

Utility-Scale Solar Potential NREL REEDS (2019); 25% of available 

technical potential21 

12.8 TW 

Rooftop Solar Potential NREL Rooftop Solar Photovoltaic 

Technical Potential in the United 

States: A Detailed Assessment 

1.1 TW 

 

  

 

21 Further constrained to 1% of available land area in every region. 
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Supplemental Results for 2030 
Figure 12 - A 2030 MAC curve for US energy and industry CO2 where emission reductions are relative to a 
baseline scenario. Electricity measures are the major driver of emission reductions through 2030. A number 
of factors could lead to lower marginal abatement costs by 2030, including: a broader set of measures 
than considered in this analysis, innovation that lowers technology cost or improves performance, or faster 
market adoption.  
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Figure 13 – An alternative presentation of the same MAC curve results in Figure 12 showing 2030 emission 
reductions by measure across the range of marginal abatement costs. The text to the right of each bar is 
the average MAC for each measure. 
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Methodology Details: Modeling the Range of Least-Cost Systems 
The methodology begins by performing a systems-level analysis over a range of marginal 

abatement costs22 through the end of the study’s time horizon (typically through 2050). This 

creates a least-cost system of energy supply and demand technologies for each incremental 

marginal abatement cost in the range included in the analysis. With the complete set of least-

cost systems, it is possible to track the changes to individual measures that drive emissions 

reductions from other resources or technologies in the system of energy and industry CO2 

emissions at each step in the range of marginal abatement costs. 

Each least-cost system at a unique marginal abatement cost (or ‘step’ in the range of marginal 

abatement costs) represents an individual scenario. The analysis compares all the scenarios, 

where scenarios that make up the range of marginal abatement costs share the same inputs (e.g., 

technology costs, fuel prices, resource constraints, projections for service demand) except for 

their different marginal abatement cost. The scenarios model energy supply, both electricity and 

fuels, and deployment of energy demand technologies over multiple years and multiple 

geographic regions. The incremental changes between a given step (‘step n’) and the previous 

step (‘step n-1’) represent the set of measures that have become cost-effective at marginal 

abatement cost for step n. The changes from step n-1 to step n show which measures have 

increased their production or deployment, and which resources or technologies have been 

displaced by these measures.23 Modeling system-level changes over many steps creates a MAC 

curve with layers of insights beyond what previous MAC analysis can provide. 

Figure 14 illustrates how the multiple modeled scenarios fit together to produce the full range of 

marginal abatement costs considered in an analysis. Each bar in the figure represents gross CO2 

emissions by fuel or sequestration for a scenario, and the dot represents net emissions for that 

scenario. The analysis for this white paper includes a baseline scenario (the left-most bar). This 

scenario has different input assumptions than the other scenarios and is included to show 

measure deployment in the absence of policy intervention. The transition from the baseline 

scenario to the initial step in the range of marginal abatement costs shows how some measures 

 

22 The methodology can work for either a range of marginal abatement costs or for a range of emission reductions. 

For simplicity, this paper only discusses incremental changes in marginal abatement costs, but the methodology 

would be identical for a range of emission reductions. Given the type of modeling that is needed for this 

optimization methodology, a range of marginal abatement costs is functionally equivalent to a range of emission 

reductions. The process of finding the least-cost system based on an emission limit provides the associated 

marginal abatement cost as a result, while the process of finding the least-cost system based on a marginal 

abatement cost provides the total system emissions as a result.   

23 Incremental changes in marginal abatement costs need to be small enough to resolve incremental changes in 

resource deployment and utilization. Increments in MAC that are too large muddle this approach’s ability to 

resolve when individual abatement measures become cost-effective. For example, stepping from a marginal 

abatement cost of $0 to $50 per ton will cause many changes in the system and make it difficult to determine 

which measures would have been cost-effective at $10 per ton rather than $40 per ton. 
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are cost-effective even at negative marginal abatement costs if enabling policy is in place. A 

baseline scenario is not strictly necessary but can be a helpful addition in most implementations 

of this methodology. 

Figure 14 – Declining total emissions from US energy and industry for the marginal abatement cost 
scenarios and the baseline scenario in 2050. 

 

The holistic approach of comparing changes in least-cost energy systems across decades enables 

this type of MAC analysis to capture the complex and dynamic nature of many abatement 

measures. For example, consider medium-duty fuel cell vehicles as a candidate abatement 

measure. A critical determinate of when these vehicles will become cost-effective for 

decarbonization is when there will be a sufficient supply of low-carbon hydrogen production at a 

particular cost threshold. Until these vehicles can access low-carbon fuel at the required cost, 

other measures will reduce emissions in the energy system at lower costs. Achieving the needed 

scale and cost of low-carbon hydrogen production will depend on many factors, including the 

scale of renewable deployment, the availability of resource-constrained biomass feedstocks, and 

the value of captured carbon for beneficial uses or sequestration. In turn, each of the factors 

governing the cost and availability of low-carbon hydrogen is subject to other factors that shape 

their economics. Characterizing the emission savings and associated costs of medium-duty fuel 

cell vehicles requires a system-wide analysis, which co-optimizes for the decision to purchase and 

operate one of these vehicles rather than an alternative and for the provision of their fuel and all 

the associated upstream decisions.  
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Requirements for Modeling Platforms 

Modeling platforms that can support this methodology will need to evaluate a range of least-cost 

scenarios across a range of marginal abatement costs while also addressing critical analytical 

requirements. Because this approach depends on understanding changes across the whole 

system, the underlying modeling tools must be able to robustly model the many dynamics that 

will shape the planning and operations of future low-carbon energy systems. To produce the 

necessary set of scenarios for this MAC analysis, the modeling platforms solving for the least-cost 

systems must be able to: 

• Represent a full suite of the critical demand and supply decisions for least-cost, low-

carbon energy systems. These include a range of renewable and low-carbon electricity 

resources, measures for decarbonizing fuels, measures to capture and utilize or 

sequester CO2, and demand-side measures that address efficiency and fuel-switching for 

key energy end-uses in buildings, transportation, and industry. 

• Evaluate scenarios with a study horizon through at least 2050, with time steps that can 

provide insights into key milestone years between today and the end of the study 

horizon. 

• Incorporate reliability constraints for the electricity system, including the challenges of 

operating a system with a high share of variable energy resources with production 

profiles that vary across geographical regions. 

• Capture the dynamics in the energy system that encourage additional sectors to utilize 

more electricity (‘sector coupling’), which are shaped by variable energy resources, 

electricity reliability constraints, and flexible loads of varying scales. 

• Provide a representation of multiple geographic sub-regions in the study area, all of 

which have differences in energy demand and differences in resource potential and 

quality for renewables, carbon sequestration, and biomass feedstocks.  

Our implementation of this MAC analysis utilizes a paired set of models to model the range of 

least-cost systems: EnergyPATHWAYS and Regional Investment and Operations (RIO) platforms. 

See the Overview of Energy System Modeling Tools section of the appendix for additional detail 

on these models. 

Methodology Details: Allocating Measure Emission Reductions  
Comparing incremental changes in least-cost systems enables this approach to estimate MAC 

through 2050 for deeply decarbonized systems, but it also requires an additional analytical step 

to translate system-level changes into measure-level results. The second portion of the 

methodology translates the differences in deployment and emissions between step n-1 and step 

n into a measure level allocation of emission reductions. 

Questions of how to allocate emission reductions when multiple changes are occurring can be 

complicated. Our allocation methodology centers around a simple principle of allocating 

reductions to measures that are the most proximate to their cause. Measures are divided into 

categories to enable the allocation process, and the remainder of this section explores how 
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emission reductions are allocated for each category. Table 1 lays out the categories addressed in 

the sub-sections below and gives an overview of each allocation approach. 

Table 1 -  Overview of allocation categories 

Category Emission Reduction Allocation Overview 

Carbon capture • Carbon capture measures are allocated reductions directly anytime the carbon is 

sequestered. 

• When captured carbon is utilized rather than sequestered, typically to create 

synthetic hydrocarbon drop-in fuels, reductions are allocated to the measures 

that utilize the carbon rather than the measure that does the carbon capture. 

Electricity supply • Cleaner fossil generation is allocated reductions based on improvements in 

emission intensity over the dirty generation it displaces. 

o Fossil emission reductions are always based on a ‘reference fuel’ (e.g., 

natural gas for combined-cycle combustion turbine plants).  

• Renewables and zero-carbon resources are allocated with a similar approach 

based on an emission intensity of zero. 

• A counterfactual is used to address growing electricity demand. 

Cleaner fuels and 

energy conversion 

• Measures that decarbonize fuels (e.g., biofuels or E-fuels) are allocated 

reductions based on the displacement of the fossil alternative. 

• Hydrogen is a special case, on account of growing demand, and uses a 

counterfactual approach similar to electricity. 

Demand 

measures 

• Measures are allocated reductions based on their reductions to emission 

intensity from efficiency improvements and potentially switching fuels. 

o For example, EVs are allocated reductions for efficiency gains and the 

difference in emissions per unit of energy between electricity and 

gasoline. 

 

Carbon Capture 

Measures with carbon capture are a subset of measures in the energy supply categories. Carbon 

capture measures are allocated reductions for the portion of their captured carbon that is 

geologically sequestered. For any carbon that is captured and utilized rather than sequestered, 

potentially through conversion to synthetic fuels or utilized in an industrial process, reductions 

are allocated toward the measure that utilizes the carbon rather than the measure that captures 

the carbon. Depending on the system, this means that measures with carbon capture can receive 

no emission reduction allocation for capturing carbon if none of that carbon is sequestered. For 

most measures, the allocation of carbon captured is just one component of a measure’s final 

emission reduction allocation. The following sections discuss the complete allocation for each 

category, including when there are carbon capture measures as a subset of the category.  

Electricity Supply 

Conceptually, the allocation of declining emissions from the electricity supply to measures is 

straightforward. As in other MAC analyses, each additional GWh produced by a lower emission 
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intensity resource that displaces a GWh from a higher-emitting resource is allocated reductions 

for the difference in emissions between the dirty and cleaner GWh of generation. However, to 

apply this frame to comparing incremental changes in full systems, there are two other 

considerations: (1) adjusting allocation for growing load that is the result of higher marginal 

abatement costs leading to increased fuel-switching and energy conversion loads; (2) 

determining which measures are displacing which resources within the system. 

Comparing against a counterfactual to account for load growth 

Across the range of marginal abatement costs, all the scenarios share the same electricity 

demand input. When there is an increase in total generation moving from step n-1 to n, this is 

driven by incremental load growth from either addition of electric demand technologies or 

increases in energy conversion loads that consume electricity (e.g., electric boilers, electrolysis). 

Increases in total load represent an issue for allocation. There is a need to untangle which 

measures generate more to reduce emissions and which generate more to meet growing 

electricity demand.24 Rather than simply comparing the changes between step n and step n-1, 

our methodology constructs a counterfactual of step n. This counterfactual is based on step n-1 

and acts as the point of comparison against step n. 

Figure 15 – An illustration of total generation for step n-1, step n, and the counterfactual (L), and change 
in generation moving from step n-1 to step n, and from the counterfactual to step n (R) 

 

 

24 Allocation for demand measures and energy conversion measures that consume electricity incorporates any 

potential increases in emissions due to growing electricity demand. See those respective sections for more detail. 
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Figure 15 illustrates an example of this counterfactual approach. The left panel contrasts 

generation between step n-1, step n, and the counterfactual of step n. The counterfactual is 

calculated by scaling up each resource’s share of total generation in step n-1 to the total 

generation in step n. The counterfactual is used to approximate the step n-1 generation mix if its 

total generation had been the same as step n. The counterfactual approximation is used to 

determine the incremental increases and decreases in generation between step n-1 and step n. 

The right panel of Figure 15 shows the impact of the counterfactual on increases or decreases of 

generation by resource type. In this example, comparing step n to step n-1 would overestimate 

the increases in wind and solar generation and underestimate how much other resources 

displace gas generation. Once the counterfactual adjusts for the impact of load growth, more gas 

generation is displaced, and the increases from wind and solar measures are smaller. The net 

result is these measures receive a greater allocation of emission reductions for displacing gas 

generation than they would under a simple step n versus step n-1 comparison.  

Mapping displaced generation to the increased generation from measures 

After determining which resources have their generation displaced and which resources increase 

generation at each increment in marginal abatement cost, the changes in generation need to be 

mapped back to a resource level to determine emission reductions. Whereas previous MAC 

analyses are built around a predetermined course of which measures are increasing their 

generation and displacing other generation, this systems-level approach requires a methodology 

for connecting the resources that have their generation displaced to measures that are increasing 

generation. In our formulation, increases and decreases are mapped to one another on a 

resource level. Once this mapping is complete, displaced emissions can be calculated based on 

each resource’s efficiency and the fossil fuel it consumes.25 This is particularly important for 

situations where lower emission intensity fossil generators are displacing higher emission 

intensity plants, like switching from coal to gas.  

A matrix is developed to map all generation increases on a resource level to all the displaced 

generation. Figure 16 shows an example of the generation allocation matrix, which is analogous 

to an I-O table, where each row represents a resource that is increasing generation, and each 

column represents a resource that is decreasing generation. Each element in the matrix 

represents the amount of incremental generation coming from the resource that is increasing 

(row) and which resource is being displaced (column). 

 

25 Fossil generators are assumed to always consume only fossil fuel, as allocation for decarbonized fuels goes to 

the measures that produce the decarbonized fuel. 
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Figure 16 – The upper left-hand portion of an example generation allocation matrix 

 

The order of the rows and columns is critical for ensuring emission reductions are not over- or 

under-allocated. To order the displaced generation, all resources are separated into three 

tranches: (1) thermal generation, (2) all other generation with non-zero emissions, and (3) zero-

emission resources.26 Within each tranche, resources are ordered from most emitting27 to least 

emitting, and tranches are joined in ascending order to form the columns in the matrix. Resources 

with increasing generation are separated into the same tranche categories and sorted by 

emission intensity, but only tranches (1) and (2) are joined to form the matrix rows. An algorithm 

goes row by row to fill the matrix, accounting for all increasing generation from a resource before 

moving to the next row. The rows and columns ordering process results in the increasing 

resources with the highest emission intensity displacing the decreasing resources with the 

highest emission intensity.  

The emission reduction allocation for increasing resources in tranches (1) and (2) is calculated 

with Equation 1. This is calculated by determining the incremental displaced emissions for each 

measure and netting the measure’s direct emissions. In Equation 1, total displaced emissions are 

calculated as the dot product of the allocation matrix discussed above (denoted as M, indexed 

 

26 Decreased generation in the third tranche is typically very small, and generally from existing nuclear resources or 

older, lower resource quality renewable resources. 

27 For generation resources with carbon capture, their emission intensity should be adjusted in accordance with 

the carbon capture accounting methodology, and should only receive allocation for the share of captured carbon 

that is sequestered.  
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Displaced GWh 2.3 2.5 3.6 2.9 3.4 4.3 4.5 16.9 4.2 17.6 28.4 5.1 18.9 11.2 5.3

kt per GWh 2.5 2.2 2.0 1.9 1.8 1.4 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1

Resource Category

Increase 

in GWh

kt per 

GWh

i.1 gas 13.3 0.4 2.3   2.5   3.6   2.9   2.1   -   -   -   -   -   -   -   -   -   -   

i.2 gas w/ccu 3,442.4 0.04 -   -   -   -   1.4   4.3   4.5   16.9 4.2   17.6 28.4 5.1   18.9 11.2 5.3   

i.3 gas w/ccu 250.9 0.04 -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

i.4 gas w/ccu 148.1 0.04 -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

i.5 gas w/ccu 85.8 0.04 -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

i.6 gas w/ccu 33.1 0.04 -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

i.7 gas w/ccu 296.3 0.04 -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

i.8 gas w/ccu 1,439.2 0.04 -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

i.9 gas w/ccu 15.7 0.04 -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

i.10 nuclear 5,510.9 -          -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

i.11 nuclear 341.9 -          -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

i.12 biomass with CCU 5,952.5 -0.7 -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

i.13 biomass with CCU 20.8 -1.5 -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

i.14 biomass with CCU 0.8 -1.5 -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

Rows are resource increases,
Columns are displaced resources
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by i for the rows of increasing resources and d for the columns of decreasing resources) and a 

vector of the emission intensities for all resources which have their emissions displaced (denoted 

as s which is indexed by d). The dot product calculation determines the emissions displaced from 

each decreasing resource and sums to the total displaced emissions for each increasing resource 

(measure). The second term in Equation 1 represents the incremental change in emissions for 

each increasing resource, based on its emission intensity28 and its increase in generation.29 The 

incremental emissions increase is netted from the displaced emissions for each resource to 

determine the emission reduction allocation. 

Equation 1 – Emission reduction allocation for measures, indexed by i, with non-zero emissions 

𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖  = 𝑴𝑖𝑑  ∙ 𝒔𝑑 −  (∑ 𝑴𝑖𝑑

𝑛

𝑑=1

)  ∘ 𝒓𝑖 

The remaining tranche of increasing resources, zero-carbon non-thermal resources, is pooled 

together for the final allocation step. Any remaining displaced generation that is not accounted 

for within the allocation matrix is converted to emissions and totaled. Each increasing resource 

in the last tranche is allocated a share of the total remaining displaced emissions based on its 

share of the tranche, effectively spreading the balance of emission reductions across these 

measures on a pro-rata basis. 

Combining the allocation for the first two tranches of increasing resources based on the equation 

above with the pro-rata allocation for the third tranche produces emission reduction allocations 

for all electricity measures. Based on how the tranches of increasing generation are treated, 

when there is significant load growth between incremental steps, this third tranche is generally 

assumed to meet growing demand. 

Cleaner Fuels and Energy Conversion 

Measures for cleaner fuels and energy conversion are allocated emission reductions based on 

the difference between a reference emission intensity and the measure’s emission intensity. 

Regardless of the destination of the output from these measures, whether meeting demand for 

final energy or going to a power plant,30 the measure that creates the fuel is always allocated 

emission reductions for displacing a more carbon-intensive fuel. Technologies that consume 

 

28 For all resources, emission intensity is based on their respective efficiencies and the carbon content of the fossil 

version of any fuel the resource combusts. Where there are instances of power generation burning decarbonized 

fuels that displace fossil fuels, allocation for those emission reductions go to the measures that produce the 

decarbonized fuels. 

29 This is calculated by summing the generation for each increasing resource across all decreasing resources in 

matrix M, which results in a vector indexed by i. Element-wise multiplication is performed on this vector and r, 

which represents the emission intensity of all increasing resources.  

30 The accounting for hydrogen production is slightly different, and addressed in the following section.  
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these fuels are allocated emission reductions for replacing other technologies that have higher 

emission intensities.  

Emissions reduction allocation for these measures is calculated using Equation 2. The reference 

emission intensity, intref, is based on user-defined reference values, which define this value for 

each measure. Generally, the reference intensity is the emission intensity of the displaced fossil 

fuel (e.g., corn ethanol would have gasoline as a reference).31 The emission intensity of the 

measure, intmeas, is calculated based on all of the direct inputs to the measure, including biomass 

use, electricity use, hydrogen use, and captured carbon that is sequestered. The difference in 

these two intensities is multiplied by the incremental increase in energy from the measure 

between step n-1 and step n, GJinc. 

Equation 2 – Emission reduction allocation for clean fuel and energy conversion measures 

𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = (𝑖𝑛𝑡𝑟𝑒𝑓 − 𝑖𝑛𝑡𝑚𝑒𝑎𝑠) × 𝐺𝐽𝑖𝑛𝑐 

Hydrogen Production 

Hydrogen production is a unique subset of fuel measures that requires a more detailed allocation 

than other clean fuel measures. While other fuels generally see limited growth or declines in final 

energy share as fuel switching becomes increasingly attractive at higher marginal abatement 

costs, hydrogen production materially increases at higher marginal abatement costs. Figure 17 

shows this significant increase in production, with hydrogen for final energy demand separated 

from hydrogen for fuel production. Increases in overall demand for hydrogen require a 

counterfactual accounting, similar to electricity supply, to disentangle increased hydrogen 

measure output to meet growing demand or lower emissions. 

 

31 Measures which produce multiple fuels get a reference intensity which reflects a combination of displaced fossil 

fuels. Synthetic fuels that are allocated emission reductions for utilizing captured carbon have reference intensities 

of zero to prevent double counting of emission reductions. 
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Figure 17 – Illustration of the growth in hydrogen production as compared to liquid fuels in 2050. 

 

To develop the counterfactual to compare against step n, the two types of hydrogen production 

are tracked separately: 

• Production for final energy demand, which can come from natural gas steam reformation or 

conversion from the other types of hydrogen; and 

• Production for conversion to other fuels, which can come from other lower emission 

intensity forms of hydrogen production. 

Each type of production uses the same counterfactual approach, where step n is compared to an 

alternative where total production is the same as step n, but the shares of hydrogen production 

technologies are based on step n-1. Both displaced production and increased production from 

hydrogen measures are based on the difference between step n and the counterfactual. 

Equation 3 – Emission reduction allocation for hydrogen measures 

𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = (
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑑𝑖𝑠

𝐺𝐽𝑑𝑖𝑠
− 𝑖𝑛𝑡𝑚𝑒𝑎𝑠) × 𝐺𝐽𝑖𝑛𝑐 

Allocation for hydrogen measure emission reductions is calculated with Equation 3, which 

compares the average emission intensity of all displaced production to each measure’s emission 

intensity. Rather than a resource-by-resource comparison between step n and the 
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counterfactual, the small number of technologies and the homogeneity of emission intensity32 

for each technology within a step make it possible to use an average intensity. This average is 

calculated based on the total hydrogen production that is displaced, GJdis, and the associated 

emission reduction from that displacement, emissionsdis. All measures are compared against this 

average intensity. Each measure’s emission intensity, intmeas, is based on all direct inputs to the 

measure, including biomass use, electricity use, and captured carbon that is sequestered. The 

difference in emission intensity is multiplied by the measure’s incremental increase in output, 

GJinc, to allocate the emission reduction for each measure. 

Demand Measures 

Energy demand measures allocate emission reductions in the same manner as cleaner fuel 

measures, based on the difference between a reference emission intensity and the measure’s 

emission intensity. The reference emission intensity is generally based on the emission intensity 

of the incumbent technology. Demand measures are allocated to any emission reductions 

associated with emission intensity improvements, including fuel switching, but not for changes 

in the composition of fuel they consume.  

Equation 4 – Emission reduction allocation for demand measures 

𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = (𝑖𝑛𝑡𝑟𝑒𝑓 − 𝑖𝑛𝑡𝑚𝑒𝑎𝑠) × 𝑆𝑒𝑟𝑖𝑣𝑐𝑒𝐷𝑒𝑚𝑎𝑛𝑑𝑖𝑛𝑐 

Emissions reduction allocation for these measures is calculated using Equation 4. The reference 

emission intensity, intref, is based on user-defined reference values, which define this value for 

each measure and represent emissions per unit of service demand. The emission intensity of the 

measure, intmeas, is calculated based on all of the energy consumption for the measure per unit 

of service demand, including electricity use, hydrogen use, and any other fuel use. The difference 

in these two intensities is multiplied by the incremental increase in service demand met by the 

measure between step n-1 and step n, ServiceDemandinc. 

Overview of Energy System Modeling Tools 
We use two models developed by Evolved Energy Research to simulate the U.S. energy system, 

as described in Table 2. Both models have been used extensively to evaluate low-carbon energy 

systems at the national and sub-national levels. For this study's purposes, EnergyPATHWAYS (EP) 

is used to simulate energy system service demand for the MAC analysis.  

In contrast, the Regional Investment and Operations (RIO) platform operates by finding the set 

of energy system decisions that are the least cost. This includes detailed capacity expansion 

functionality for the electricity, fuels, carbon management, select demand-side measures, and 

industrial heat sectors of the economy. Consumer decisions are optimized for vehicle choice in 

 

32 Emission intensity for some technologies can change depending on other system conditions, namely electrolysis 

which will depend on the grid’s emission intensity and production that incorporates carbon capture which depends 

on the share of sequestered versus utilized carbon. Emissions from the counterfactual are based on step n-1 

values. 
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light-duty autos, light-duty trucks, medium-duty vehicles, heavy-duty vehicles (short and long-

haul), and space heating. These consumer decisions incorporate customer payback curves and 

therefore reflect plausible customer constraints on the adoption of demand-side technologies. 

Table 2 - Models Used to Evaluate Technology Areas 

 Description Use in this Study 

EP 
 

• Bottom-up energy sector planning tool 

• Represents all producing, converting, storing, 

delivering, and consuming energy 

infrastructure 

• Energy system decisions are scenario-based 

and not a result of an optimization 

• Establishes service demand 

boundary conditions for 

optimization within RIO 

RIO 
 

• Capacity expansion tool used to produce cost-

optimal resource portfolios across the electric 

and fuels sectors 

• Simulates hourly electricity operations and 

annual investment decisions 

• Energy system decisions are a result of a least-

cost optimization  

• Optimize the deployment 

of demand- and supply-side 

technologies, representing 

the first step of the 

methodology  

 

This paired modeling approach allows for parameterization of energy sector boundary conditions 

and allows for economy-wide CO2 emissions accounting while focusing on measures pertinent 

for this MAC analysis. RIO optimizes resource build and operations for the system where 

measures can lower emissions and other supply-side technologies that support measure 

deployment for a reliable, low-carbon energy system (e.g., battery storage for electricity).  

For this study's purposes, the U.S. energy system is characterized using a customized geography 

based on an aggregation of the U.S. Environmental Protection Agency’s eGRID geographies, as 

shown in Figure 18. The aggregation was done for computational purposes to reduce the total 

number of zones to a manageable number but characterizes important regional differences that 

affect energy system transformation, including (a) resource endowments such as renewable 

resource potential and quality, bioenergy feedstock supply, and geologic sequestration 

availability; (b) climate, which drives space heating electrification impacts; and (c) electric 

transmission constraints.  
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Figure 18 - Model Regions 
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