# EDF-WZI-APPENDIX I



**Resume for** 

**Mary Jane Wilson** 

WZI Inc.



### MARY JANE WILSON, R.E.A President

### EDUCATION/CERTIFICATION

B.S., Petroleum Engineering, Stanford University, 1972

State of California Registered Environmental Assessor No. 00050

State of California Accredited Lead Verifier of Greenhouse Gas Emissions Data, Executive Order H-09-63

Special Government Employee, Department of Energy Ultra-Deepwater Advisory Committee

Member, National Petroleum Council

Director – Mission Bank, Audit Committee

Director – Greater Bakersfield Chamber of Commerce

Patent Nos. US 6,659,178 B2 Apparatus and Method For Sealing Well Bores and Bore Holes, US 6,860,997 B1 Apparatus and method for processing Organic Materials

Past Director - California Independent Petroleum Association

Past Director - Kern Economic Development Corporation and Chairman

1994 Journal of Petroleum Technology Editor, January Issue and 1994 Review Chairman

Society of Petroleum Engineers - Member since 1972, Environment Health and Safety Committee Member, 1993 Distinguished Lecturer, Co-chairman SPE/EPA Exploration & Production Environmental Conference, 1997, Chairman SPE Monograph Committee, Editor Monograph Volume 18 Henry L. Doherty Series, *Environmental Engineering for Exploration and Production Activities* 

1993-94 Advisory Board - San Joaquin Valley Chapter, American Petroleum Institute

- Stanford School of Earth Sciences, Stanford University Advisory Board and former National Fundraising Chairman
- Member Air and Waste Management Association, American Petroleum Institute, Association of Groundwater Scientists and Engineers, Central California Association of Power Producers, California Groundwater Association, California Independent Petroleum Association, California Living Museum, National Water Well Association and the Water Association of Kern County, Central California Association of Power Producers

Member at Large - Conservation Committee of California Oil and Gas Producers

Member - West Coast Advisory Group of the Petroleum Technology Transfer Council

Member - PTTC National Labs Partnership Work Group

The Council of One Hundred - California State University, Bakersfield

Future Bakersfield - Mayor's Action Team, Strategic Vision Plan

Women's Advisory Council - Girl Scouts, Joshua Tree Council Graduate, Hill & Knowlton Media Training Seminar Soroptimist Achievement Award, 1976 Outstanding Professional Woman, L. A. Area

### SPECIAL AREAS OF EXPERTISE:

### **Regulatory Compliance:**

Participates on an ongoing basis in regulatory reform programs both nationally and locally.

- Management of contracts where WZI acts as the client's representative in the coordination of business goals and permit conditions in large projects requiring interagency cooperation. This includes preparation of permit documents, technical support documents, public hearing representation and community relations.
- Provides strategic planning for compliance with regulations, the formulation of operations tracking protocols which improve agency/industry communication where permit conditions require a good understanding of a project.
- Working with regulatory agencies in the interpretation of "intent" of environmental regulations when applied to projects especially where Federal, State and local regulations are not clearly presented or have overlapping jurisdiction.
- Provides management direction on protocol design and implementation of environmental audits (site assessments, compliance audits, risk appraisals).
- Expert testimony in litigation involving groundwater contamination.
- Expert testimony and advise in litigation involving air emissions, health risk.

### **Petroleum:**

Serves on the National Petroleum Council. Council advises, informs and makes recommendations to the Secretary of Energy with respect to matters submitted to the Council by the Secretary of Energy representing the views of the energy industry.

- Expert Witness Moss v. Venoco, Chevron et al. for Air Emissions, Due Diligence, Standard of Care
- Appointed by Congress to advise on the operation of the Naval Petroleum Reserve No.1 (Specific Expertise in Environmental Compliance)
- Over thirty years of oil and gas operations and reservoir engineering experience.
- Prepared numerous U. S. Securities Exchange Commission Reserves Appraisals and fair market valuations on oil and gas producing properties.

- Prepared numerous enhanced oil recovery development plans.
- Economic Analysis of business alternatives in oil/gas exploration and operations both domestically and internationally.
- Negotiated settlements regarding wastewater issues of independent refineries.
- Presentation to the National Electrical Generation Association regarding California Electrical Restructuring.

### **Power Generation:**

- Kern County Electrical Advisory Committee member.
- California Independent Petroleum Association Oil Producers Electrical Project member.

### **PROFESSIONAL EXPERIENCE:**

1986 - Present <u>President, Chief Executive Officer: WZI Inc.</u>

Defines and directs the overall management objectives of WZI Inc. Ms Wilson provides technical standards for all projects on an asneeded basis, to assure client satisfaction, monitors all projects for contract compliance and technical content.

WZI Inc. headquartered in Bakersfield, California. WZI Inc. is an environmental and consulting engineering company, which has achieved a reputation for high quality, successful project management. WZI is a State of California Verification Body for AB32 Greenhouse Gas Mandatory Reporting, Executive Order Number H-10-173. WZI offers professional and technical services in regulatory compliance (air, water, waste), geoscience, hydrology, site characterization, hazardous waste management, and environmental impact assessment. WZI offers its clients a uniquely high level of expertise, an innovative, technical approach and disciplined project management.

### 1982 - 1987 Partner: Evans, Carey & Crozier

Represented numerous clients in environmental matters related to regulatory compliance and reservoir engineering. Supervised geological and groundwater studies, performed subsurface engineering and design, and made alternative recommendations, all related to hazardous and non-hazardous waste injection facilities. Expertise has been utilized in obtaining the necessary permits required by EPA, DOHS, RWQCB and various county agencies. Conducted detailed environmental assessments of hazardous waste site selections, all of which meet the demands of CEQA, and were utilized in EIR preparation.

### 1979 - 1982Consultant: Evans, Carey & Crozier

Represent Evans, Carey & Crozier with clients. Designed and implemented enhanced recovery and waste disposal programs including all permitting activities. Prepared property appraisals and evaluations.

### 1972 - 1979 Engineer: Texaco, Inc.

Initially, assisted in the evaluation of secondary recovery projects and pilot flood performance. Performed reservoir analysis, log interpretations and

economic analyses. Based on this knowledge, was given the task of supervising all drilling and production activities for a major secondary recovery project in which she devised a new water entry survey technique. Studied the drilling potential in California, Nevada, and Alaska, and the development of several steam flood recovery projects. Asked to represent Texaco in unit negotiations, testify before government agencies and obtain all necessary permits. Also assisted in developing the Division's investment budget.

### PUBLICATIONS:

- Englehardt, John, M.J. Wilson, et al., 2001, New Abandonment Technology New Materials and Placement Techniques, S.P.E. Paper No. 66496.
- Wilson, M.J. and J.D. Frederick, 1999, Editors, SPE Monograph Volume 18 Henry L. Doherty Series, Environmental Engineering for Exploration and Production Activities.
- Wilson, M. J. and S. C. Kiser, 1994, Transactional Environmental Assessments: Use in the Identification of Viable Enhanced Oil Recovery Projects, S.P.E./DOE Paper No. 27782.
- Wilson, M. J. and S. C. Kiser, 1993, Site Assessment Methods in Determination of Liability in Oil and Gas Property Acquisition and Divestiture, S.P.E. Paper No. 25834.
- Wilson, M. J. and J. D. Frederick, 1993, Particulate Emission Testing Methodologies as Applied to Natural Gas Fired Turbines, S.P.E. Paper No. 25945.
- Wilson, M. J. and S. G. Muir, 1992, A Critique of Selected Case Studies in Environmental Geophysics, S.P.E. Paper No. 23998.
- Kiser, S. C., M. J. Wilson and L. M. Bazeley, 1990, Oil Field Disposal Management Practices in Western Kern County, California in proceedings from First International Symposium on Oil and Gas Exploration and Production Waste Management Practices, New Orleans, Louisiana, p.677-688.
- Wilson, M. J., Kiser, S. C., E. J. Greenwood, R. N. Crozier, R. A. Crewdson, 1987, Oil Field Disposal Practices in the Hydrogeologic Setting of the Midway-Sunset and Buena Vista Oil Fields: A Review of Past Effects, Current Activities and Future Scenarios, American Association of Petroleum Geologists, Bull. V. 72, No. 3, p.394 Abs.
- Wilson, M. J. and S. C. Kiser, 1987, Proceedings of Hazmacon 1986 Conference April 29
  March 1, 1986, Anaheim, California, Synergistic Approach for Siting and Design for Injection of Hazardous Liquid Wastes: Case Study in Western San Joaquin Valley, Kern County, California, S.P.E. Paper No. 16327
- Wilson, M. J., 1979, The Santos: A Case History of Fractured Shale Development, S.P.E. Paper No. 7978.
- Wilson, M. J., 1974, A Young Engineer's Personal Look at the "Guidelines", S.P.E. Paper No. 4913.



## Curriculum Vitae Of Mary Jane Wilson

| <u>Client</u>                                                                            | Case or Variance #                                           | <u>Type</u>                           | <b>Dates</b> |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|--------------|
| Clark Trevick                                                                            | St James v Crimson Resources                                 | Expert Witness                        | 2013         |
| Manatt Phelps                                                                            | Panoche v PG&E                                               | Expert Witness                        | 2013         |
| Young Wooldridge                                                                         | Water Bank v Grayson                                         | Expert Witness                        | 2012-Current |
| Klein, DeNatale, et al                                                                   | Palla v Amalia                                               | Expert Witness                        | 2012-2013    |
| Duggan, Smith & Heath                                                                    | Wells Fargo Bank, N.A. v. Anadarko<br>Petroleum Corp. et al  | D Expert Witness                      | 2012-2013    |
| Martin, Disere, Jefferson & Wisdom                                                       | Assoc. Electric & Gas Insurance<br>Services v. Kinder Morgan | Expert Witness                        | 2012         |
| Steptoe & Johnson                                                                        | Murray v Chevron et al                                       | Expert Witness                        | 2008-2010    |
| Steptoe & Johnson                                                                        | Borsch v Chevron et al                                       | Expert Witness                        | 2008-2009    |
| Steptoe & Johnson                                                                        | Mydland-Jensen                                               | Expert Witness                        | 2008         |
| Garrison & McInnis                                                                       | Chesser v. Alea                                              | Energy Price Forecast Insurance Claim | 2009         |
| Gallagher & Gallagher                                                                    | OCWD v. Moore Wallace                                        | Litigation Support                    | 2007-2012    |
| Gallagher & Gallagher<br>Sheppard Mullin<br>Haight Brown & Bonesteel<br>Latham & Watkins | Moss v. Venoco, Inc., et al                                  | Expert Witness                        | 2004-Current |
| California Dairies-Fresno                                                                | C-05-10E                                                     | Emergency Variance                    | 2005         |
| Griffin Industries                                                                       | CEQA                                                         | Hearing                               | 2005         |
| H. Lima Mine                                                                             | CEQA                                                         | Hearing                               | 2005         |
| Petrissans Dairy                                                                         | CEQA                                                         | Hearing                               | 2005         |
| Schweitzer Construction                                                                  | CEQA                                                         | Hearing                               | 2005         |
| Klein, DeNatale et al                                                                    | ChevronTexaco Cymric                                         | Expert Opinion, settled               | 2005         |
| Noriega                                                                                  | Lundsford vs. Key Energy                                     | Consultant                            | 2005         |
| Cooper & Hoppe                                                                           | Kophamer vs. Western Skye Dairy                              | Expert Opinion, settled               | 2005         |
| California Dairies-Turlock                                                               |                                                              | Short Variance                        | 2004         |
| Castle & Cooke                                                                           | Planning Commission                                          | Vesting Tentative Tract Map 6281      | 2004         |
| Castle & Cooke                                                                           | Planning Commission                                          | Vesting Tentative Tract Map 6250      | 2004         |
| Castle & Cooke                                                                           | Planning Commission                                          | Panama & Ashe GPA/ZC                  | 2004         |
| Castle & Cooke                                                                           | Planning Commission                                          | Stockdale & Allen GPA/ZC              | 2004         |
| Castle & Cooke                                                                           | Planning Commission                                          | Vesting Tentative Tract Map 11035     | 2004         |
| Martin Feed                                                                              | CEQA                                                         | Hearing                               | 2004         |
| Hageman LP                                                                               | CEQA                                                         | Hearing                               | 2004         |
|                                                                                          | WILCON CV 1                                                  |                                       |              |

WILSON CV-1

| Klein DeNatale et al                           | CEQA                                                 | Expert Opinion                                               | 2003         |
|------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--------------|
| Sierra Power                                   | Emergency Variance                                   | CEM Breakdown                                                | 2003         |
| Lucas Development                              | City Council                                         | Vesting Tentative Tract Map 6182                             | 2003         |
| Sage Community Development                     | Planning Commission                                  | Vesting Tentative Tract Map 6148                             | 2003         |
| Sage Community Development                     | City Council                                         | Vesting Tentative Tract Map 6149                             | 2003         |
| White & H Partners                             | City Council                                         | Vesting Tentative Tract Map 6137                             | 2003         |
|                                                |                                                      |                                                              |              |
| <u>Client</u>                                  | Case or Variance #                                   | <u>Type</u>                                                  | <u>Dates</u> |
| Vanderham Dairy                                | Board of Supervisors<br>Planning Commission          | EIR Appeal<br>EIR                                            | 2003<br>2002 |
| Borba Dairies                                  | Board of Supervisors<br>Planning Commission          | EIR Appeal<br>EIR                                            | 2002<br>2002 |
| Klein DeNatale et al                           | Hazardous Waste Truck Accident                       | Consultant                                                   | 2002         |
| El Paso Merchant Energy                        | CEC Docket 00-AFC-5                                  | Expert Testimony                                             | 2001         |
| Midway Sunset Cogeneration<br>Company          | CEC Docket 99-AFC-9                                  | Expert Testimony                                             | 2000-2001    |
| McClintock Weston                              | Confidential                                         | Expert emission reduction credit,<br>Deposition              | 2000         |
| Latham and Watkins                             | World Oil v. City of Bakersfield                     | Expert condemnation activity                                 | 1998         |
| Stradling Yocca Carlson<br>& Rauth             | Nations Title Insurance Co.<br>v. Kellogg Properties | Expert for mining feasibility/value arbitration              | 1998         |
| Golden Bear                                    | S-98-15R                                             | Regular Variance                                             | 1998         |
| Babst, Calland, Clements<br>and Zomir          | U.S. EPA v. Quaker<br>State Congo                    | Expert deposition review<br>for the Quaker State<br>Refinery | 1997         |
| Land-Aide Incorporated                         | McAllister Ranch                                     | Land Use                                                     | 1997         |
| Noreiga & Alexander                            | Tannehill vs. Baker Chemicals                        | Expert Opinion, settled                                      | 1997         |
| Borton, Petrini & Conron                       | Pre-litigation                                       | CEQA Analysis regarding oilfield<br>Development              | 1997         |
| Elk Corporation                                | 95-55R                                               | Regular Variance                                             | 1996         |
| Frito-Lay                                      | 95-55X                                               | Short Variance                                               | 1996         |
| Kern Oil & Refining Company                    | 89-218                                               | Cease and Desist Order                                       | 1995         |
| Dairyman's Cooperative<br>Creamery Association | 93-51                                                | Interim Variance<br>Regular Variance                         | 1994<br>1994 |
| Double "C" Limited                             | 94-14                                                | Interim Variance<br>Emergency Variance                       | 1994<br>1994 |
| Gibson Environmental Inc.                      | 94-15151-B-11K<br>WILSON CV-2                        | Interim Variance                                             | 1994         |

|                                                |                          | Regular Variance                                                                     | 1994         |
|------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------|--------------|
| Guy E. Taylor & Associates                     | CIV-94-1529T             | Expert opinion groundwater<br>contamination source delineation<br>oilfield operation | 1994         |
| Harper Lake Company                            | 93-015-I-1<br>93-015-R-2 | Interim Variance<br>Regular Variance                                                 | 1994<br>1994 |
| HLC IX                                         | 93-014-I-1<br>93-014-R-2 | Interim Variance<br>Regular Variance                                                 | 1994<br>1994 |
| <u>Client</u>                                  | Case or Variance #       | <u>Type</u>                                                                          | <u>Dates</u> |
| Kern Front Limited                             | 94-12                    | Interim Variance<br>Regular Variance                                                 | 1994<br>1994 |
| M. Baker vs<br>Biedermann International        |                          | Deposition                                                                           | 1993         |
| Klein DeNatale et al                           | 208568                   | Deposition Mojave River Lake Basin<br>City of Barstow vs City of Adelanto            | 1993         |
| Badger Creek Limited                           | S-93-15                  | Interim Variance<br>Regular Variance                                                 | 1993<br>1993 |
| Chalk Cliff Limited                            | 93-20                    | Interim Variance<br>Variance                                                         | 1993<br>1993 |
| Dairyman's Cooperative<br>Creamery Association | 93-13                    | Interim Variance<br>Regular Variance                                                 | 1993<br>1993 |
|                                                | 93-42                    | Interim Variance<br>Regular Variance                                                 | 1993<br>1993 |
| Double "C" Limited                             | 93-18                    | Interim Variance<br>Regular Variance                                                 | 1993<br>1993 |
| High Sierra Limited                            | S93-16                   | Interim Variance<br>Regular Variance                                                 | 1993<br>1993 |
| Kern Front Limited                             | 93-17                    | Interim Variance<br>Regular Variance                                                 | 1993<br>1993 |
|                                                | 93-30                    | Interim Variance<br>Regular Variance                                                 | 1993<br>1993 |
|                                                | 93-25                    | Interim Variance<br>Emergency Variance                                               | 1993<br>1993 |
| Live Oak Limited                               | 93-19                    | Regular Variance                                                                     | 1993         |
| McKittrick Limited                             | 93-21                    | Interim Variance<br>Regular Variance                                                 | 1993<br>1993 |
|                                                | 93-26                    | Interim Variance<br>Regular Variance                                                 | 1993<br>1993 |
| Mount Poso Cogeneration Company                |                          | Emergency Variance                                                                   | 1993         |
| Twin Oil Company                               | Appeal of Division of    | Testimony                                                                            | 1993         |

|                                            | Oil and Gas Order                                            |                                                                                             |              |
|--------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|
| PF Corporation                             | 93-23                                                        | Interim Variance<br>forming/curing oven<br>Regular Variance                                 | 1993<br>1993 |
|                                            |                                                              | Vested Rights Hearing                                                                       | 1775         |
| Berry Petroleum Company                    |                                                              | Appeal of ATC Denial                                                                        | 1992         |
| Chalk Cliff Limited                        | 92-52                                                        | Interim Variance<br>Regular Variance                                                        | 1992<br>1992 |
| <u>Client</u>                              | Case or Variance #                                           | <u>Type</u>                                                                                 | <u>Dates</u> |
| Live Oak Limited                           | 92-29                                                        | Interim Variance<br>Regular Variance                                                        | 1992<br>1992 |
|                                            | 92-37                                                        | Interim Variance<br>Regular Variance                                                        | 1992<br>1992 |
| San Joaquin Cogen Limited                  | 92-05                                                        | Interim Variance<br>Regular Variance                                                        | 1992<br>1992 |
|                                            | 92-06                                                        | Interim Variance<br>Regular Variance                                                        | 1992<br>1992 |
| UPF Corporation                            | 92-22                                                        | Interim Variance<br>Modification Variance                                                   | 1992<br>1992 |
| Wellhead Electric Company                  | 91-14                                                        | Interim Variance<br>Modification<br>Regular Variance                                        | 1992<br>1992 |
| Badger Creek Limited                       | 91-34                                                        | Interim Variance                                                                            | 1992         |
| Dauger Creek Linned                        | 71-J <del>4</del>                                            | Regular Variance<br>Lube Oil Demister Exceedance                                            | 1991         |
| Cactus Gold                                | 91-46                                                        | Interim Variance<br>Regular Variance                                                        | 1991<br>1991 |
| San Joaquin Cogen Limited                  |                                                              | Interim Variance                                                                            | 1991         |
|                                            |                                                              | Regular Variance                                                                            | 1991         |
| UPF Corporation                            | 91-35                                                        | Interim Variance<br>Regular Variance                                                        | 1991<br>1991 |
| Wellhead Electric Company                  | 92-31                                                        | Interim Variance<br>Regular Variance                                                        | 1991<br>1991 |
| Sheinfeld, Maley & Kay                     | Stanley Bostich vs Snyder General                            | Deposition                                                                                  | 1990         |
| LeBeau, Thelen, Lampe,<br>McIntosh & Crear | Superior Court Case 183100<br>People vs Sabre Refining Corp. | Sump closure<br>Judgement,<br>Pretrial settlement<br>hearings, expert<br>testimony in court | 1989         |



## **Resume for**

## Jesse D. Frederick

WZI Inc.

### **EDUCATION/CERTIFICATION:**

USN, Surface Nuclear Mechanical Operator, 1974 B.S., Chemical Engineering, Rose-Hulman Institute of Technology, 1981 State of Texas Registered Professional Engineer Accredited Lead Verifier of Greenhouse Gas Emissions Data, Executive Order H-10-047 Member of Texas NO<sub>X</sub> RACT Advisory Group, 1993 Member - Society of Petroleum Engineers, Energy Engineers Institute Guest Lecturer, Rose-Hulman Institute of Technology (1993), USC (2001) Panelist – Valuing NO<sub>X</sub> Offsets, Panel Discussion, Sponsored by <u>Air Quality Week</u>, 1993 Patent for: Steam Blow Silencer, Well Abandonment Technology, Anaerobic Digester Dow Chemical, USA Environmental Management Course

### **SPECIAL CONTRIBUTIONS and RECOGNITIONS:**

Recipient: Chevron Presidents Award for development of a new venture Business Plan CoEditor: SPE EnvironmentalMonograph Environmental Engineering for Exploration and Production Activities

Guest Lecturer: Rose-Hulman Institute of Technology (1993) Advanced Coal Gasification Technology, USC (2001) Electrical Deregulation, SPE (2002) Electrical Deregulation, EUEC (2010)-Strategic Analysis of GHG Programs, Impacts on Reliability

Panelist – Valuing NOX Offsets, Panel Discussion, Sponsored by Air QualityWeek, 1993 Patent for: Steam Blow Silencer, Well Abandonment Technology, Anaerobic Digester IOGCC, Oil and Gas Exploration and Production Environmental Reporting Requirements

DOE, Title V Guidance Manual for E&P industry National Petroleum Council, Peer Review for Studies on Natural Gas Pipeline Infrastructure,

1999

API, Toxic Release Inventory Report on Exploration and Production

Member of Texas NOX RACT Advisory Group, 1993Board Member: Kern Environmental Education Program

Board Member: Society of Petroleum Engineers (San Joaquin Valley Chapter)

Member: Kern Economic Development Corporation, 1997-2011

Member: Kern County Electrical Restructuring Advisory Committee

Member: Kern County Chamber of Commerce Regulatory Advisory Committee

### SPECIAL AREAS OF EXPERTISE:

- CARB Accredited Verifier of Greenhouse Gas Emissions Data for Refineries and Electric Transactions
- Contract assessment and negotiations
- Renewable Energy Siting and Permit Assistance
- Business Planning including financial pro forma and risk analysis
- Gas and Electricity Price Forecasting and Direct Access, Wholesale and Retail
- Sale and acquisition of large energy assets
- Audit procedures for cogeneration facilities and oil and gas producing properties for Fortune 500 Companies.
- Environmental development through initiation to various stages of development including financial closing.
- Federal, state and local regulations, including FERC, NEPA, SEQRA, CEQA, PSD,

NSPS, and NPDES.

- Dutch environmental law including MER and provincial permits.
- Expert testimony in both legal and Public Utility Proceedings regarding: valuation of environmental externalities, environmental dispatch, impact of standard offer contracts on property values, refinery wastewater, waste discharge and property values.
- Pre-commissioning including cleaning, flushing, and testing.
- Power project design and budgeting coordination for engineering, economic and engineering evaluations of various options.
- Forensic analysis of facility failures and on/offsite consequences

### **PROFESSIONAL EXPERIENCE:**

1994 - Present <u>Vice President - WZI Inc.</u>

Responsible for the technical scoping of large projects which require multidisciplinary integration. Responsible for technical peer review of ongoing projects. Mr. Frederick acting on behalf of major clients has performed internal energy studies for long-term purchase and production plans as well as negotiated major energy contracts. In overseeing client regulatory compliance, Mr. Frederick advises clients regarding approaches to permitting and regulatory guidelines, including facilitating the Department of Energy's sale of the Elk Hills Naval Petroleum Reserve. Directs the planning, development and implementation of policies, programs and procedures in support of contract management. Mr. Frederick provides assistance in WZI's National Petroleum Council activities. Mr. Frederick is responsible for identifying business opportunities, expert advice on energy forecasts, valuations, business planning and provides business development services to numerous clients.

1995 - 1998 President - CONSUMERS Utility Advisors, Inc.

Provided staff leadership in strategic planning and technical negotiations for the electrical power market. Directed corporate activities including business development, goal setting and quality assurance. Mr. Frederick was responsible for business planning and economic models for various clients.

1990 - 1994 <u>Manager of Environmental Affairs, Destec Energy, Inc.</u>

Promoted to Project Development, Mr. Frederick provided analytical support for multi-million dollar projects. The increased need for firm project management in the area of environmentally related issues led to a promotion to the position of Sr. Environmental Engineer. Mr. Frederick established the Environmental Affairs department and managed the day-to-day activities of the Environmental Affairs staff and oversaw all environmentally related issues including: property sales and acquisitions, permitting, compliance, and facility/property audits for all Destec facilities including 740,000 acres of oil and gas properties, including water treatment, waste water disposal, and superfund sites. Mr. Frederick was a team member for all business acquisitions and financial projects.

| 1982 - 1990 | Staff Engineer, Power Systems Engineering |
|-------------|-------------------------------------------|
|             | FREDERICK - 3                             |

|             | Provided start-up support for facilities and interface engineering for<br>chemical refining plants for integration of cogeneration. Specialized in<br>water treatment design, procurement and operation. |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1982        | Mission Industrial Supply, Field Supervisor                                                                                                                                                              |
|             | Provided start-up and pre-commissioning supervision for chemical processes.                                                                                                                              |
| 1981 - 1982 | Associate (Machinery) Engineer M.W. Kellogg                                                                                                                                                              |
|             | Served in the Mechanical Division (Special Equipment Group) designing<br>and procuring equipment related to refining and water treatment.                                                                |

#### **PUBLICATIONS:**

Frederick, J. D., 1990, "Gas Turbine Emissions," Industrial Energy Technology Conference.

- Frederick, J. D. and B. Tulloh, 1991, "Title III of the Clean Air Act and BACT," Society of Petroleum Engineers Forum.
- Frederick, J. D., 1992, "Clean Air Act Title III and the Oil Industry," Society of Petroleum Engineers.
- Frederick, J. D., 1993, "Air Emissions Trading," SPE/EPA Exploration & Production Environmental Conference, San Antonio, TX, 7-10 March 1993.
- Frederick, J. D., 1993, "Effective Environmental Management," SPE Hydrocarbon Economics and Evaluation Symposium, Dallas, TX, 29-30 March 1993.
- Frederick, J. D. and S. Jenkins, 1993, "Cogeneration and Meeting California Environmental Requirements," 8th Cogeneration & Independent Power Congress, Boston, MA, 15-16 June 1993.
- Frederick, J. D. and W. Lessig, 1993, "Environmental Considerations of Coal Gasification Technology and the Wabash River Repowering Project," American Power Conference, Boston, MA, 1993.
- Frederick, J.D. and Wilson, M.J., 1993, Particulate Emission Testing Methodologies as Applied to Natural Gas Fired Turbines, S.P.E. Paper No. 25945.
- Frederick, J. D. and M.S. Weaver, 1997, "Title V and the Exploration and Production Industry," S.P.E. Paper No. 37883.
- Frederick, J. D. and Mary Jane Wilson, 1999, Editors, SPE Environmental Monograph Environmental Engineering for Exploration and Production Activities.



## Curriculum Vitae Of Jesse D. Frederick

WZI Inc.

### ADJUDICATORY, JURY, SEMI-ADJUDICATORY PROCEEDINGS

| <u><b>Client</b></u><br>Wood, Smith, Henning & Berman           | Case or Variance #<br>LASC-NC 044396- Refinery Accident | <u>Type</u><br>Expert                                                                 | Dates<br>Current |  |
|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|--|
| Gray Duffy                                                      | Holly Refinery v. Mullen<br>Crane                       | Expert                                                                                | 2008 -2012       |  |
| California Public Utility Commission                            | General Rate Case<br>A10-03-014                         | Expert Witness                                                                        | 2010             |  |
| Garrison & McInnis                                              | Chesser v. Alea                                         | Litigation Support                                                                    | 2009             |  |
| CA Dept. of Transportation                                      | Cal Trans v 927 Indio Muerto                            | Expert                                                                                | 2008             |  |
| Klein DeNatale Goldner, et al.                                  | Geisert v. Patterson, et al.                            | Expert                                                                                | 2007             |  |
| Gallagher and Gallagher                                         | Moss v. Venoco                                          | Litigation Support                                                                    | 2004             |  |
| Cooper & Hoppe                                                  | Kophamer v. Western Sky                                 | Expert Testimony                                                                      | 2004             |  |
| El Paso Merchant Energy                                         | CEC Docket 00-AFC-5                                     | Expert, Power Plant Siting                                                            | 2001             |  |
| Midway Sunset Cogeneration<br>Company                           | CEC Docket 99-AFC-9                                     | Expert, Power Plant Siting                                                            | 2000-2001        |  |
| Southern California Gas Co.                                     | The Gas Company v.<br>Midsun Partners                   | Expert opinion (CPUC)<br>Property Valuation                                           | 1998-1999        |  |
| Noriega & Alexander                                             | Tannehill v. Baker                                      | Expert opinion<br>Well Contamination                                                  | 1997             |  |
| Klein, DeNatale, Goldner, Cooper,<br>Rosenlieb and Kimball, LLP | World Oil                                               | Litigation Support: Refinery Accident                                                 | 1997-1998        |  |
| Guy E. Taylor & Associates                                      | CIV-94-1529T                                            | Expert opinion groundwater<br>contamination source delineation<br>oilfield operation. | 1997             |  |
| Babst, Calland Clements and Zomir                               | U.S. DOJ/EPA v. Quaker<br>State Congo Refinery          | Groundwater Contamination<br>Litigation                                               | 1996             |  |
| Klein, DeNatale, Goldner, Cooper,<br>Rosenlieb and Kimball, LLP | Tuytens et al                                           | Expert Facility Energy-Based Evaluation                                               | 1996             |  |
| Destec Energy, Inc.                                             | CCN Docket 11000                                        | Expert Testimony, Externalities Valuation                                             | 1993             |  |

### DEPOSITIONS

| <u>Client</u>                                                  | Case or Variance #                                              | Type                                                 | <b>Dates</b> |
|----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|--------------|
| Gray Duffy                                                     | Holly Refinery v. Mullen Crane                                  | Refinery Damages Evaluation                          | 2012         |
| Garrison & McInnis                                             | Chesser v. Alea                                                 | Energy Price Forecast Insurance Claim                | 2008         |
| CA Dept. of Transportation                                     | Cal Trans v. 927 Indio Muerto                                   | Condemnation of Chemical Facilities                  | 2008         |
| Klein, DeNatale, Goldner, Cooper<br>Rosenlieb and Kimball, LLP | Tuytens et al. v.<br>DifWind Farms VI                           | DifWind Farms VI Deposition<br>Energy Contract Value | 1997         |
| Babst, Calland Clements<br>and Zomir                           | U.S. DOJ/EPA v. Quaker<br>State Congo Refinery<br>Frederick CV- | Groundwater Contamination<br>Litigation<br>1         | 1996         |

#### **TESTIMONY – ADMINISTRATIVE HEARINGS**

| <u>Client</u>              | <u>Case or Variance #</u>                   | <u>Type</u>                                                          | <u>Dates</u> |
|----------------------------|---------------------------------------------|----------------------------------------------------------------------|--------------|
| Castle & Cooke             | Planning Commission                         | Vesting Tentative Tract Map 6281                                     | 2004         |
| Castle & Cooke             | Planning Commission                         | Vesting Tentative Tract Map 6250                                     | 2004         |
| Castle & Cooke             | Planning Commission                         | Panama & Ashe GPA/ZC                                                 | 2004         |
| Castle & Cooke             | Planning Commission                         | Stockdale & Allen GPA/ZC                                             | 2004         |
| Castle & Cooke             | Planning Commission                         | Vesting Tentative Tract Map 11035                                    | 2004         |
| Lucas Development          | City Council                                | Vesting Tentative Tract Map 6182                                     | 2003         |
| Sage Community Development | Planning Commission                         | Vesting Tentative Tract Map 6148                                     | 2003         |
| Sage Community Development | City Council                                | Vesting Tentative Tract Map 6149                                     | 2003         |
| White & H Partners         | City Council                                | Vesting Tentative Tract Map 6137                                     | 2003         |
| Vanderham Dairy            | Board of Supervisors<br>Planning Commission | EIR Appeal<br>EIR                                                    | 2003<br>2002 |
| Borba Dairies              | Board of Supervisors<br>Planning Commission | EIR Appeal<br>EIR                                                    | 2002<br>2002 |
| Badger Creek Limited       | S-93-15                                     | Interim Variance<br>Regular Variance                                 | 1993<br>1993 |
| Chalk Cliff Limited        | 93-20                                       | Interim Variance<br>Variance                                         | 1993<br>1993 |
| Live Oak Limited           | 93-19                                       | Regular Variance                                                     | 1993         |
| Chalk Cliff Limited        | 92-52                                       | Interim Variance<br>Regular Variance                                 | 1992<br>1992 |
| Live Oak Limited           | 92-29                                       | Interim Variance<br>Regular Variance                                 | 1992<br>1992 |
|                            | 92-37                                       | Interim Variance<br>Regular Variance                                 | 1992<br>1992 |
| San Joaquin Cogen Limited  | 92-05                                       | Interim Variance<br>Regular Variance                                 | 1992<br>1992 |
|                            | 92-06                                       | Interim Variance<br>Regular Variance                                 | 1992<br>1992 |
| Badger Creek Limited       | 91-34                                       | Interim Variance<br>Regular Variance<br>Lube Oil Demister Exceedance | 1991<br>1991 |

# EDF-WZI-APPENDIX II

| naa | Basin | fips  | type                | pol | 2011vocTPYCntrldR | RP       | ef   | 2011VOCtpy |
|-----|-------|-------|---------------------|-----|-------------------|----------|------|------------|
| -1  | DJ    | 08001 | O&G Condenste Tanks | VOC | 1,507.0           | 0.925582 | 13.7 | 3,189.87   |
| -1  | DJ    | 08005 | O&G Condenste Tanks | VOC | 205.7             | 0.925582 | 13.7 | 435.33     |
| -1  | DJ    | 08013 | O&G Condenste Tanks | VOC | 750.1             | 0.925582 | 13.7 | 1,587.83   |
| -1  | DJ    | 08014 | O&G Condenste Tanks | VOC | 522.5             | 0.925582 | 13.7 | 1,105.94   |
| -1  | DJ    | 08031 | O&G Condenste Tanks | VOC | 48.6              | 0.925582 | 13.7 | 102.85     |
| -1  | DJ    | 08059 | O&G Condenste Tanks | VOC | 1.6               | 0.925582 | 13.7 | 3.49       |
| -1  | DJ    | 08069 | O&G Condenste Tanks | VOC | 505.1             | 0.925582 | 13.7 | 1,069.20   |
| -1  | DJ    | 08123 | O&G Condenste Tanks | VOC | 85,060.4          | 0.925582 | 13.7 | 180,053.30 |
| 0   | DJ    | 08039 | O&G Condenste Tanks | VOC | 149.9             | 0.545831 | 13.7 | 217.56     |
| 0   | DJ    | 08043 | O&G Condenste Tanks | VOC | 860.5             | 0.545831 | 13.7 | 1,249.08   |
| 0   | DJ    | 08063 | O&G Condenste Tanks | VOC | 13.5              | 0.214115 | 3    | 15.32      |
| 0   | DJ    | 08073 | O&G Condenste Tanks | VOC | 463.6             | 0.214115 | 3    | 528.09     |
| 0   | DJ    | 08075 | O&G Condenste Tanks | VOC | 1,074.3           | 0.545831 | 13.7 | 1,559.57   |
| 0   | DJ    | 08087 | O&G Condenste Tanks | VOC | 518.6             | 0.545831 | 13.7 | 752.83     |
| 0   | DJ    | 08095 | O&G Condenste Tanks | VOC | 0.0               | 0.545831 | 13.7 | 0.00       |
| 0   | DJ    | 08115 | O&G Condenste Tanks | VOC | 0.0               | 0.545831 | 13.7 | 0.00       |
| 0   | DJ    | 08121 | O&G Condenste Tanks | VOC | 2,414.8           | 0.545831 | 13.7 | 3,505.36   |
| 0   | DJ    | 08125 | O&G Condenste Tanks | VOC | 19.3              | 0.545831 | 13.7 | 27.97      |
| 0   | NSJ   | 08007 | O&G Condenste Tanks | VOC | 9.5               | 0.497035 | 11.8 | 13.25      |
| 0   | NSJ   | 08067 | O&G Condenste Tanks | VOC | 152.6             | 0.497035 | 11.8 | 212.93     |
| 0   | PIC   | 08029 | O&G Condenste Tanks | VOC | 0.0               | 0.442467 | 10   | 0.07       |
| 0   | PIC   | 08045 | O&G Condenste Tanks | VOC | 9,284.2           | 0.442467 | 10   | 12,415.50  |
| 0   | PIC   | 08051 | O&G Condenste Tanks | VOC | 4.4               | 0.442467 | 10   | 5.90       |
| 0   | PIC   | 08077 | O&G Condenste Tanks | VOC | 330.4             | 0.442467 | 10   | 441.82     |
| 0   | PIC   | 08081 | O&G Condenste Tanks | VOC | 1,262.0           | 0.442467 | 10   | 1,687.67   |
| 0   | PIC   | 08103 | O&G Condenste Tanks | VOC | 18,325.9          | 0.442467 | 10   | 24,506.58  |
| 0   | PIC   | 08107 | O&G Condenste Tanks | VOC | 240.3             | 0.442467 | 10   | 321.35     |
| 0   | rest  | 08009 | O&G Condenste Tanks | VOC | 199.5             | 0.497035 | 11.8 | 278.33     |
| 0   | rest  | 08011 | O&G Condenste Tanks | VOC | 1.8               | 0.497035 | 11.8 | 2.50       |
| 0   | rest  | 08033 | O&G Condenste Tanks | VOC | 112.5             | 0.497035 | 11.8 | 157.03     |
| 0   | rest  | 08055 | O&G Condenste Tanks | VOC | 0.0               | 0.497035 | 11.8 | 0.00       |
| 0   | rest  | 08057 | O&G Condenste Tanks | VOC | 693.2             | 0.497035 | 11.8 | 967.26     |
| 0   | rest  | 08061 | O&G Condenste Tanks | VOC | 288.8             | 0.214115 | 3    | 328.97     |
| 0   | rest  | 08071 | O&G Condenste Tanks | VOC | 3.6               | 0.497035 | 11.8 | 5.06       |
| 0   | rest  | 08083 | O&G Condenste Tanks | VOC | 644.4             | 0.497035 | 11.8 | 899.20     |
| 0   | rest  | 08099 | O&G Condenste Tanks | VOC | 46.1              | 0.497035 | 11.8 | 64.35      |
| 0   | rest  | 08113 | O&G Condenste Tanks | VOC | 85.4              | 0.497035 | 11.8 | 119.15     |
|     |       |       |                     |     | 125,800.2         |          |      | 237,830.48 |

| StateAndC | Short Name                                            | СО   | NOX    | PM10-PRI SC | )2 V(                                  | C    |
|-----------|-------------------------------------------------------|------|--------|-------------|----------------------------------------|------|
| 08001     | Natural Gas Liquids / Gas Well Water Tank Losses      | 00   | Non    |             | ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ | 0.02 |
| 08005     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08009     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08011     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08013     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.01 |
| 08014     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08031     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08033     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08039     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08043     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08057     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08059     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08061     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08063     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08069     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.01 |
| 08071     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08073     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.01 |
| 08075     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.01 |
| 08083     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08087     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.01 |
| 08099     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08113     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08115     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08121     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.03 |
| 08123     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.95 |
| 08125     | Natural Gas Liquids / Gas Well Water Tank Losses      |      |        |             |                                        | 0.00 |
| 08007     | Oil & Gas Expl & Prod /All Processes /Artificial Lift | 0.06 |        |             |                                        | 0.01 |
| 08067     | Oil & Gas Expl & Prod /All Processes /Artificial Lift | 1.34 |        |             |                                        | 0.14 |
| 08001     | Oil & Gas Expl & Prod /All Processes /Drill Rigs      | 4.81 |        |             | 0.44                                   | 0.69 |
| 08005     | Oil & Gas Expl & Prod /All Processes /Drill Rigs      | 0.37 |        |             | 0.03                                   | 0.05 |
| 08007     | Oil & Gas Expl & Prod /All Processes /Drill Rigs      | 0.79 |        |             | 1.08                                   | 0.34 |
| 08009     | Oil & Gas Expl & Prod /All Processes /Drill Rigs      | 0.12 |        |             | 0.01                                   | 0.02 |
| 08011     | Oil & Gas Expl & Prod /All Processes /Drill Rigs      | 0.03 |        |             | 0.00                                   | 0.00 |
| 08013     | Oil & Gas Expl & Prod /All Processes /Drill Rigs      | 9.24 |        |             | 0.85                                   | 1.33 |
| 08014     | Oil & Gas Expl & Prod /All Processes /Drill Rigs      | 3.70 |        |             | 0.34                                   | 0.53 |
| 08031     | Oil & Gas Expl & Prod /All Processes /Drill Rigs      | 1.85 | 5 6.27 | 0.98        | 0.17                                   | 0.27 |
|           |                                                       |      |        |             |                                        |      |

| 08033 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 4.30   | 14.61    | 2.28   | 0.39   | 0.62  |
|-------|-----------------------------------------------------|--------|----------|--------|--------|-------|
| 08043 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 1.85   | 6.27     | 0.98   | 0.17   | 0.27  |
| 08045 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 275.02 | 1,410.19 | 493.24 | 149.90 | 39.17 |
| 08051 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 0.16   | 0.84     | 0.30   | 0.09   | 0.02  |
| 08055 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 1.56   | 5.31     | 0.83   | 0.14   | 0.23  |
| 08057 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 0.08   | 0.27     | 0.04   | 0.01   | 0.01  |
| 08061 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 0.04   | 0.15     | 0.02   | 0.00   | 0.01  |
| 08063 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 4.81   | 16.31    | 2.55   | 0.44   | 0.69  |
| 08067 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 5.90   | 51.47    | 8.33   | 8.04   | 2.54  |
| 08069 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 2.96   | 10.04    | 1.57   | 0.27   | 0.43  |
| 08071 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 12.40  | 42.10    | 6.57   | 1.14   | 1.79  |
| 08073 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 5.54   | 18.82    | 2.94   | 0.51   | 0.80  |
| 08075 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 1.48   | 5.02     | 0.78   | 0.14   | 0.21  |
| 08077 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 38.02  | 194.95   | 68.19  | 20.72  | 5.41  |
| 08081 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 3.62   | 18.57    | 6.49   | 1.97   | 0.52  |
| 08083 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 46.64  | 158.35   | 24.72  | 4.27   | 6.72  |
| 08087 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 0.37   | 1.25     | 0.20   | 0.03   | 0.05  |
| 08095 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 6.65   | 22.59    | 3.53   | 0.61   | 0.96  |
| 08099 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 0.08   | 0.26     | 0.04   | 0.01   | 0.01  |
| 08103 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 32.26  | 165.41   | 57.85  | 17.58  | 4.59  |
| 08113 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 0.79   | 2.67     | 0.42   | 0.07   | 0.11  |
| 08121 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 3.70   | 12.55    | 1.96   | 0.34   | 0.53  |
| 08123 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 485.31 | 1,647.69 | 257.23 | 44.47  | 69.97 |
| 08125 | Oil & Gas Expl & Prod /All Processes /Drill Rigs    | 124.19 | 421.65   | 65.83  | 11.38  | 17.90 |
| 08001 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 4.09   | 18.40    | 4.09   | 0.64   | 1.11  |
| 08005 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 0.48   | 2.17     | 0.48   | 0.08   | 0.13  |
| 08009 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 0.02   | 0.08     | 0.02   | 0.00   | 0.00  |
| 08011 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 0.00   | 0.02     | 0.00   | 0.00   | 0.00  |
| 08013 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 1.25   | 5.63     | 1.25   | 0.20   | 0.34  |
| 08014 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 0.28   | 1.26     | 0.28   | 0.04   | 0.08  |
| 08029 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 0.01   | 0.03     | 0.01   | 0.00   | 0.00  |
| 08031 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 0.20   | 0.89     | 0.20   | 0.03   | 0.05  |
| 08033 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 0.65   | 2.92     | 0.65   | 0.10   | 0.18  |
| 08039 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 0.31   | 1.38     | 0.31   | 0.05   | 0.08  |
| 08043 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 0.20   | 0.89     | 0.20   | 0.03   | 0.05  |
| 08045 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 19.84  | 90.60    | 16.96  | 5.74   | 5.27  |
| 08051 | Oil & Gas Expl & Prod /All Processes /Workover Rigs | 0.03   | 0.14     | 0.03   | 0.01   | 0.01  |
|       |                                                     |        |          |        |        |       |

| 08055 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
|-------|------------------------------------------------------------|
| 08057 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08059 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08061 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08063 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08069 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08071 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08073 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08075 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08077 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08081 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08083 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08087 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08095 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08099 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08103 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08107 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08113 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08115 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08121 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08123 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08125 | Oil & Gas Expl & Prod /All Processes /Workover Rigs        |
| 08001 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08005 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08007 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08009 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08011 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08013 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08014 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08029 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08031 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08033 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08039 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08043 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08045 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08051 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08055 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
|       |                                                            |

| 0.04         | 1.00         | 0.04         | 0.04         | 0.00         |
|--------------|--------------|--------------|--------------|--------------|
| 0.24<br>0.01 | 1.06<br>0.05 | 0.24<br>0.01 | 0.04<br>0.00 | 0.06<br>0.00 |
| 0.01         | 0.05         | 0.01         | 0.00         | 0.00         |
| 0.00         | 0.02         | 0.00         | 0.00         | 0.00         |
| 0.01         | 0.03         | 0.01         | 0.00         | 0.00         |
| 0.05         | 3.01         | 0.03         | 0.01         | 0.01         |
| 1.87         | 8.42         | 1.87         | 0.10         | 0.18         |
| 0.07         | 0.42         | 0.07         | 0.29         | 0.01         |
| 0.53         | 2.39         | 0.53         | 0.01         | 0.02         |
| 2.28         | 10.41        | 1.95         | 0.66         | 0.61         |
| 1.40         | 6.38         | 1.19         | 0.40         | 0.37         |
| 7.04         | 31.67        | 7.04         | 1.10         | 1.91         |
| 0.27         | 1.20         | 0.27         | 0.04         | 0.07         |
| 0.31         | 1.38         | 0.31         | 0.05         | 0.08         |
| 0.01         | 0.05         | 0.01         | 0.00         | 0.00         |
| 5.80         | 26.50        | 4.96         | 1.68         | 1.54         |
| 0.09         | 0.39         | 0.07         | 0.02         | 0.02         |
| 0.12         | 0.53         | 0.12         | 0.02         | 0.03         |
| 0.03         | 0.14         | 0.03         | 0.01         | 0.01         |
| 1.93         | 8.69         | 1.93         | 0.30         | 0.52         |
| 65.63        | 295.18       | 65.61        | 10.25        | 17.82        |
| 15.69        | 70.58        | 15.69        | 2.45         | 4.26         |
|              |              |              |              | 573.00       |
|              |              |              |              | 67.45        |
|              |              |              |              | 0.03         |
|              |              |              |              | 2.44         |
|              |              |              |              | 0.67         |
|              |              |              |              | 175.37       |
|              |              |              |              | 39.19        |
|              |              |              |              | 0.88         |
|              |              |              |              | 27.62        |
|              |              |              |              | 90.94        |
|              |              |              |              | 43.04        |
|              |              |              |              | 27.62        |
|              |              |              |              | 2,752.88     |
|              |              |              |              | 4.39         |
|              |              |              |              | 33.04        |
|              |              |              |              |              |

| 08057          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
|----------------|------------------------------------------------------------|
| 08059          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08061          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08063          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08067          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08069          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08071          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08073          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08075          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08073          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08081          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08083          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08083          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08095          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08099          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08103          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08103          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08107          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08115          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08121          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Fugitives |
| 08121          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Weil Fugitives |
| 08125          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Weil Fugitives |
| 08001          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Weil Puglives  |
| 08001          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Weil Heaters   |
| 08003          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Weil Heaters   |
| 08007          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Weil Heaters   |
| 08009          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Weil Heaters   |
| 08011          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters   |
| 08013          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Weil Heaters   |
| 08014          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Weil Heaters   |
| 08029          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Weil Heaters   |
| 08031          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Weil Heaters   |
| 08033          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters   |
| 08039          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Weil Heaters   |
| 08043<br>08045 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters   |
| 08045          | •                                                          |
| 08051          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters   |
| 00000          | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters   |

|              |               |              |              | 1.70<br>0.64<br>0.94<br>7.07<br>0.57<br>93.79<br>262.11<br>9.64<br>74.52<br>315.94<br>180.55<br>985.96<br>37.26<br>43.04<br>1.59<br>711.37<br>7.81<br>16.60<br>4.50<br>270.44<br>9,190.56<br>2,197.59 |
|--------------|---------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35.95        | 42.80         | 3.25         | 0.26         |                                                                                                                                                                                                       |
| 4.23         | 5.04          | 0.38         | 0.03         |                                                                                                                                                                                                       |
| 6.60<br>0.15 | 14.69<br>0.18 | 0.80<br>0.01 | 0.00         |                                                                                                                                                                                                       |
| 0.13         | 0.18          | 0.00         | 0.00         |                                                                                                                                                                                                       |
| 11.00        | 13.10         | 1.00         | 0.08         |                                                                                                                                                                                                       |
| 2.46         | 2.93          | 0.22         | 0.02         |                                                                                                                                                                                                       |
| 0.43         | 0.52          | 0.04         | 0.00         |                                                                                                                                                                                                       |
| 1.73         | 2.06          | 0.16         | 0.01         |                                                                                                                                                                                                       |
| 5.71<br>2.70 | 6.79<br>3.21  | 0.52<br>0.24 | 0.04<br>0.02 |                                                                                                                                                                                                       |
| 1.73         | 2.06          | 0.24         | 0.02         |                                                                                                                                                                                                       |
| 1,356.77     | 1,615.20      | 122.76       | 9.69         |                                                                                                                                                                                                       |
| 2.16         | 2.58          | 0.20         | 0.02         |                                                                                                                                                                                                       |
| 2.07         | 2.47          | 0.19         | 0.01         |                                                                                                                                                                                                       |

| 08057 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 0.11   |
|-------|--------------------------------------------------------------------|--------|
| 08059 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 0.04   |
| 08061 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 0.04   |
| 08063 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 0.00   |
| 08067 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 326.33 |
| 08069 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 5.88   |
| 08071 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 16.44  |
| 08073 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 0.60   |
| 08075 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 4.68   |
| 08077 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 155.88 |
| 08081 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 95.47  |
| 08083 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 61.86  |
| 08087 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 2.34   |
| 08095 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 2.70   |
| 08099 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 0.10   |
| 08103 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 396.83 |
| 08107 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 5.85   |
| 08113 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 1.04   |
| 08115 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 0.28   |
| 08121 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 16.97  |
| 08123 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 576.62 |
| 08125 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Heaters           | 137.88 |
| 08001 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08005 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08007 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08009 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08011 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08013 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08014 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08029 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08031 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08033 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08039 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08043 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08045 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08051 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
| 08055 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |        |
|       |                                                                    |        |

| 1 | 0.13   | 0.01  | 0.00 |
|---|--------|-------|------|
| 4 | 0.05   | 0.00  | 0.00 |
| 6 | 0.07   | 0.01  | 0.00 |
| 4 | 0.53   | 0.04  | 0.00 |
| 3 | 726.17 | 39.66 |      |
| 8 | 7.01   | 0.53  | 0.04 |
| 4 | 19.58  | 1.49  | 0.12 |
| 0 | 0.72   | 0.05  | 0.00 |
| 8 | 5.57   | 0.42  | 0.03 |
| 8 | 185.57 | 14.10 | 1.11 |
| 7 | 113.66 | 8.64  | 0.68 |
| 6 | 73.64  | 5.60  | 0.44 |
| 4 | 2.78   | 0.21  | 0.02 |
| 0 | 3.21   | 0.24  | 0.02 |
| 0 | 0.12   | 0.01  | 0.00 |
| 3 | 472.42 | 35.90 | 2.83 |
| 5 | 6.96   | 0.53  | 0.04 |
| 4 | 1.24   | 0.09  | 0.01 |
| 8 | 0.34   | 0.03  | 0.00 |
| 7 | 20.20  | 1.54  | 0.12 |
| 2 | 686.45 | 52.17 | 4.12 |
| 8 | 164.14 | 12.47 | 0.98 |
|   |        |       |      |
|   |        |       |      |
|   |        |       |      |
|   |        |       |      |

45.60

5.23 0.02 3.72 1.02 12.80 3.20 0.96 1.73 138.81 58.41 36.02 5,183.15 6.59 50.43

| 08057 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 2.59     |
|-------|--------------------------------------------------------------------|------------|---------|------|----------|
| 08059 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 0.98     |
| 08061 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 1.44     |
| 08063 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 11.68    |
| 08067 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 0.43     |
| 08069 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 6.86     |
| 08071 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 400.08   |
| 08073 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 11.68    |
| 08075 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 109.04   |
| 08077 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 613.43   |
| 08081 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 353.61   |
| 08083 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 1,504.94 |
| 08087 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 64.25    |
| 08095 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 18.50    |
| 08099 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 2.43     |
| 08103 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 1,524.85 |
| 08107 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 30.90    |
| 08113 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 25.34    |
| 08115 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 2.92     |
| 08121 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 444.91   |
| 08123 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 606.70   |
| 08125 | Oil & Gas Expl & Prod /Crude Petroleum /Oil Well Pneumatic Devices |            |         |      | 2,613.01 |
| 08007 | Oil & Gas Expl & Prod /Natural Gas /Compressor Engines             | 23.62      | 31.71   | 0.07 | 8.50     |
| 08067 | Oil & Gas Expl & Prod /Natural Gas /Compressor Engines             | 1,311.30 1 | ,760.51 | 4.14 | 471.71   |
| 08001 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 36.33    |
| 08005 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 5.01     |
| 08009 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 1.52     |
| 08011 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 0.01     |
| 08013 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 20.53    |
| 08014 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 4.04     |
| 08029 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 0.00     |
| 08031 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 2.09     |
| 08033 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 0.86     |
| 08039 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 3.30     |
| 08043 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 3.01     |
| 08045 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 173.61   |
| 08051 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading         |            |         |      | 0.19     |
|       |                                                                    |            |         |      |          |

| 00057 | Oil & Coo Evel & Bred /Netural Coo /Coo Wall Truck Loading |
|-------|------------------------------------------------------------|
| 08057 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08059 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08061 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08063 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08069 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08071 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08073 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08075 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08077 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08081 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08083 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08087 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08099 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08103 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08107 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08113 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08115 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08121 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08123 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08125 | Oil & Gas Expl & Prod /Natural Gas /Gas Well Truck Loading |
| 08007 | On-Shore Gas Production / Condensate Tank Flaring          |
| 08029 | On-Shore Gas Production / Condensate Tank Flaring          |
| 08045 | On-Shore Gas Production / Condensate Tank Flaring          |
| 08051 | On-Shore Gas Production / Condensate Tank Flaring          |
| 08067 | On-Shore Gas Production / Condensate Tank Flaring          |
| 08077 | On-Shore Gas Production / Condensate Tank Flaring          |
| 08081 | On-Shore Gas Production / Condensate Tank Flaring          |
| 08103 | On-Shore Gas Production / Condensate Tank Flaring          |
| 08107 | On-Shore Gas Production / Condensate Tank Flaring          |
| 08001 | On-Shore Gas Production / Gas Well Pneumatic Pumps         |
| 08005 | On-Shore Gas Production / Gas Well Pneumatic Pumps         |
| 08009 | On-Shore Gas Production / Gas Well Pneumatic Pumps         |
| 08011 | On-Shore Gas Production / Gas Well Pneumatic Pumps         |
| 08013 | On-Shore Gas Production / Gas Well Pneumatic Pumps         |
| 08014 | On-Shore Gas Production / Gas Well Pneumatic Pumps         |
| 08029 | On-Shore Gas Production / Gas Well Pneumatic Pumps         |
| 08031 | On-Shore Gas Production / Gas Well Pneumatic Pumps         |
|       | •                                                          |

|                                   |                               |      | 5.30<br>0.07<br>7.09<br>1.22<br>10.18<br>0.03<br>10.89<br>17.35<br>11.83<br>10.49<br>4.93<br>8.72<br>0.35<br>29.88<br>0.08<br>0.65<br>0.08<br>51.67<br>1,516.80<br>0.09 |
|-----------------------------------|-------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.71<br>0.25<br>1,126.54          | 0.13<br>0.05<br>207.04        | 0.00 | 0.27                                                                                                                                                                    |
| 13.40<br>13.63<br>311.31<br>40.84 | 2.46<br>2.51<br>57.21<br>7.51 | 0.00 | 5.16                                                                                                                                                                    |
| 81.23<br>5.27                     | 14.93<br>0.97                 |      | 0.64                                                                                                                                                                    |
|                                   |                               |      | 50.04<br>5.89<br>4.37<br>1.20<br>15.31<br>3.42<br>0.29<br>2.41                                                                                                          |

| 08033 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 163.17   |
|-------|--------------------------------------------------------|----------|
| 08033 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 3.76     |
| 08043 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 2.41     |
| 08045 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 908.31   |
| 08051 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 1.45     |
| 08055 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 59.28    |
| 08057 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 3.05     |
| 08059 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 0.06     |
| 08061 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 1.69     |
| 08063 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 0.62     |
| 08069 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 8.19     |
| 08071 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 470.26   |
| 08073 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 0.84     |
| 08075 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 6.51     |
| 08077 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 104.06   |
| 08081 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 52.22    |
| 08083 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 1,768.96 |
| 08087 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 3.25     |
| 08095 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 3.76     |
| 08099 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 2.85     |
| 08103 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 182.33   |
| 08107 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 0.31     |
| 08113 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 29.78    |
| 08115 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 0.39     |
| 08121 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 23.62    |
| 08123 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 802.60   |
| 08125 | On-Shore Gas Production / Gas Well Pneumatic Pumps     | 191.91   |
| 08001 | On-Shore Gas Production / Gas Well Venting - Blowdowns | 60.80    |
| 08005 | On-Shore Gas Production / Gas Well Venting - Blowdowns | 2.98     |
| 08007 | On-Shore Gas Production / Gas Well Venting - Blowdowns | 0.26     |
| 08009 | On-Shore Gas Production / Gas Well Venting - Blowdowns | 8.68     |
| 08011 | On-Shore Gas Production / Gas Well Venting - Blowdowns | 2.38     |
| 08013 | On-Shore Gas Production / Gas Well Venting - Blowdowns | 30.66    |
| 08014 | On-Shore Gas Production / Gas Well Venting - Blowdowns | 6.81     |
| 08029 | On-Shore Gas Production / Gas Well Venting - Blowdowns | 0.13     |
| 08031 | On-Shore Gas Production / Gas Well Venting - Blowdowns | 4.56     |
| 08033 | On-Shore Gas Production / Gas Well Venting - Blowdowns | 323.93   |
|       |                                                        |          |

| 08039 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 1.75     |
|-------|------------------------------------------------------------------|----------|
| 08045 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 3,606.38 |
| 08051 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 8.93     |
| 08055 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 117.68   |
| 08057 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 6.05     |
| 08061 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 3.35     |
| 08063 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 1.38     |
| 08067 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 1.02     |
| 08069 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 3.02     |
| 08071 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 933.60   |
| 08073 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 0.19     |
| 08075 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 2.34     |
| 08077 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 261.28   |
| 08081 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 130.91   |
| 08083 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 3,511.85 |
| 08087 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 1.48     |
| 08095 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 14.65    |
| 08099 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 5.66     |
| 08103 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 308.41   |
| 08107 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 0.57     |
| 08113 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 59.12    |
| 08115 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 0.49     |
| 08121 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 12.12    |
| 08123 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 1,697.42 |
| 08125 | On-Shore Gas Production / Gas Well Venting - Blowdowns           | 392.77   |
| 08001 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 3.61     |
| 08005 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 0.28     |
| 08009 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 0.09     |
| 08011 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 0.02     |
| 08013 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 6.94     |
| 08014 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 2.78     |
| 08031 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 1.39     |
| 08033 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 3.23     |
| 08043 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 1.39     |
| 08045 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 6,473.98 |
| 08051 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 3.87     |
| 08055 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 1.17     |
|       |                                                                  |          |

| 08057 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 0.06   |
|-------|------------------------------------------------------------------|--------|
| 08061 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 0.03   |
| 08063 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 3.61   |
| 08069 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 2.22   |
| 08071 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 9.31   |
| 08073 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 4.16   |
| 08075 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 1.11   |
| 08077 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 894.97 |
| 08081 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 85.23  |
| 08083 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 35.02  |
| 08087 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 0.28   |
| 08095 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 5.00   |
| 08099 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 0.06   |
| 08103 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 759.37 |
| 08113 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 0.59   |
| 08121 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 2.78   |
| 08123 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 364.42 |
| 08125 | On-Shore Gas Production / Gas Well Venting - Initial Completions | 93.26  |
| 08001 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 4.86   |
| 08005 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 0.37   |
| 08009 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 0.12   |
| 08011 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 0.03   |
| 08013 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 9.34   |
| 08014 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 3.74   |
| 08031 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 1.87   |
| 08033 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 4.35   |
| 08043 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 1.87   |
| 08045 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 855.82 |
| 08051 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 0.51   |
| 08055 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 1.58   |
| 08057 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 0.08   |
| 08061 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 0.04   |
| 08063 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 4.86   |
| 08069 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 2.99   |
| 08071 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 12.54  |
| 08073 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 5.61   |
| 08075 | On-Shore Gas Production / Gas Well Venting - Recompletions       | 1.49   |
|       |                                                                  |        |

| 08077 | On-Shore Gas Production / Gas Well Venting - Recompletions |        |        |              |      | 118.31 |
|-------|------------------------------------------------------------|--------|--------|--------------|------|--------|
| 08081 | On-Shore Gas Production / Gas Well Venting - Recompletions |        |        |              |      | 11.27  |
| 08083 | On-Shore Gas Production / Gas Well Venting - Recompletions |        |        |              |      | 47.16  |
| 08083 | On-Shore Gas Production / Gas Well Venting - Recompletions |        |        |              |      | 0.37   |
| 08095 | On-Shore Gas Production / Gas Well Venting - Recompletions |        |        |              |      | 6.73   |
|       | <b>o</b> 1                                                 |        |        |              |      |        |
| 08099 | On-Shore Gas Production / Gas Well Venting - Recompletions |        |        |              |      | 0.08   |
| 08103 | On-Shore Gas Production / Gas Well Venting - Recompletions |        |        |              |      | 100.38 |
| 08113 | On-Shore Gas Production / Gas Well Venting - Recompletions |        |        |              |      | 0.79   |
| 08121 | On-Shore Gas Production / Gas Well Venting - Recompletions |        |        |              |      | 3.74   |
| 08123 | On-Shore Gas Production / Gas Well Venting - Recompletions |        |        |              |      | 490.72 |
| 08125 | On-Shore Gas Production / Gas Well Venting - Recompletions |        |        | - <b>-</b> 4 |      | 125.58 |
| 08001 | On-Shore Gas Production / Miscellaneous Engines            | 103.74 | 185.85 | 0.74         | 0.05 | 12.17  |
| 08005 | On-Shore Gas Production / Miscellaneous Engines            | 12.21  | 21.88  | 0.09         | 0.01 | 1.43   |
| 08007 | On-Shore Gas Production / Miscellaneous Engines            | 0.54   | 1.32   | 0.01         |      | 0.14   |
| 08009 | On-Shore Gas Production / Miscellaneous Engines            | 0.44   | 0.79   | 0.00         | 0.00 | 0.05   |
| 08011 | On-Shore Gas Production / Miscellaneous Engines            | 0.12   | 0.22   | 0.00         | 0.00 | 0.01   |
| 08013 | On-Shore Gas Production / Miscellaneous Engines            | 31.75  | 56.88  | 0.23         | 0.02 | 3.72   |
| 08014 | On-Shore Gas Production / Miscellaneous Engines            | 7.09   | 12.71  | 0.05         | 0.00 | 0.83   |
| 08029 | On-Shore Gas Production / Miscellaneous Engines            | 0.09   | 0.11   | 0.00         |      | 0.03   |
| 08031 | On-Shore Gas Production / Miscellaneous Engines            | 5.00   | 8.96   | 0.04         | 0.00 | 0.59   |
| 08033 | On-Shore Gas Production / Miscellaneous Engines            | 16.46  | 29.50  | 0.12         | 0.01 | 1.93   |
| 08039 | On-Shore Gas Production / Miscellaneous Engines            | 7.79   | 13.96  | 0.06         | 0.00 | 0.91   |
| 08043 | On-Shore Gas Production / Miscellaneous Engines            | 5.00   | 8.96   | 0.04         | 0.00 | 0.59   |
| 08045 | On-Shore Gas Production / Miscellaneous Engines            | 296.57 | 334.50 | 0.18         |      | 81.51  |
| 08051 | On-Shore Gas Production / Miscellaneous Engines            | 0.47   | 0.53   | 0.00         |      | 0.13   |
| 08055 | On-Shore Gas Production / Miscellaneous Engines            | 5.98   | 10.72  | 0.04         | 0.00 | 0.70   |
| 08057 | On-Shore Gas Production / Miscellaneous Engines            | 0.31   | 0.55   | 0.00         | 0.00 | 0.04   |
| 08059 | On-Shore Gas Production / Miscellaneous Engines            | 0.12   | 0.21   | 0.00         | 0.00 | 0.01   |
| 08061 | On-Shore Gas Production / Miscellaneous Engines            | 0.17   | 0.31   | 0.00         | 0.00 | 0.02   |
| 08063 | On-Shore Gas Production / Miscellaneous Engines            | 1.28   | 2.29   | 0.01         | 0.00 | 0.15   |
| 08067 | On-Shore Gas Production / Miscellaneous Engines            | 26.65  | 65.44  | 0.52         |      | 6.88   |
| 08069 | On-Shore Gas Production / Miscellaneous Engines            | 16.98  | 30.42  | 0.12         | 0.01 | 1.99   |
| 08071 | On-Shore Gas Production / Miscellaneous Engines            | 47.45  | 85.01  | 0.34         | 0.02 | 5.57   |
| 08073 | On-Shore Gas Production / Miscellaneous Engines            | 1.74   | 3.13   | 0.01         | 0.00 | 0.20   |
| 08075 | On-Shore Gas Production / Miscellaneous Engines            | 13.49  | 24.17  | 0.10         | 0.01 | 1.58   |
| 08077 | On-Shore Gas Production / Miscellaneous Engines            | 33.98  | 38.32  | 0.02         | '    | 9.34   |
| 08081 | On-Shore Gas Production / Miscellaneous Engines            | 17.05  | 19.23  | 0.01         |      | 4.69   |
|       |                                                            |        |        |              |      |        |

| 08083<br>08087<br>08095<br>08099<br>08103<br>08107 | On-Shore Gas Production / Miscellaneous Engines<br>On-Shore Gas Production / Miscellaneous Engines |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 08107                                              | 5                                                                                                                                                                                                                                                                                                              |
|                                                    | On-Shore Gas Production / Miscellaneous Engines                                                                                                                                                                                                                                                                |
| 08115                                              | On-Shore Gas Production / Miscellaneous Engines                                                                                                                                                                                                                                                                |
| 08121                                              | On-Shore Gas Production / Miscellaneous Engines                                                                                                                                                                                                                                                                |
| 08123                                              | On-Shore Gas Production / Miscellaneous Engines                                                                                                                                                                                                                                                                |
| 08125                                              | On-Shore Gas Production / Miscellaneous Engines                                                                                                                                                                                                                                                                |
| 08009                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08011                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08033                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08057                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08061                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08071                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08075                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08083                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08087                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08099                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08113                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08121                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08123                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08125                                              | On-Shore Gas Production /Fugitives: Other                                                                                                                                                                                                                                                                      |
| 08007                                              | On-Shore Gas Production /Gas Well Dehydrators                                                                                                                                                                                                                                                                  |
| 08067                                              | On-Shore Gas Production /Gas Well Dehydrators                                                                                                                                                                                                                                                                  |

| 178.50<br>6.75<br>7.79<br>0.29<br>59.53<br>0.10<br>3.01<br>0.81<br>48.96<br>1,663.90<br>397.86 | 319.79<br>12.08<br>13.96<br>0.52<br>67.15<br>0.12<br>5.38<br>1.46<br>87.72<br>2,980.91<br>712.78 | $1.28 \\ 0.05 \\ 0.06 \\ 0.00 \\ 0.04 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.35 \\ 11.94 \\ 2.86$ | 0.09<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.83<br>0.20 | $\begin{array}{c} 20.93 \\ 0.79 \\ 0.91 \\ 0.03 \\ 16.36 \\ 0.03 \\ 0.35 \\ 0.10 \\ 5.74 \\ 195.14 \\ 46.66 \\ 0.16 \\ 0.00 \\ 0.09 \\ 0.55 \\ 0.73 \\ 0.00 \\ 1.90 \\ 0.51 \\ 0.96 \\ 0.04 \\ 0.07 \\ 5.67 \\ 166.51 \end{array}$ |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.05<br>2.98                                                                                   | 0.06<br>3.55                                                                                     | 0.00<br>0.13                                                                            |                                                              | 0.01<br>0.22<br>13.40<br>62,361.74                                                                                                                                                                                                 |

| NAA | county_fips | type | Expr1005                          | SCC Level Two                            |
|-----|-------------|------|-----------------------------------|------------------------------------------|
| 0   | 085         | O&G  | External Combustion Boilers       | Electric Generation                      |
| 0   | 061         | O&G  | External Combustion Boilers       | Industrial                               |
| -1  | 123         | O&G  | Industrial Processes              | Petroleum Industry                       |
| 0   | 081         | O&G  | Industrial Processes              | Petroleum Industry                       |
| 0   | 103         | O&G  | Industrial Processes              | Petroleum Industry                       |
| -1  | 123         | O&G  | Petroleum and Solvent Evaporation | Petroleum Liquids Storage (non-Refinery) |
| 0   | 017         | O&G  | Petroleum and Solvent Evaporation | Petroleum Liquids Storage (non-Refinery) |
| 0   | 077         | O&G  | Petroleum and Solvent Evaporation | Petroleum Liquids Storage (non-Refinery) |
| 0   | 103         | O&G  | Petroleum and Solvent Evaporation | Petroleum Liquids Storage (non-Refinery) |
| -1  | 123         | O&G  | Petroleum and Solvent Evaporation | Petroleum Liquids Storage (non-Refinery) |
| -1  | 123         | O&G  | Petroleum and Solvent Evaporation | Petroleum Liquids Storage (non-Refinery) |
| -1  | 123         | O&G  | Petroleum and Solvent Evaporation | Petroleum Liquids Storage (non-Refinery) |
| 0   | 045         | O&G  | Petroleum and Solvent Evaporation | Petroleum Liquids Storage (non-Refinery) |
| 0   | 103         | O&G  | Petroleum and Solvent Evaporation | Petroleum Liquids Storage (non-Refinery) |
| -1  | 005         | O&G  | Industrial Processes              | Oil and Gas Production                   |
| -1  | 069         | O&G  | Industrial Processes              | Oil and Gas Production                   |
| -1  | 123         | O&G  | Industrial Processes              | Oil and Gas Production                   |
| -1  | 123         | O&G  | Industrial Processes              | Oil and Gas Production                   |
| 0   | 045         | O&G  | Industrial Processes              | Oil and Gas Production                   |
| 0   | 081         | O&G  | Industrial Processes              | Oil and Gas Production                   |
| 0   | 083         | O&G  | Industrial Processes              | Oil and Gas Production                   |
| 0   | 103         | O&G  | Industrial Processes              | Oil and Gas Production                   |
| 0   | 045         | O&G  | Internal Combustion Engines       | Industrial                               |
| 0   | 045         | O&G  | Internal Combustion Engines       | Industrial                               |
| 0   | 061         | O&G  | Internal Combustion Engines       | Industrial                               |
| 0   | 077         | O&G  | Internal Combustion Engines       | Industrial                               |
| -1  | 123         | O&G  | Petroleum and Solvent Evaporation | Organic Chemical Storage                 |
| -1  | 123         | O&G  | Petroleum and Solvent Evaporation | Organic Chemical Storage                 |
| -1  | 123         | O&G  | Petroleum and Solvent Evaporation | Organic Chemical Storage                 |
| 0   | 077         | O&G  | Petroleum and Solvent Evaporation | Petroleum Product Storage at Refineries  |
| 0   | 077         | O&G  | Petroleum and Solvent Evaporation | Petroleum Product Storage at Refineries  |
| 0   | 077         | O&G  | Petroleum and Solvent Evaporation | Petroleum Product Storage at Refineries  |
| 0   | 077         | O&G  | Industrial Processes              | Petroleum Industry                       |
|     | 103         | O&G  | Industrial Processes              | Petroleum Industry                       |
| 0   | 077         | O&G  | Petroleum and Solvent Evaporation | Petroleum Product Storage at Refineries  |
|     | 045         | O&G  | Industrial Processes              | Fabricated Metal Products                |
|     | 077         | O&G  | Petroleum and Solvent Evaporation | Organic Solvent Evaporation              |
| -1  | 001         | O&G  | Industrial Processes              | Oil and Gas Production                   |
| -1  | 005         | O&G  | Industrial Processes              | Oil and Gas Production                   |

| -1 | 123 | O&G | Industrial Processes              | Oil and Gas Production                          |
|----|-----|-----|-----------------------------------|-------------------------------------------------|
| -1 | 123 | O&G | Industrial Processes              | Oil and Gas Production                          |
| -1 | 123 | O&G | Petroleum and Solvent Evaporation | Transportation and Marketing of Petroleum Produ |
| 0  | 045 | O&G | Industrial Processes              | Oil and Gas Production                          |
| 0  | 045 | O&G | Industrial Processes              | Oil and Gas Production                          |
| 0  | 077 | O&G | Industrial Processes              | Oil and Gas Production                          |
| 0  | 077 | O&G | Industrial Processes              | Petroleum Industry                              |
| 0  | 081 | O&G | Industrial Processes              | Oil and Gas Production                          |
| 0  | 081 | O&G | Industrial Processes              | Petroleum Industry                              |
| 0  | 083 | O&G | Industrial Processes              | Oil and Gas Production                          |
| 0  | 083 | O&G | Industrial Processes              | Oil and Gas Production                          |
| 0  | 087 | O&G | Industrial Processes              | Oil and Gas Production                          |
| 0  | 103 | O&G | Industrial Processes              | Oil and Gas Production                          |
| 0  | 103 | O&G | Industrial Processes              | Oil and Gas Production                          |
| 0  | 103 | O&G | Industrial Processes              | Petroleum Industry                              |
| 0  | 103 | O&G | Industrial Processes              | Petroleum Industry                              |
| 0  | 107 | O&G | Industrial Processes              | Oil and Gas Production                          |
| -1 | 123 | O&G | Petroleum and Solvent Evaporation | Transportation and Marketing of Petroleum Produ |
| -1 | 123 | O&G | Petroleum and Solvent Evaporation | Transportation and Marketing of Petroleum Produ |
| 0  | 045 | O&G | Petroleum and Solvent Evaporation | Transportation and Marketing of Petroleum Produ |
| -1 | 123 | O&G | Waste Disposal                    | Site Remediation                                |
| -1 | 123 | O&G | Waste Disposal                    | Solid Waste Disposal - Industrial               |
| 0  | 045 | O&G | Waste Disposal                    | Solid Waste Disposal - Commercial/Institutional |
| 0  | 087 | O&G | Waste Disposal                    | Solid Waste Disposal - Industrial               |
| 0  | 077 | O&G | Internal Combustion Engines       | Industrial                                      |
| 0  | 083 | O&G | Internal Combustion Engines       | Industrial                                      |
| -1 | 005 | O&G | Industrial Processes              | Oil and Gas Production                          |
| 0  | 045 | O&G | Industrial Processes              | Oil and Gas Production                          |
| 0  | 045 | O&G | Industrial Processes              | Oil and Gas Production                          |
| 0  | 041 | O&G | Internal Combustion Engines       | Industrial                                      |
| -1 | 001 | O&G | Industrial Processes              | Miscellaneous Manufacturing Industries          |
| -1 | 001 | O&G | Internal Combustion Engines       | Industrial                                      |
| -1 | 001 | O&G | Internal Combustion Engines       | Industrial                                      |
| -1 | 001 | O&G | Internal Combustion Engines       | Industrial                                      |
| -1 | 001 | O&G | Internal Combustion Engines       | Industrial                                      |
| -1 | 001 | O&G | Internal Combustion Engines       | Industrial                                      |
| -1 | 005 | O&G | Internal Combustion Engines       | Industrial                                      |
| -1 | 005 | O&G | Internal Combustion Engines       | Industrial                                      |
| -1 | 013 | O&G | Internal Combustion Engines       | Industrial                                      |
| -1 | 013 | O&G | Internal Combustion Engines       | Industrial                                      |

| -1 | 059 | O&G | Internal Combustion Engines | Industrial               |
|----|-----|-----|-----------------------------|--------------------------|
|    | 069 |     | Internal Combustion Engines | Industrial               |
|    | 069 |     | Internal Combustion Engines | Industrial               |
|    | 123 |     | External Combustion Boilers | Industrial               |
|    | 123 | O&G | External Combustion Boilers | Industrial               |
|    | 123 |     | Internal Combustion Engines | Commercial/Institutional |
|    | 123 |     | Internal Combustion Engines | Electric Generation      |
|    | 123 |     | Internal Combustion Engines | Industrial               |
|    | 123 |     | Internal Combustion Engines | Industrial               |
|    | 123 |     | Internal Combustion Engines | Industrial               |
|    | 123 |     | Internal Combustion Engines | Industrial               |
| -1 | 123 |     | Internal Combustion Engines | Industrial               |
| -1 | 123 |     |                             | Industrial               |
|    | 123 |     | Internal Combustion Engines | Industrial               |
| -1 | 123 | O&G | Internal Combustion Engines | Industrial               |
| 0  | 007 | O&G | Internal Combustion Engines | Industrial               |
| 0  | 017 | O&G | Internal Combustion Engines | Industrial               |
| 0  | 017 | O&G | Internal Combustion Engines | Industrial               |
| 0  | 017 | O&G | Internal Combustion Engines | Industrial               |
| 0  | 025 | O&G | Internal Combustion Engines | Industrial               |
| 0  | 025 | O&G | Internal Combustion Engines | Industrial               |
| 0  | 029 | O&G | Internal Combustion Engines | Industrial               |
| 0  | 033 | O&G | Internal Combustion Engines | Industrial               |
|    | 033 | O&G | Internal Combustion Engines | Industrial               |
|    | 033 | O&G | Internal Combustion Engines | Industrial               |
| 0  | 033 | O&G | Internal Combustion Engines | Industrial               |
|    | 045 | O&G | External Combustion Boilers | Industrial               |
|    | 045 |     | Internal Combustion Engines | Industrial               |
|    | 045 |     | Internal Combustion Engines | Industrial               |
|    | 045 |     | Internal Combustion Engines | Industrial               |
|    | 045 |     | Internal Combustion Engines | Industrial               |
|    | 045 |     | Internal Combustion Engines | Industrial               |
|    | 049 |     | Internal Combustion Engines | Industrial               |
|    | 061 |     | Internal Combustion Engines | Industrial               |
|    | 061 |     | Internal Combustion Engines | Industrial               |
|    | 071 |     | Internal Combustion Engines | Industrial               |
|    | 071 |     | Internal Combustion Engines | Industrial               |
|    | 075 |     | Internal Combustion Engines | Industrial               |
|    | 075 |     | Internal Combustion Engines | Industrial               |
| 0  | 075 | O&G | Internal Combustion Engines | Industrial               |

| 0 | 077 | O&G | External Combustion Boilers | Industrial          |
|---|-----|-----|-----------------------------|---------------------|
| 0 | 077 | O&G | Internal Combustion Engines | Electric Generation |
| 0 | 077 |     | Internal Combustion Engines | Industrial          |
| 0 | 077 | O&G | Internal Combustion Engines | Industrial          |
| 0 | 077 |     | Internal Combustion Engines | Industrial          |
| 0 | 077 | O&G | Internal Combustion Engines | Industrial          |
| 0 | 077 | O&G | Internal Combustion Engines | Industrial          |
| 0 | 077 | O&G | Internal Combustion Engines | Industrial          |
| 0 | 081 | O&G | Internal Combustion Engines | Electric Generation |
| 0 | 081 | O&G | Internal Combustion Engines | Electric Generation |
| 0 | 081 | O&G | Internal Combustion Engines | Industrial          |
| 0 | 081 | O&G | Internal Combustion Engines | Industrial          |
| 0 | 081 | O&G | Internal Combustion Engines | Industrial          |
| 0 | 081 | O&G | Internal Combustion Engines | Industrial          |
|   | 081 | O&G | Internal Combustion Engines | Industrial          |
|   | 083 |     | Internal Combustion Engines | Electric Generation |
| 0 | 083 |     | Internal Combustion Engines | Industrial          |
|   | 083 |     | Internal Combustion Engines | Industrial          |
| 0 | 083 | O&G | Internal Combustion Engines | Industrial          |
|   | 083 |     | Internal Combustion Engines | Industrial          |
|   | 083 | O&G | Internal Combustion Engines | Industrial          |
|   | 083 |     | Internal Combustion Engines | Industrial          |
|   | 085 |     | Internal Combustion Engines | Industrial          |
|   | 087 |     | Internal Combustion Engines | Industrial          |
| 0 | 087 | O&G | Internal Combustion Engines | Industrial          |
|   | 087 |     | Internal Combustion Engines | Industrial          |
|   | 087 |     | Internal Combustion Engines | Industrial          |
|   | 087 |     | Internal Combustion Engines | Industrial          |
|   | 099 |     | Internal Combustion Engines | Industrial          |
|   | 099 |     | Internal Combustion Engines | Industrial          |
|   | 099 |     | Internal Combustion Engines | Industrial          |
|   | 103 |     | Internal Combustion Engines | Industrial          |
|   | 103 |     | Internal Combustion Engines | Industrial          |
|   | 103 |     | Internal Combustion Engines | Industrial          |
|   | 103 |     | Internal Combustion Engines | Industrial          |
|   | 103 |     | Internal Combustion Engines | Industrial          |
|   | 103 |     | Internal Combustion Engines | Industrial          |
|   | 105 |     | Internal Combustion Engines | Industrial          |
|   | 107 |     | Internal Combustion Engines | Industrial          |
| 0 | 113 | O&G | Internal Combustion Engines | Industrial          |

| 0  | 113 | O&G | Internal Combustion Engines | Industrial             |
|----|-----|-----|-----------------------------|------------------------|
| 0  | 125 | O&G | Internal Combustion Engines | Industrial             |
|    | 125 | O&G | Internal Combustion Engines | Industrial             |
| 0  | 125 | O&G | Internal Combustion Engines | Industrial             |
|    | 125 | O&G | Internal Combustion Engines | Industrial             |
| 0  | 125 | O&G | Internal Combustion Engines | Industrial             |
| -1 | 001 | O&G | Industrial Processes        | Oil and Gas Production |
| -1 | 001 | O&G | Industrial Processes        | Oil and Gas Production |
| -1 | 005 | O&G | Industrial Processes        | Oil and Gas Production |
| -1 | 005 | O&G | Industrial Processes        | Oil and Gas Production |
| -1 | 005 | O&G | Industrial Processes        | Oil and Gas Production |
| -1 | 123 | O&G | Industrial Processes        | Oil and Gas Production |
| -1 | 123 | O&G | Industrial Processes        | Oil and Gas Production |
| 0  | 017 | O&G | Industrial Processes        | Oil and Gas Production |
|    | 045 | O&G | Industrial Processes        | Oil and Gas Production |
| 0  | 045 | O&G | Industrial Processes        | Oil and Gas Production |
|    | 045 |     | Industrial Processes        | Oil and Gas Production |
|    | 071 | O&G | Industrial Processes        | Oil and Gas Production |
|    | 077 | O&G | Industrial Processes        | Oil and Gas Production |
|    | 077 |     | Industrial Processes        | Oil and Gas Production |
| 0  | 077 | O&G | Industrial Processes        | Oil and Gas Production |
|    | 081 | O&G | Industrial Processes        | Oil and Gas Production |
|    | 081 |     | Industrial Processes        | Oil and Gas Production |
|    | 081 | O&G | Industrial Processes        | Oil and Gas Production |
|    | 081 |     | Industrial Processes        | Oil and Gas Production |
|    | 083 |     | Industrial Processes        | Oil and Gas Production |
|    | 083 | O&G | Industrial Processes        | Oil and Gas Production |
|    | 083 | O&G | Industrial Processes        | Oil and Gas Production |
|    | 087 | O&G | Industrial Processes        | Oil and Gas Production |
|    | 087 |     | Industrial Processes        | Oil and Gas Production |
|    | 087 |     | Industrial Processes        | Oil and Gas Production |
|    | 087 |     | Industrial Processes        | Oil and Gas Production |
|    | 103 |     | Industrial Processes        | Oil and Gas Production |
|    | 103 | O&G | Industrial Processes        | Oil and Gas Production |
|    | 103 | O&G | Industrial Processes        | Oil and Gas Production |
|    | 103 |     | Industrial Processes        | Oil and Gas Production |
|    | 103 |     | Industrial Processes        | Oil and Gas Production |
|    | 113 |     | Industrial Processes        | Oil and Gas Production |
|    | 125 |     | Industrial Processes        | Oil and Gas Production |
| 0  | 125 | O&G | Industrial Processes        | Oil and Gas Production |

| -1 | 001 | O&G | Industrial Processes | Oil and Gas Production |
|----|-----|-----|----------------------|------------------------|
|    | 001 |     | Industrial Processes | Oil and Gas Production |
|    | 001 | O&G | Industrial Processes | Oil and Gas Production |
|    | 123 | O&G | Industrial Processes | Oil and Gas Production |
|    | 123 | O&G | Industrial Processes | Oil and Gas Production |
|    | 123 |     | Industrial Processes | Oil and Gas Production |
|    | 123 | O&G | Industrial Processes | Oil and Gas Production |
|    | 123 |     | Industrial Processes | Oil and Gas Production |
|    | 123 | O&G | Industrial Processes | Oil and Gas Production |
|    | 123 | O&G | Industrial Processes | Oil and Gas Production |
|    | 123 |     | Industrial Processes | Oil and Gas Production |
|    | 045 |     | Industrial Processes | Oil and Gas Production |
|    | 045 |     | Industrial Processes | Oil and Gas Production |
|    | 045 |     | Industrial Processes | Oil and Gas Production |
|    | 045 | O&G | Industrial Processes | Oil and Gas Production |
|    | 045 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 045 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 077 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 077 | O&G | Industrial Processes | Oil and Gas Production |
|    | 081 |     | Industrial Processes | Oil and Gas Production |
| 0  | 081 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 081 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 081 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 081 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 081 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 081 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 081 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 081 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 083 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 087 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 087 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 087 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 103 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 103 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 103 | O&G | Industrial Processes | Oil and Gas Production |
| 0  | 103 |     | Industrial Processes | Oil and Gas Production |
| 0  | 103 |     | Industrial Processes | Oil and Gas Production |
|    | 103 | O&G | Industrial Processes | Oil and Gas Production |
|    | 103 |     | Industrial Processes | Oil and Gas Production |
| 0  | 125 | O&G | Industrial Processes | Oil and Gas Production |

| 4  | 001 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|----|-----|------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|    | 001 | O&G<br>O&G | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 013 | O&G<br>O&G | •                                                                      | 1 0 ( , , , , , , , , , , , , , , , , , ,                                            |
|    | 123 | O&G<br>O&G | Petroleum and Solvent Evaporation<br>Petroleum and Solvent Evaporation | Petroleum Liquids Storage (non-Refinery)<br>Petroleum Liquids Storage (non-Refinery) |
|    | 123 | O&G<br>O&G | · · · · · · · · · · · · · · · · · · ·                                  |                                                                                      |
|    | 123 |            | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    |     | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 123 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 017 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 045 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 045 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 045 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 057 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 061 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 077 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
| -  | 081 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 081 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 083 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 087 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 099 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
| -  | 103 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 103 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 045 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 113 | O&G        | Petroleum and Solvent Evaporation                                      | Petroleum Liquids Storage (non-Refinery)                                             |
|    | 123 | O&G        | Internal Combustion Engines                                            | Industrial                                                                           |
|    | 001 | O&G        | Industrial Processes                                                   | Oil and Gas Production                                                               |
|    | 123 | O&G        | Industrial Processes                                                   | Oil and Gas Production                                                               |
|    | 077 | O&G        | Industrial Processes                                                   | Oil and Gas Production                                                               |
|    | 103 | O&G        | Industrial Processes                                                   | Oil and Gas Production                                                               |
|    | 123 | O&G        | Petroleum and Solvent Evaporation                                      | Organic Chemical Transportation                                                      |
|    | 001 | O&G        | Petroleum and Solvent Evaporation                                      | Transportation and Marketing of Petroleum Produ                                      |
| -1 | 013 | O&G        | Petroleum and Solvent Evaporation                                      | Transportation and Marketing of Petroleum Produ                                      |
| -1 | 069 | O&G        | Petroleum and Solvent Evaporation                                      | Transportation and Marketing of Petroleum Produ                                      |
| -1 | 123 | O&G        | Petroleum and Solvent Evaporation                                      | Transportation and Marketing of Petroleum Produ                                      |
| -1 | 123 | O&G        | Petroleum and Solvent Evaporation                                      | Transportation and Marketing of Petroleum Produ                                      |
| -1 | 123 | O&G        | Petroleum and Solvent Evaporation                                      | Transportation and Marketing of Petroleum Produ                                      |
| 0  | 045 | O&G        | Petroleum and Solvent Evaporation                                      | Transportation and Marketing of Petroleum Produ                                      |
| 0  | 045 | O&G        | Petroleum and Solvent Evaporation                                      | Transportation and Marketing of Petroleum Produ                                      |
| 0  | 045 | O&G        | Petroleum and Solvent Evaporation                                      | Transportation and Marketing of Petroleum Produ                                      |
| 0  | 081 | O&G        | Petroleum and Solvent Evaporation                                      | Transportation and Marketing of Petroleum Produ                                      |
|    | 081 | O&G        | Petroleum and Solvent Evaporation                                      | Transportation and Marketing of Petroleum Produ                                      |
| -  |     |            |                                                                        |                                                                                      |

| 0 103 | O&G | Petroleum and Solvent Evaporation | Transportation and Marketing of Petroleum Produ |
|-------|-----|-----------------------------------|-------------------------------------------------|
|-------|-----|-----------------------------------|-------------------------------------------------|

| SCC Level One                     | SCC Level Three                     | SCC Level Four                | CO    | NOX   | VOC   |
|-----------------------------------|-------------------------------------|-------------------------------|-------|-------|-------|
| External Combustion Boilers       | Anthracite Coal, Pulverized         | Boiler                        | 0.07  | 1.20  | 0.10  |
| External Combustion Boilers       | Bituminous Coal                     | Pulverized Coal: Wet Bottom   | 0.80  | 3.80  | 0.30  |
| Industrial Processes              | Blowdown Systems                    | Blowdown System w/o Contrc    |       |       | 0.94  |
| Industrial Processes              | Blowdown Systems                    | Blowdown System w/o Contro    |       |       | 6.60  |
| Industrial Processes              | Blowdown Systems                    | Blowdown System w/o Contro    |       |       | 9.40  |
| Petroleum and Solvent Evaporation | Bulk Plants                         | Loading Racks                 |       |       | 14.40 |
| Petroleum and Solvent Evaporation | Bulk Plants                         | Gasoline RVP 10: Working Lo   |       |       | 12.86 |
| Petroleum and Solvent Evaporation | Bulk Plants                         | Loading Racks                 |       |       | 7.32  |
| Petroleum and Solvent Evaporation | Bulk Plants                         | Loading Racks                 |       |       | 16.61 |
| Petroleum and Solvent Evaporation | Bulk Terminals                      | Gasoline RVP 10: Standing L   |       |       | 10.13 |
| Petroleum and Solvent Evaporation | Bulk Terminals                      | Gasoline RVP 13/10/7: Withd   |       |       | 1.40  |
| Petroleum and Solvent Evaporation | Bulk Terminals                      | Vapor Collection Losses       |       |       | 18.90 |
| Petroleum and Solvent Evaporation | Bulk Terminals                      | Gasoline RVP 10: Standing L   |       |       | 3.45  |
| Petroleum and Solvent Evaporation | Bulk Terminals                      | Miscellaneous Losses/Leaks:   |       |       | 19.31 |
| Industrial Processes              | Crude Oil Production                | Processing Operations: Not C  |       |       | 5.00  |
| Industrial Processes              | Crude Oil Production                | Evaporation from Liquid Leak  | 0.10  | 0.11  | 5.92  |
| Industrial Processes              | Crude Oil Production                | Flanges and Connections       |       |       | 2.68  |
| Industrial Processes              | Crude Oil Production                | Processing Operations: Not C  |       |       | 8.75  |
| Industrial Processes              | Crude Oil Production                | Processing Operations: Not C  |       |       | 74.35 |
| Industrial Processes              | Crude Oil Production                | Processing Operations: Not C  |       |       | 34.28 |
| Industrial Processes              | Crude Oil Production                | Processing Operations: Not C  |       |       | 0.45  |
| Industrial Processes              | Crude Oil Production                | Processing Operations: Not C  |       |       | 13.55 |
| Internal Combustion Engines       | Distillate Oil (Diesel)             | Reciprocating                 | 46.80 | 41.70 | 3.60  |
| Internal Combustion Engines       | Distillate Oil (Diesel)             | Turbine: Cogeneration         | 93.30 | 83.46 | 7.20  |
| Internal Combustion Engines       | Distillate Oil (Diesel)             | Reciprocating                 | 2.40  | 11.40 | 0.90  |
| Internal Combustion Engines       | Distillate Oil (Diesel)             | Reciprocating                 | 4.59  | 21.30 | 1.12  |
| Petroleum and Solvent Evaporation | Fixed Roof Tanks - Alcohols         | Methyl Alcohol: Breathing Los |       |       | 0.07  |
| Petroleum and Solvent Evaporation | Fixed Roof Tanks - Alcohols         | Methyl Alcohol: Working Loss  |       |       | 0.07  |
| Petroleum and Solvent Evaporation | Fixed Roof Tanks - Miscellaneous    | Specify In Comments: Workir   |       |       | 11.50 |
| Petroleum and Solvent Evaporation | Fixed Roof Tanks (Varying Sizes)    | Gasoline RVP 10: Working Lo   |       |       | 0.08  |
| Petroleum and Solvent Evaporation | Fixed Roof Tanks (Varying Sizes)    | Gasoline RVP 13: Working Lo   |       |       | 1.20  |
| Petroleum and Solvent Evaporation | Fixed Roof Tanks (Varying Sizes)    | Specify Liquid: Working Loss  |       |       | 0.16  |
| Industrial Processes              | Flares                              | Process Gas                   | 0.40  | 0.20  |       |
| Industrial Processes              | Flares                              | Not Classified **             | 1.77  | 0.50  | 0.27  |
| Petroleum and Solvent Evaporation | Floating Roof Tanks (Varying Sizes) | Gasoline RVP 13: Standing L   |       |       | 3.28  |
| Industrial Processes              | Fuel Fired Equipment                | Natural Gas: Flares           | 48.64 | 8.94  |       |
| Petroleum and Solvent Evaporation | Fuel Fired Equipment                | Natural Gas: Flares           | 1.29  | 0.65  |       |
| Industrial Processes              | Fugitive Emissions                  | Specify in Comments Field     |       |       | 3.25  |
| Industrial Processes              | Fugitive Emissions                  | Specify in Comments Field     |       |       | 6.40  |

| Industrial Processes              | Fugitive Emissions                   | Fugitive Emissions           |        |        | 33.25    |
|-----------------------------------|--------------------------------------|------------------------------|--------|--------|----------|
| Industrial Processes              | Fugitive Emissions                   | Specify in Comments Field    |        |        | 67.64    |
| Petroleum and Solvent Evaporation | Fugitive Emissions                   | Specify in Comments Field    |        |        | 1.37     |
| Industrial Processes              | Fugitive Emissions                   | Fugitive Emissions           |        |        | 20.04    |
| Industrial Processes              | Fugitive Emissions                   | Specify in Comments Field    |        |        | 46.59    |
| Industrial Processes              | Fugitive Emissions                   | Fugitive Emissions           |        |        | 17.20    |
| Industrial Processes              | Fugitive Emissions                   | Flanges: All Streams         |        |        | 70.30    |
| Industrial Processes              | Fugitive Emissions                   | Specify in Comments Field    |        |        | 92.67    |
| Industrial Processes              | Fugitive Emissions                   | Pipeline Valves and Flanges  |        |        | 1.00     |
| Industrial Processes              | Fugitive Emissions                   | Fugitive Emissions           |        |        | 1.99     |
| Industrial Processes              | Fugitive Emissions                   | Specify in Comments Field    |        |        | 24.77    |
| Industrial Processes              | Fugitive Emissions                   | Specify in Comments Field    |        |        | 4.20     |
| Industrial Processes              | Fugitive Emissions                   | Fugitive Emissions           |        |        | 12.28    |
| Industrial Processes              | Fugitive Emissions                   | Specify in Comments Field    |        |        | 63.04    |
| Industrial Processes              | Fugitive Emissions                   | Pipeline Valves and Flanges  |        |        | 2.36     |
| Industrial Processes              | Fugitive Emissions                   | Pipeline Valves: Gas Streams |        |        | 18.72    |
| Industrial Processes              | Fugitive Emissions                   | Specify in Comments Field    |        |        | 4.16     |
| Petroleum and Solvent Evaporation | Gasoline Retail Operations - Stage I | Balanced Submerged Filling   |        |        | 1.22     |
| Petroleum and Solvent Evaporation | Gasoline Retail Operations - Stage I | Submerged Filling w/o Contro |        |        | 20.77    |
| Petroleum and Solvent Evaporation | Gasoline Retail Operations - Stage I | Submerged Filling w/o Contro |        |        | 10.28    |
| Waste Disposal                    | In Situ Venting/Venting of Soils     | Active Aeration, Vacuum: Vac |        |        | 4.00     |
| Waste Disposal                    | Incineration                         | Sludge                       | 0.01   | 0.00   | 0.01     |
| Waste Disposal                    | Incineration                         | Single Chamber               | 0.00   | 0.01   | 0.05     |
| Waste Disposal                    | Incineration                         | Fuel Not Classified          | 0.00   |        | 0.00     |
| Internal Combustion Engines       | Large Bore Engine                    | Diesel                       | 10.62  | 5.31   | 3.72     |
| Internal Combustion Engines       | Large Bore Engine                    | Diesel                       | 3.08   | 16.95  | 2.24     |
| Industrial Processes              | Liquid Waste Treatment               | Liquid - Liquid Separator    |        |        | 65.10    |
| Industrial Processes              | Liquid Waste Treatment               | Oil-Sludge-Waste Water Pit   |        |        | 1,042.92 |
| Industrial Processes              | Liquid Waste Treatment               | Oil-Water Separator          |        |        | 47.74    |
| Internal Combustion Engines       | Liquified Petroleum Gas (LPG)        | Propane: Reciprocating       | 81.50  | 49.80  | 0.70     |
| Industrial Processes              | Miscellaneous Industrial Processes   | Other Not Classified         |        |        | 8.12     |
| Internal Combustion Engines       | Natural Gas                          | 2-cycle Lean Burn            | 20.58  | 48.21  | 8.77     |
| Internal Combustion Engines       | Natural Gas                          | 4-cycle Clean Burn           | 6.30   | 5.70   | 0.12     |
| Internal Combustion Engines       | Natural Gas                          | 4-cycle Lean Burn            | 131.03 | 101.58 | 63.77    |
| Internal Combustion Engines       | Natural Gas                          | 4-cycle Rich Burn            | 12.45  | 12.45  | 0.62     |
| Internal Combustion Engines       | Natural Gas                          | Reciprocating                | 51.25  | 46.34  | 14.87    |
| Internal Combustion Engines       | Natural Gas                          | 2-cycle Lean Burn            | 83.20  | 87.20  |          |
| Internal Combustion Engines       | Natural Gas                          | Reciprocating                | 65.90  | 326.10 | 9.29     |
| Internal Combustion Engines       | Natural Gas                          | 4-cycle Clean Burn           | 3.82   | 2.27   | 0.12     |
| Internal Combustion Engines       | Natural Gas                          | Reciprocating                | 15.49  | 15.49  | 1.79     |

| Internal Combustion Engines | Natural Gas | Reciprocating         | 10.90    | 5.50   | 3.80   |
|-----------------------------|-------------|-----------------------|----------|--------|--------|
| Internal Combustion Engines | Natural Gas | 2-cycle Lean Burn     | 0.07     | 7.20   |        |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 2.11     | 2.47   | 0.23   |
| External Combustion Boilers | Natural Gas | < 10 Million BTU/hr   | 1.68     | 1.00   | 0.11   |
| External Combustion Boilers | Natural Gas | 10-100 Million BTU/hr | 18.86    | 11.22  | 1.23   |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 1.30     | 0.43   | 1.30   |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 17.83    | 7.22   | 3.61   |
| Internal Combustion Engines | Natural Gas | 2-cycle Clean Burn    | 39.00    | 39.50  | 30.00  |
| Internal Combustion Engines | Natural Gas | 2-cycle Lean Burn     | 142.22   | 161.54 | 69.34  |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 1,058.38 | 374.32 | 94.78  |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 71.32    | 135.21 | 83.77  |
| Internal Combustion Engines | Natural Gas | 4-cycle Rich Burn     | 297.53   | 266.87 | 113.79 |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 544.62   | ###### | 440.52 |
| Internal Combustion Engines | Natural Gas | Turbine               | 18.10    | 17.20  | 1.35   |
| Internal Combustion Engines | Natural Gas | Turbine: Cogeneration | 97.90    | 83.30  | 33.90  |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 0.10     | 0.10   | 0.03   |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 41.07    | 24.47  | 4.29   |
| Internal Combustion Engines | Natural Gas | 4-cycle Rich Burn     | 11.31    | 6.90   | 0.09   |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 56.32    | 56.32  | 4.14   |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 40.48    | 24.70  | 0.32   |
| Internal Combustion Engines | Natural Gas | Turbine               | 1.70     | 12.80  | 0.04   |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 1.66     | 0.84   | 0.59   |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 20.90    | 25.80  | 0.86   |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 72.18    | 3.25   |        |
| Internal Combustion Engines | Natural Gas | 4-cycle Rich Burn     | 2.65     | 2.58   | 3.06   |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 8.06     | 14.91  | 14.52  |
| External Combustion Boilers | Natural Gas | < 10 Million BTU/hr   | 4.78     | 5.70   | 0.31   |
| Internal Combustion Engines | Natural Gas | 2-cycle Lean Burn     | 4.91     | 47.63  | 7.78   |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 134.30   | 92.21  | 29.51  |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 366.64   |        | 449.80 |
| Internal Combustion Engines | Natural Gas | 4-cycle Rich Burn     | 29.90    | 38.98  | 16.70  |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 121.29   | 127.11 | 24.43  |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 0.75     | 12.40  | 0.40   |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 10.79    | 6.41   | 0.04   |
| Internal Combustion Engines | Natural Gas | 4-cycle Rich Burn     | 2.60     | 1.55   |        |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 22.52    | 51.63  | 0.90   |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 16.17    | 139.81 | 5.03   |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 19.72    | 12.03  | 0.85   |
| Internal Combustion Engines | Natural Gas | 4-cycle Rich Burn     |          | 0.18   |        |
| Internal Combustion Engines | Natural Gas | Turbine               | 30.88    | 39.51  | 9.35   |

| External Combustion Boilers | Natural Gas | 10-100 Million BTU/hr | 11.40  | 22.40  | 1.30   |
|-----------------------------|-------------|-----------------------|--------|--------|--------|
| Internal Combustion Engines | Natural Gas | Reciprocating         | 11.40  | 20.50  | 0.20   |
| Internal Combustion Engines | Natural Gas | 2-cycle Clean Burn    | 2.61   | 63.96  | 3.94   |
| Internal Combustion Engines | Natural Gas | 2-cycle Lean Burn     | 2.48   | 9.36   | 3.88   |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 43.69  | 31.87  | 7.86   |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 17.81  | 17.50  | 5.47   |
| Internal Combustion Engines | Natural Gas | 4-cycle Rich Burn     | 35.31  | 23.27  | 3.33   |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 61.62  | 80.86  | 11.38  |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 11.00  | 13.40  | 1.82   |
| Internal Combustion Engines | Natural Gas | Turbine               | 77.43  | 64.97  | 7.58   |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 117.83 | 51.44  | 8.84   |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 41.66  | 53.65  | 17.56  |
| Internal Combustion Engines | Natural Gas | 4-cycle Rich Burn     | 4.03   | 15.70  | 1.83   |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 31.78  | 73.69  | 10.37  |
| Internal Combustion Engines | Natural Gas | Turbine               | 6.21   | 6.20   | 2.99   |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 29.20  | 17.40  | 0.16   |
| Internal Combustion Engines | Natural Gas | 2-cycle Lean Burn     | 38.30  | 31.46  | 2.20   |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 13.80  | 8.42   | 0.20   |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 122.20 | 118.42 | 20.54  |
| Internal Combustion Engines | Natural Gas | 4-cycle Rich Burn     | 35.39  | 31.41  | 0.51   |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 2.04   | 6.05   | 1.85   |
| Internal Combustion Engines | Natural Gas | Turbine               | 38.29  | 120.00 | 2.71   |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 12.30  | 11.17  | 0.41   |
| Internal Combustion Engines | Natural Gas | 2-cycle Lean Burn     | 5.40   | 6.70   | 2.70   |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 8.96   | 7.45   | 2.65   |
| Internal Combustion Engines | Natural Gas | 4-cycle Rich Burn     | 114.40 | 59.20  | 28.00  |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 91.27  | 194.03 | 9.91   |
| Internal Combustion Engines | Natural Gas | Turbine               | 6.81   | 35.80  | 3.11   |
| Internal Combustion Engines | Natural Gas | 2-cycle Lean Burn     | 43.10  | 353.80 | 13.40  |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 1.23   | 12.70  | 0.26   |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 75.50  | 46.10  | 0.60   |
| Internal Combustion Engines | Natural Gas | 2-cycle Lean Burn     | 55.70  | 47.00  | 14.95  |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 104.42 | 54.59  | 9.55   |
| Internal Combustion Engines | Natural Gas | 4-cycle Lean Burn     | 164.48 | 420.65 | 105.48 |
| Internal Combustion Engines | Natural Gas | 4-cycle Rich Burn     | 157.67 | 141.10 | 25.95  |
| Internal Combustion Engines | Natural Gas | Reciprocating         | 144.82 | 492.39 | 49.23  |
| Internal Combustion Engines | Natural Gas | Turbine               | 29.81  | 58.00  | 3.82   |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    | 6.30   | 6.30   | 1.90   |
| Internal Combustion Engines | Natural Gas | 4-cycle Clean Burn    |        | 6.53   | 0.03   |
| Internal Combustion Engines | Natural Gas | 2-cycle Lean Burn     | 2.00   | 9.00   | 3.00   |

| Internal Combustion Engines | Natural Gas                       | Reciprocating                | 7.20   | 3.60   | 0.90   |
|-----------------------------|-----------------------------------|------------------------------|--------|--------|--------|
| Internal Combustion Engines | Natural Gas                       | 2-cycle Lean Burn            | 43.20  | 35.55  | 14.30  |
| Internal Combustion Engines | Natural Gas                       | 4-cycle Clean Burn           | 33.10  | 36.45  | 7.00   |
| Internal Combustion Engines | Natural Gas                       | 4-cycle Lean Burn            | 31.60  | 22.10  | 9.20   |
| Internal Combustion Engines | Natural Gas                       | 4-cycle Rich Burn            | 120.57 | 61.93  | 22.89  |
| Internal Combustion Engines | Natural Gas                       | Reciprocating                | 84.32  | 257.76 | 25.45  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler |        |        | 4.73   |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler |        |        | 6.10   |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Ethylene |        |        | 4.90   |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler |        |        | 18.42  |
| Industrial Processes        | Natural Gas Processing Facilities | Process Valves               |        |        | 12.00  |
| Industrial Processes        | Natural Gas Processing Facilities | Gas Sweeting: Amine Proces   | 1.92   | 0.35   | 14.96  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler | 9.30   | 0.09   | 14.67  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler |        |        | 17.82  |
| Industrial Processes        | Natural Gas Processing Facilities | Flanges and Connections      |        |        | 10.00  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Ethylene |        |        | 51.26  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler |        |        | 80.33  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler | 0.18   | 0.22   | 0.02   |
| Industrial Processes        | Natural Gas Processing Facilities | Gas Sweeting: Amine Proces   |        |        | 10.00  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler |        |        | 31.17  |
| Industrial Processes        | Natural Gas Processing Facilities | Process Valves               |        |        | 4.80   |
| Industrial Processes        | Natural Gas Processing Facilities | Compressor Seals             |        |        | 4.60   |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Ethylene |        |        | 36.68  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler |        |        | 16.87  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler | 0.14   | 0.16   | 70.14  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Ethylene |        |        | 13.60  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler |        |        | 7.45   |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler | 0.78   | 0.42   | 13.02  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Ethylene |        |        | 3.56   |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler | 4.60   | 2.80   | 0.16   |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler |        |        | 5.34   |
| Industrial Processes        | Natural Gas Processing Facilities | Process Valves               |        |        | 6.80   |
| Industrial Processes        | Natural Gas Processing Facilities | Gas Sweeting: Amine Proces   | 3.88   | 4.61   | 44.12  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Ethylene | 0.10   | 0.12   | 26.12  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Phase Se | 0.90   | 1.07   | 7.83   |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler | 10.45  | 12.44  | 30.32  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler | 0.28   | 14.54  | 137.69 |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler |        |        | 13.32  |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler |        |        | 2.20   |
| Industrial Processes        | Natural Gas Processing Facilities | Glycol Dehydrators: Reboiler |        |        | 28.49  |

| Industrial Processes | Natural Gas Production | All Equipt Leak Fugitives (Val |       |       | 3.44   |
|----------------------|------------------------|--------------------------------|-------|-------|--------|
| Industrial Processes | Natural Gas Production | Glycol Dehydrator Reboiler St  | 4.73  | 1.80  | 7.47   |
| Industrial Processes | Natural Gas Production | Other Not Classified           |       |       | 10.41  |
| Industrial Processes | Natural Gas Production | All Equipt Leak Fugitives (Val |       |       | 6.45   |
| Industrial Processes | Natural Gas Production | Flares                         | 51.71 | 9.50  | 252.56 |
| Industrial Processes | Natural Gas Production | Flares Combusting Gases <1     | 43.38 | 8.13  | 5.80   |
| Industrial Processes | Natural Gas Production | Glycol Dehydrator Reboiler Bi  | 5.26  | 2.60  | 2.31   |
| Industrial Processes | Natural Gas Production | Glycol Dehydrator Reboiler St  | 6.60  | 3.30  | 44.67  |
| Industrial Processes | Natural Gas Production | Other Not Classified           | 0.38  | 0.42  | 0.34   |
| Industrial Processes | Natural Gas Production | Pipeline Pigging (releases du  |       |       | 2.96   |
| Industrial Processes | Natural Gas Production | Valves: Fugitive Emissions     |       |       | 4.37   |
| Industrial Processes | Natural Gas Production | All Equipt Leak Fugitives (Val |       |       | 18.19  |
| Industrial Processes | Natural Gas Production | Compressors                    |       |       | 10.00  |
| Industrial Processes | Natural Gas Production | Flares Combusting Gases <1     | 6.41  | 1.19  | 2.43   |
| Industrial Processes | Natural Gas Production | Glycol Dehydrator Reboiler St  |       |       | 181.88 |
| Industrial Processes | Natural Gas Production | Other Not Classified           |       |       | 28.67  |
| Industrial Processes | Natural Gas Production | Valves: Fugitive Emissions     |       |       | 5.94   |
| Industrial Processes | Natural Gas Production | Gas Sweetening: Amine Proc     |       |       | 9.00   |
| Industrial Processes | Natural Gas Production | Glycol Dehydrator Reboiler St  | 0.40  | 0.40  | 3.10   |
| Industrial Processes | Natural Gas Production | All Equipt Leak Fugitives (Val |       |       | 8.47   |
| Industrial Processes | Natural Gas Production | Compressors                    | 4.80  | 19.40 | 2.90   |
| Industrial Processes | Natural Gas Production | Flares                         | 0.65  | 0.12  | 3.25   |
| Industrial Processes | Natural Gas Production | Glycol Dehydrator Reboiler Bi  | 0.12  | 0.61  | 23.28  |
| Industrial Processes | Natural Gas Production | Glycol Dehydrator Reboiler St  |       |       | 18.76  |
| Industrial Processes | Natural Gas Production | Other Not Classified           |       |       | 44.55  |
| Industrial Processes | Natural Gas Production | Pump Seals                     |       |       | 29.00  |
| Industrial Processes | Natural Gas Production | Relief Valves                  | 1.30  | 0.24  | 153.54 |
| Industrial Processes | Natural Gas Production | Valves: Fugitive Emissions     |       | -     | 17.20  |
| Industrial Processes | Natural Gas Production | Valves: Fugitive Emissions     |       |       | 23.40  |
| Industrial Processes | Natural Gas Production | Flares                         | 16.67 | 3.07  | 28.42  |
| Industrial Processes | Natural Gas Production | Glycol Dehydrator Reboiler Bu  | 25.70 | 4.73  | 40.90  |
| Industrial Processes | Natural Gas Production | Other Not Classified           |       | -     | 1.40   |
| Industrial Processes | Natural Gas Production | All Equipt Leak Fugitives (Val |       |       | 37.39  |
| Industrial Processes | Natural Gas Production | Flares                         | 3.35  | 0.61  | 0.100  |
| Industrial Processes | Natural Gas Production | Flares Combusting Gases :10    | 8.90  | 1.64  |        |
| Industrial Processes | Natural Gas Production | Gas Stripping Operations       |       |       | 20.80  |
| Industrial Processes | Natural Gas Production | Gas Sweetening: Amine Proc     | 3.30  | 3.90  | 9.05   |
| Industrial Processes | Natural Gas Production | Glycol Dehydrator Reboiler St  | 0.00  | 0.00  | 58.99  |
| Industrial Processes | Natural Gas Production | Valves: Fugitive Emissions     |       |       | 2.98   |
| Industrial Processes | Natural Gas Production | Glycol Dehydrator Reboiler St  |       |       | 26.98  |

| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T | · · ·                          |       |       | 24.43    |
|-----------------------------------|-----------------------------------------|--------------------------------|-------|-------|----------|
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T |                                |       |       | 3.45     |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T | Fixed Roof Tank, Produced V    |       |       | 1.70     |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T | Fixed Roof Tank, Crude Oil, v  |       |       | 60.90    |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T | Fixed Roof Tank, Produced V    |       |       | 141.56   |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T | Fixed Roof Tank: Breathing L   | 0.20  | 0.04  | 1.15     |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T | Internal Floating Roof Tank: V |       |       | 2.64     |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T | Fixed Roof Tank, Crude Oil, v  |       |       | 34.22    |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T | Fixed Roof Tank, Produced V    |       |       | 26.79    |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T | Fixed Roof Tank: Breathing L   |       |       | 3.11     |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T | Fixed Roof Tank: Working Lo    |       |       | 26.80    |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T | Fixed Roof Tank, Produced V    |       |       | 0.43     |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T |                                |       |       | 5.99     |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T |                                |       |       | 7.82     |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T | Fixed Roof Tank, Produced V    |       |       | 2.94     |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T |                                |       |       | 4.15     |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T |                                |       |       | 35.00    |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T |                                |       |       | 10.50    |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T |                                |       |       | 1.50     |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T |                                |       |       | 4.89     |
| Petroleum and Solvent Evaporation | Oil and Gas Field Storage and Working T |                                |       |       | 805.04   |
| Petroleum and Solvent Evaporation | Petroleum Products - Underground Tanks  |                                |       |       | 11.32    |
| Petroleum and Solvent Evaporation | Petroleum Products - Underground Tanks  |                                |       |       | 10.03    |
| Internal Combustion Engines       | Process Gas                             | Reciprocating Engine           | 0.56  | 2.54  |          |
| Industrial Processes              | Process Heaters                         | Natural Gas                    | 2.42  | 2.39  |          |
| Industrial Processes              | Process Heaters                         | Natural Gas                    | 18.85 | 22.85 | 6.58     |
| Industrial Processes              | Process Heaters                         | Process Gas                    | 4.85  | 5.74  | 0.32     |
| Industrial Processes              | Process Heaters                         | Natural Gas                    | 14.96 | 17.72 | 0.94     |
| Petroleum and Solvent Evaporation | Specific Liquid                         | Loading Rack                   |       |       | 2.45     |
| Petroleum and Solvent Evaporation | Tank Cars and Trucks                    | Crude Oil: Submerged Loadir    |       |       | 11.72    |
| Petroleum and Solvent Evaporation | Tank Cars and Trucks                    | Crude Oil: Submerged Loadir    |       |       | 3.74     |
| Petroleum and Solvent Evaporation | Tank Cars and Trucks                    | Crude Oil: Submerged Loadir    |       |       | 1.95     |
| Petroleum and Solvent Evaporation | Tank Cars and Trucks                    | Crude Oil: Submerged Loadir    |       |       | 21.90    |
| Petroleum and Solvent Evaporation | Tank Cars and Trucks                    | Crude Oil: Submerged Loadir    |       |       | 1,303.95 |
| Petroleum and Solvent Evaporation | Tank Cars and Trucks                    | Not Classified **              |       |       | 1.07     |
| Petroleum and Solvent Evaporation | Tank Cars and Trucks                    | Crude Oil: Submerged Loadir    |       |       | 159.16   |
| Petroleum and Solvent Evaporation | Tank Cars and Trucks                    | Not Classified **              |       |       | 58.97    |
| Petroleum and Solvent Evaporation | Tank Cars and Trucks                    | Transit Losses - LPG: Return   |       |       | 1.10     |
|                                   |                                         |                                |       |       |          |
| Petroleum and Solvent Evaporation | Tank Cars and Trucks                    | Crude Oil: Submerged Loadir    |       |       | 74.98    |

| Petroleum and Solvent Evaporation | Tank Cars and Trucks | Crude Oil: Submerged Loadir | 29.67    |
|-----------------------------------|----------------------|-----------------------------|----------|
|                                   |                      |                             | 8,825.79 |

| NAA | county_fips | proc_emis_estim_units | CO      | NOX     |
|-----|-------------|-----------------------|---------|---------|
| -1  | 001         | TY                    | 228.8   | 218.5   |
| -1  | 005         | TY                    | 149.1   | 413.3   |
| -1  | 013         | TY                    | 19.3    | 17.8    |
| -1  | 059         | TY                    | 10.9    | 5.5     |
| -1  | 069         | TY                    | 2.3     | 9.8     |
| -1  | 123         | TY                    | 2,446.9 | 2,329.4 |
|     | 007         | TY                    | 0.1     | 0.1     |
| 0   | 017         | TY                    | 108.7   | 87.7    |
| 0   | 025         | TY                    | 42.2    | 37.5    |
|     | 029         | TY                    | 1.7     | 0.8     |
|     | 033         | TY                    | 103.8   | 46.5    |
|     | 041         | TY                    | 81.5    | 49.8    |
| 0   | 045         | TY                    | 857.0   | 1,403.9 |
|     | 049         | TY                    | 0.8     | 12.4    |
|     | 061         | TY                    | 16.6    | 23.2    |
|     | 071         | TY                    | 38.9    | 191.7   |
| 0   | 075         | TY                    | 50.6    | 51.7    |
|     | 077         | TY                    | 208.5   | 303.3   |
| 0   | 081         | TY                    | 297.0   | 299.6   |
|     | 083         | TY                    | 283.1   | 350.5   |
| 0   | 085         | TY                    | 12.4    | 12.4    |
| 0   | 087         | TY                    | 273.8   | 313.8   |
|     | 099         | TY                    | 119.8   | 412.6   |
| 0   | 103         | TY                    | 704.8   | 1,270.9 |
| 0   | 105         | TY                    | 6.3     | 6.3     |
|     | 107         | TY                    |         | 6.5     |
|     | 113         | TY                    | 9.2     | 12.6    |
| 0   | 125         | TY                    | 312.8   | 413.8   |
| 0   | 777         | TY                    | 6.5     | 22.0    |

# EDF-WZI-APPENDIX III

### Appendix III Well and Facility Component Count and Emissions Factor Review

Fugitive emissions, by definition, are those historic emissions associated with the numerous components surrounding a production well including the associated facilities. Generally, in the E&P industry, fugitive emissions come from Valves, Flanges, Connectors, Open-ended lines, Pump Seals, Valve Bonnets, Compressor Seals, Pressure Relief Valves, Well Cellars, and Pits. Emissions factors for these sources have been established on a per-component-basis, discussed below, speciation and mass fraction is discussed in **Appendix VI**, Speciation Analysis.

#### **Emissions Factors**

#### Well and Facility Component Emission Factors

**Exhibit 1** below is a copy of the Table 4-2 from the 1995 EPA Protocol for Equipment Leak Emission Estimates. These commonly accepted factors are used to estimate fugitives associated with potentially leaking components.

| Equipment Type      | Service <sup>a</sup>                       | Emission Factor<br>(kg/hr/source) <sup>b</sup> |
|---------------------|--------------------------------------------|------------------------------------------------|
| Valves              | Gas<br>Heavy Oil<br>Light Oil<br>Water/Oil | 4.5E-03<br>8.4E-06<br>2.5E-03<br>9.8E-05       |
| Pump seals          | Gas<br>Heavy Oil<br>Light Oil<br>Water/Oil | 2.4E-03<br>NA<br>1.3E-02<br>2.4E-05            |
| Others <sup>C</sup> | Gas<br>Heavy Oil<br>Light Oil<br>Water/Oil | 8.8E-03<br>3.2E-05<br>7.5E-03<br>1.4E-02       |
| Connectors          | Gas<br>Heavy Oil<br>Light Oil<br>Water/Oil | 2.0E-04<br>7.5E-06<br>2.1E-04<br>1.1E-04       |
| Flanges             | Gas<br>Heavy Oil<br>Light Oil<br>Water/Oil | 3.9E-04<br>3.9E-07<br>1.1E-04<br>2.9E-06       |
| Open-ended lines    | Gas<br>Heavy Oil<br>Light Oil<br>Water/Oil | 2.0E-03<br>1.4E-04<br>1.4E-03<br>2.5E-04       |

water/011 2.5E-04 <sup>a</sup>Water/0il emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate <sup>b</sup>These factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor. <sup>c</sup>The "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" than connectors, flanges, open-ended lines, pumps, or valves.



These common factors are the accepted by CDPHE for use in Colorado. See Exhibit 2, below

Quarterly monitoring. Control: 70% gas valve, 61% lt. liq. valve, 45% lt. liq. pump

#### Section 08 - Emission Factor Information

| 1.1                                       |                    |      | · · · · · |       |                  | ~ S     | ervice             |                     |           |                    |      |       |
|-------------------------------------------|--------------------|------|-----------|-------|------------------|---------|--------------------|---------------------|-----------|--------------------|------|-------|
| Equipment Type                            |                    | Gas  | 1.1.1.5   | Hea   | vy Oil (or Heavy | Liquid) | 1. 1               | light Oil (or Light | Liquid) 🐇 | Water/Oil          |      |       |
| 1. A. | Count <sup>1</sup> | E.F. | Units     | Count | E.F.             | Units   | Count <sup>1</sup> | E.F.                | Units     | Count <sup>1</sup> | E.F. | Units |
| Connectors                                | 1396               |      |           | 0     |                  |         | 431                |                     |           | 104                |      | 1     |
| Flanges                                   | 15                 |      |           | 0     |                  |         | 0                  |                     |           | 0                  |      |       |
| Open-Ended Lines                          | 0                  |      |           | 0     |                  |         | 0                  |                     |           | 0                  |      |       |
| Pump Seals                                | 0                  |      |           | 0     |                  |         | 0                  |                     |           | 0                  |      |       |
| Valyes                                    | 124                | **** |           | 0     |                  |         | 79                 |                     |           | 16                 |      |       |
| Other                                     | 3                  |      |           | 0     |                  |         | 0                  |                     |           | 0                  |      |       |

Exhibit 2

#### **Storage Tank Emissions Factors**

The storage tank emissions factor of 13.7 lb/bbl of condensate for condensate storage tanks is derived from work performed by Lesair Environmental Inc.<sup>1, 2, 3</sup>

| Summary of Tank Emissions Factors |                                      |  |  |  |  |
|-----------------------------------|--------------------------------------|--|--|--|--|
| Basin                             | Condensate Tank Emissions Factor, lb |  |  |  |  |
|                                   | VOC/bbl                              |  |  |  |  |
| DJ Basin                          | 13.7                                 |  |  |  |  |
| Piceance                          | 10.0                                 |  |  |  |  |
| No. San Juan                      | 11.8                                 |  |  |  |  |
| Remainder                         | 11.8                                 |  |  |  |  |

Independently, the Texas Environmental Research Consortium (TERC) commissioned a study of oil and gas related tank emissions in Texas. An average emissions factor was reported as  $33 \text{ lbVOC/bbl} \pm 53 \text{ lb VOC/bbl}.^4$ 

$$mass \ fraction \ in \ flash = \frac{33 lbVOC}{bbl_{crude}} \times \frac{bbl_{crude}}{42 \ gal \ crude} \times \frac{gal \ crude}{7.48 lb \ crude} = 0.42 \frac{lbVOC}{lbCrude}$$

This emissions factor indicates a large vapor component of VOC in tankage. I conducted a rigorous analysis of this empirical data and found that the TERC data when averaged without some of the outliers approaches 15 lb VOC/ bbl  $\pm$  12.5 lb VOC/bbl; consistent with CDPHE's emission factors related to Colorado's regional production. I found that the high standard deviation in the unadjusted average (33 lbVOC/bbl) is attributed to outliers whose measurement are suspect, the average is largely skewed by tanks that reported VOCs as less than 3.5 lb VOC/bbl (likely controlled) and tanks that reported in excess of 60 lbVOC/bbl (likely emitting more VOC [as speciated] into vapor, than physically provided for by K-factors for in the normal petroleum liquid at the specified tank pressure and temperature [8 gallons out of 42 gallons in a

<sup>&</sup>lt;sup>1</sup> Environ, FINAL EMISSIONS TECHNICAL MEMORANDUM No. 4a, 2012

<sup>&</sup>lt;sup>2</sup> ENVIRON, "Development of Baseline 2006 Emissions from Oil and Gas Activity In The Denver-Julesburg Basin", Prepared for CDPHE and Independent Petroleum Association of Mountain States (IPAMS), April, 2008

<sup>&</sup>lt;sup>3</sup> A conversion of the 13.7 lb/bbl VOC emissions factor results in a mass fraction of 4.4% as opposed to the post flashed value of approximately 0.1%.

<sup>&</sup>lt;sup>4</sup> URS Corporation, FINAL REPORT: VOC Emissions from Oil and Condensate Storage Tanks, Prepared for Texas Environmental Research Consortium (TERC), April, 2009

barrel, 20%); only one value was dropped in the study(tank battery 26), exceeding 1200 lb VOC/bbl (using 7.48 lb/gallon this is 162 gallons in a given 42 gallon barrel). The three low measured emissions measurements were treated as possible artifacts of emissions control. On the larger tanks (and smaller tanks as well) tank vapor composition must be in balance with the liquids sent to the tank in accordance to speciations in vapor and liquid phases defined by Equations of State and K-factors, and unless adjunct vapors are injected into the vapor space the samples of vapor pulled should reflect this balance. Additionally (by virtue of conservation of mass) the mass emitted by tank as the VOC component cannot exceed the mass fraction (defined by the K-factor) possible from the liquids prior to the flash in the tank, and certainly cannot exceed the total mass of VOC components available in the Crude Oil or Condensate, as if fully weathered. While it is possible to have high tank emissions (if the tank is the direct recipient of production liquids with no interposing separator), the commensurate vapors would have high Methane content along the lines of the production separation and GOR and the subsequent sampled Vapor speciation would show low VOC and high Methane.

If one simply eliminates the high and low outliers, the TERC average approaches 15 lb VOC/  $bbl \pm 12.5 \ lbVOC/bbl$  and is consistent with CDPHE's emission factors related to Colorado's regional production.

#### **Glycol Dehydrator Emissions Factors**

EPA and GRI jointly developed a set of Methane emissions factors for Glycol Dehydrators, based on the location of the dehydrator in the O&G process stream.

| Segment        | Emission Factor (sef CH <sub>4</sub> /MMscf) |
|----------------|----------------------------------------------|
| Production     | 275.6 ± 154%                                 |
| Gas Processing | $121.6 \pm 202\%$                            |
| Transmission   | 93.72 ± 208%                                 |
| Storage        | $117.2 \pm 160\%$                            |
| AGRs           | 6083 scfd/AGR ± 105%                         |

| TABLE 5-3. SUMMARY OF GLYCOL DEHYDRATOR | AND |
|-----------------------------------------|-----|
| AGR EMISSION FACTORS                    |     |

Exhibit 3

| Parameter                                                    | Very<br>Low<br>Value | Low<br>Value    | Medium<br>Low<br>Value | Base<br>Value  | Medium<br>High<br>Value | High<br>Value  | Very<br>High<br>Value | Supple-<br>mental<br>Condition |
|--------------------------------------------------------------|----------------------|-----------------|------------------------|----------------|-------------------------|----------------|-----------------------|--------------------------------|
| Methane Composition (vol%)<br>Methane Emissions (tons/yr)    |                      | 85<br>0.0701    | 87.5<br>0.0767         | 90<br>0.0837   | 92.5<br>0.0911          | 95<br>0.0999   |                       |                                |
| Glycol Circulation Rate (gph)<br>Methane Emissions (tons/yr) |                      | 4.75<br>0.0419* | 7.14<br>0.0626         | 9.48<br>0.0837 | 11.88<br>0.104          | 14.28<br>0.125 |                       |                                |
| Lean Glycol (% water)<br>Methane Emissions (tons/yr)         |                      | 0.5<br>0.0841   |                        | 1<br>0.0837    |                         | 1.5<br>0.0832  |                       |                                |
| Flash Tank Pressure (psig)<br>Methane Emissions (tons/yr)    | 15<br>0.0261         | 30<br>0.0442    | 45<br>0.0635           | 60<br>0.0837   | 75<br>0.104             | 90<br>0.125    | 120<br>0.168          | No tank<br>1.12                |
| Flash Tank Temperature (°F)<br>Methane Emissions (tons/yr)   |                      | 70<br>0.092     |                        | 110<br>0.0837  |                         | 150<br>0.0753  |                       |                                |
| Gas Flow Rate (MMscfd)<br>Methane Emissions (tons/yr)        |                      | 0.9<br>0.0837   |                        | 1<br>0.0837    |                         | 1.1<br>0.0837  |                       | 10 <sup>b</sup><br>0.837       |
| Gas Temperature (°F)<br>Methane Emissions (tons/yr)          |                      | 90<br>0.0832    |                        | 95<br>0.0837   |                         | 100<br>0.0841  |                       |                                |
| Gas Pressure (psig)<br>Methane Emissions (tons/yr)           |                      | 600<br>0.0837   |                        | 800<br>0.0837  |                         | 1000<br>0.0837 |                       |                                |

TABLE 5-2. EFFECTS OF PROCESS PARAMETERS ON METHANE EMISSIONS FROM GLYCOL REGENERATORS

\* Results not valid since the dry gas water content is greater than 7 lb  $\rm H_2O/MMscf.$ 


<sup>b</sup> Glycol circulation rate is also increased by a factor of ten.

Number of absorber trays is fixed at 1.48.

#### Exhibit 4

Table 5-2 (Exhibit 4, above) shows the various sensitivities of Methane emissions factors to certain process parameters related to glycol dehydrators. It generally shows a range from 0.062 to .104 tons of Methane per year per unit.

VOC is largely defined by the BTEX content in the pre-processed Natural gas and the recirculation rate of the glycol unit. Assuming Tri-ethylene glycol (TEG) recirculating at 300 gallons TEG/MMscf one gets 1 to 3 tons/year of VOC (as BTEX) per unit, see Exhibit 5, below. However, this value presumes the recirculation rate.



Assuming, the lowest VOC and the lowest methane (VOC/Methane =1/0.062=16.1) and the highest VOC/BTEX value to the Highest methane VOC/Methane =3/.104= 28.8). Assuming that BTEX is 50% of the VOC the VOC/Methane values would range from 8 to 14 as compared to the process gas having a VOC/Methane ratio of  $0.28.^{5}$ 

Therefore the range of VOC emissions factors would be roughly 8 to 28 times that of for Methane.

#### **Component Counts**

Component counts are known to vary by extent of facility definition; a single well head may have as few as 50 components whereas a larger more encompassing facility may have as many as 500 components per facility well.<sup>6</sup>

<sup>&</sup>lt;sup>6</sup> Historic Studies such as those performed by WOGA , CARB and API Study have focused on field counts of components in targeted study facilities. The historic studies performed by WOGA indicated that typical fitting counts for the general population of 27,101 oil and gas wells were:

| Table 1: Average Component Count-Liquid Service |       |         |         |                   |  |  |
|-------------------------------------------------|-------|---------|---------|-------------------|--|--|
| GOR                                             | 0-100 | 100-400 | 400-900 | >900 <sup>6</sup> |  |  |
| Count                                           | 241   | 197     | 145     | 63                |  |  |

<sup>&</sup>lt;sup>5</sup> Davis, JF, Triethylene Glycol Parameters for estimating BTEX Emissions, 1996

In this particular regulatory scheme, the CDPHE has selected a facility definition that encompasses all facilities including the on-lease tankage and metering. Using the EPA/GRI study, Table 4-7 data for facilities in Onshore Production in the Western US- (Exhibit 6) one derives that a facility-well based count using Western U.S. data would be approximately 342 components associated with any given facility well (excluding tankage system piping and metering).<sup>7</sup> If one includes 50 components for the tankage piping system and 50 components per facility well. Allowing  $\pm 30\%$  design margin for differing facility layouts one gets a range of 309 to 574 components per facility well. Based on their APEN review, CDPHE estimated 1,238 components per defined facility which translates to 532 components per **facility-well** for an average facility having 2.3 facility related wells.<sup>8</sup>

|                          |              | 이 안 넣는              | Average Component Count* |             |                     |                         |                     |  |
|--------------------------|--------------|---------------------|--------------------------|-------------|---------------------|-------------------------|---------------------|--|
| Equipment                | No. of Sites | No. of<br>Equipment | Valves                   | Connections | Open-Ended<br>Lines | <b>PRVs<sup>b</sup></b> | Compressor<br>Seals |  |
| Gas Wellheads            | 17           | 184                 | 11 (30%)                 | 36 (20%)    | 1 (28%)             | 0                       | 0                   |  |
| Separators               | 16           | 183                 | 34 (44%)                 | 106 (38%)   | 6 (94%)             | 2 (68%)                 | 0                   |  |
| Meters/Piping            | 12           | 73                  | 14 (31%)                 | 51 (47%)    | 1 (113%)            | 1 (150%)                | 0                   |  |
| Gathering<br>Compressors | 13           | 61                  | 73 (102%)                | 179 (51%)   | 3 (50%)             | 4 (84%)                 | 4 (69%)             |  |
| Heaters                  | 11           | 77                  | 14 (49%)                 | 65 (70%)    | 2 (66%)             | 1 (89%)                 | 0                   |  |
| Dehydrators              | 10           | 52                  | 24 (31%)                 | 90 (37%)    | 2 (69%)             | 2 (53%)                 | 0                   |  |

TABLE 4-7. AVERAGE COMPONENT COUNTS FOR ONSHORE PRODUCTION IN THE WESTERN U.S.

<sup>a</sup> Values in parentheses represent the 90% confidence interval.

<sup>b</sup> Pressure relief valves.

#### Exhibit 6

While fewer in number than wells and tanks, compressor stations have a larger component count (approximately 2,000 to 6,000) depending on the size and service of the facility, see Exhibit 7. A review of various facility APENS reports for 2012 for shows a similar pattern of component counts, and the CDPHE selection of components appear to be consistent with this overall trend.

| Average Component Count -Gas Service |       |         |         |      |  |
|--------------------------------------|-------|---------|---------|------|--|
| GOR                                  | 0-100 | 100-400 | 400-900 | >900 |  |
| Count 5                              |       | 98      | 108     | 73   |  |

<sup>7</sup> GRI/EPA, Methane Emissions from Natural Gas Industry-Volume 8: Equipment Leaks, 600/R96-080h
 <sup>8</sup> CDPHE Spreadsheet, [LDAR Cost Analysis Statewide Well Production Facilities-14NOV2013.xlxs]

| Equipment Type                    | Component Type                          | Component<br>Emission Factor,*<br>Mscf/component-yr | Average<br>Component<br>Count | Average<br>Equipment<br>Emissions,<br>MMscf/yr | 90% Confidence<br>Interval,<br>% |
|-----------------------------------|-----------------------------------------|-----------------------------------------------------|-------------------------------|------------------------------------------------|----------------------------------|
| Gas Plant (non-                   | Valve                                   | 1.305                                               | 1392                          | 2.89                                           | 48                               |
| compressor related<br>components) | Connection                              | 0.117                                               | 4392                          |                                                |                                  |
|                                   | Open-Ended Line                         | 0.346                                               | 134                           |                                                |                                  |
|                                   | Pressure Relief Valve                   | 0.859                                               | 29                            |                                                |                                  |
|                                   | Site Blowdown Open-Ended Line           | 230                                                 | 2                             |                                                |                                  |
| Reciprocating<br>Compressor       | Compressor Blowdown Open-<br>Ended Line | 2035 <sup>c,d</sup>                                 | 1                             | 4.09                                           | 74                               |
|                                   | Pressure Relief Valve                   | 349 <sup>c.d</sup>                                  | 1                             |                                                |                                  |
|                                   | Miscellaneous <sup>b</sup>              | 189 <sup>d</sup>                                    | 1•                            |                                                |                                  |
|                                   | Starter Open-Ended Line                 | 1341                                                | 0.25 <sup>f</sup>             |                                                |                                  |
|                                   | Compressor Seal                         | 450 <sup>d</sup>                                    | 2.5                           |                                                |                                  |
| Centrifugal<br>Compressor         | Compressor Blowdown Open-<br>Ended Line | 6447°-8                                             | 1                             | 7.75                                           | 39                               |
|                                   | Miscellaneous <sup>b</sup>              | 318                                                 | 1°                            |                                                |                                  |
|                                   | Starter Open-Ended Line                 | 1341                                                | 1                             |                                                |                                  |
|                                   | Compressor Seal                         | 2288                                                | 1.5                           |                                                |                                  |

#### TABLE 4-14. AVERAGE FACILITY EMISSIONS FOR GAS PROCESSING PLANTS

<sup>4</sup> Annual methane emission rate adjusted for average 87.0 vol. % methane in gas processing.<sup>17</sup>
 <sup>b</sup> Includes cylinder valve covers and fuel valves.
 <sup>c</sup> Adjusted for 11.1% of compressors which have sources routed to flare.
 <sup>d</sup> Adjusted for 89.7% of time reciprocating compressors in processing are pressurized.

<sup>6</sup> Other components counted/measured in aggregate per compressor. <sup>6</sup> Only 25% of starters for reciprocating compressors in processing use natural gas.g Adjusted for 43.6% of time centrifugal compressors in processing are pressurized. <sup>8</sup> Adjusted for 43.6% of time centrifugal compressors in processing are pressurized.

Exhibit 7

# EDF-WZI-APPENDIX IV

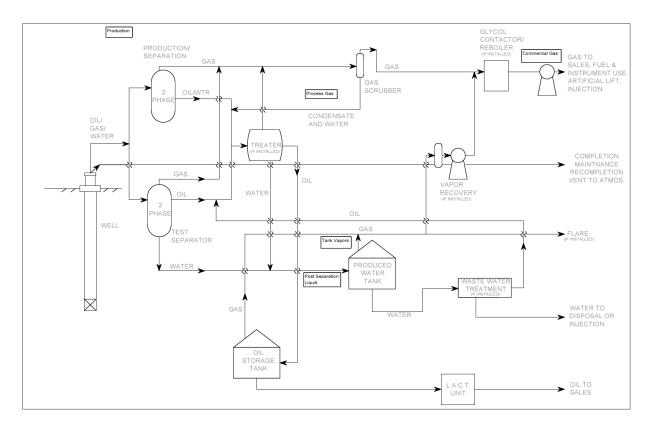
# ELECTRONIC COPY AVAILABLE UPON REQUEST

# EDF-WZI-APPENDIX V

## **Appendix V:**

### **1** Speciation Analysis

The chemical characteristics of emissions from oil and gas activities vary depending in part on the source of the emissions. For example, vapors that escape from a condensate tank will generally have more volatile organic compounds (VOCs) emissions and less methane relative to vapor emissions that occur from a wellhead, which would typically contain more methane and less VOCs. This Appendix explains how various process streams at oil and gas production operations are speciated into different chemical constituents.


#### 1.1 Speciation for source emissions of concern

Natural Gas is produced either directly from gas reservoirs, in combination with oil production or from coal bed deposits. While all hydrocarbons (both light and heavy) are completely in solution in the reservoir at production depth, they separate into Natural Gas (lighter hydrocarbons) and Condensate or Crude as well as a water phase. The Natural Gas primarily consists of Methane, Ethane, CO2 and those various Hydrocarbon isomers in the range of Propane (C3) to Decane (C10), commonly referred to as VOCs.<sup>1</sup> Heavier VOC components such as heavier hazardous air pollutants (HAPS) may exist in trace amounts. Condensate or Crude contains all other heavier hydrocarbons as a liquid which have little or no residual vapors. The empirical VOC and Methane data can be summarized by sources using Form 203 data which were summarized and checked against predicted Vapor/ Liquid Speciations by flashing equivalent process stream-related-leaks using accepted Equations of State, in this instance Suave-Redlich-Kwong method.

<sup>&</sup>lt;sup>1</sup> California Air Resources Board, Definitions of VOC and ROG, Planning and Technical Support Division, Emission Inventory Analysis Section, August 2000

|      | Table 3.1-1 Proposed Program Summary Table-Tanks            |           |          |         |                                     |  |  |  |  |  |
|------|-------------------------------------------------------------|-----------|----------|---------|-------------------------------------|--|--|--|--|--|
|      |                                                             |           | 2011     | Ratio   |                                     |  |  |  |  |  |
|      |                                                             | 2011 VOC, | Methane, | VOC:    |                                     |  |  |  |  |  |
| ltem | Short Name                                                  | TPY       | TPY      | Methane | Emission Source Type                |  |  |  |  |  |
| 1    | Condensate Tanks                                            | 125,800   | 27,588   | 4.56    | Post Flashed Liquid, API°>40        |  |  |  |  |  |
| 2    | Fugitives-Oil Well                                          | 18,253    | 65,656   | 0.28    | Process Liquid and Process Gas      |  |  |  |  |  |
| 3    | Pneumatic Devices-Oil Well                                  | 13,898    | 36,342   | 0.38    | Process Gas                         |  |  |  |  |  |
| 4    | Blowdowns-Gas Well Venting                                  | 11,524    | 78,985   | 0.15    | Casing Gas                          |  |  |  |  |  |
| 5    | Initial Completions-Gas Well Venting                        | 8,760     | 60,044   | 0.15    | Casing Gas                          |  |  |  |  |  |
| 6    | Pneumatic Pumps-Gas Well                                    | 4,879     | 17,549   | 0.28    | Process Gas                         |  |  |  |  |  |
| 7    | Point Sources: Others (Produced Water Portion)              | 2,083     | 7,492    | 0.28    | General Process Gas                 |  |  |  |  |  |
| 8    | Point Sources: Internal and Turbine Combustion (non coal)   | 2,041     | 7,342    | 0.28    | NG Fuel                             |  |  |  |  |  |
| 9    | Gas Well Truck Loading-NG                                   | 1,938     | 422      | 4.59    | Post Flashed Liquids, API°<40       |  |  |  |  |  |
| 10   | Recompletions-Gas Well Venting                              | 1,817     | 12,115   | 0.15    | Production Gas/Liquid Flash to amb. |  |  |  |  |  |
| 11   | Point Sources Crude Oil: Submerged Loading (Normal Service) | 1,304     | 286      | 4.56    | Post Flashed Liquids, API°<45       |  |  |  |  |  |
| 12   | Point Sources: Glycol Dehydrator Process Emissions          | 1,051     | 3,806    | 0.28    | Process Gas                         |  |  |  |  |  |
| 13   | Point Sources: Oil-Sludge-Waste Water Pit                   | 1,042     | 680      | 1.53    | Post Flashed Liquids/Water          |  |  |  |  |  |
| 14   | Point Sources: Fugitive Emissions                           | 1,012     | 3,640    | 0.28    | Process Liquid and Process Gas      |  |  |  |  |  |
| 15   | Compressor Engines-NG                                       | 480       | 1,727    | 0.28    | NG Fuel                             |  |  |  |  |  |
| 16   | Miscellaneous Engines                                       | 422       | 1,517    | 0.28    | NG Fuel                             |  |  |  |  |  |
| 17   | Point Sources: Flares                                       | 293       | 1,046    | 0.28    | Casing Gas                          |  |  |  |  |  |
| 18   | Fugitives: Other                                            | 177       | 637      | 0.28    | Process Liquid and Process Gas      |  |  |  |  |  |
| 19   | Drill Rigs                                                  | 157       | 564      | 0.28    | Production Gas/Liquid Flash to amb. |  |  |  |  |  |
| 20   | Workover Rigs                                               | 36        | 128      | 0.28    | NG Fuel                             |  |  |  |  |  |
| 21   | Dehydrators-Gas Well                                        | 14        | 49       | 0.28    | Process Gas                         |  |  |  |  |  |
| 22   | Tank Flaring-Condensate                                     | 6         | 1        | 4.56    | Post Flashed Liquid, API°>40        |  |  |  |  |  |
| 23   | NG Liq./Gas Well Wtr Tnk-NG                                 | 1         | 4        | 0.28    | Post Flash Production Mixed Liquids |  |  |  |  |  |
| 24   | Artificial Lift                                             | 0         | 1        | 0.25    | NG Fuel                             |  |  |  |  |  |
| 25   | Heaters-Oil Well                                            | -         | -        | 0.28    | NG Fuel                             |  |  |  |  |  |
|      | Total                                                       | 196,988   | 327,623  |         |                                     |  |  |  |  |  |

The generalized Process Flow Diagram below shows the major streams associated with various speciation of Hydrocarbon streams, in general there are Production Streams, Post- Separation Liquids, Process Gas, Commercial Gas and Tankage Vapors. Speciation components of interest are Methane, Ethane, VOC, GHG and HAPS( a subset of VOC).



#### 1.1.1 Methane

Methane is a known Green House Gas (GHG). It is the largest vapor component in a typical production stream. Its mass quantity is defined in the Gas Oil Ratio which measures the number of standard cubic feet of natural gas (mainly Methane) to the number of barrels of liquids (Crude Oil or Condensate). Once the oil and gas are separated, the Natural Gas vapors (which contain nearly 95% of the Methane along with other non-condensable gas, as well as lighter VOC components) are routed by dedicated piping to additional treatment/separation to a gas compressor or to a dehydrator. The Natural Gas is then shipped off the lease by way a Lease Automated Custody Transfer meter, commonly referred to as a LACT unit. Natural Gas may then be delivered to a gathering station for further treatment and compression or directly to larger compressor station.

#### 1.1.2 Ethane

Ethane, a light molecule, which typically comprises several percent of the Oil and Gas related vapors by weight, is not considered a GHG, nor is it considered part of the more reactive VOC (sometimes called Reactive Organic Compounds, ROG).

#### 1.1.3 Green House Gases

GHG is a composite value representing those compounds contributing to climate change (i.e., carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), sulfur hexafluoride (SF6), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), other fluorinated compounds, and other chemicals).

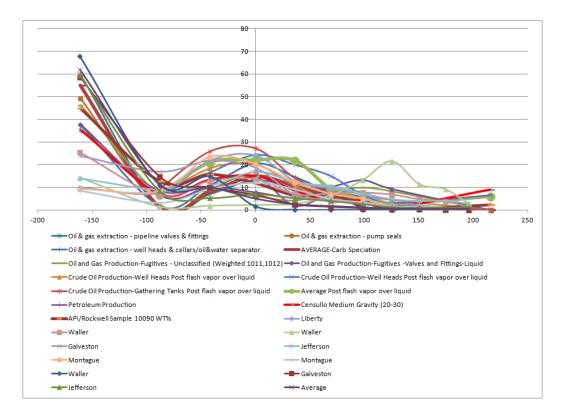
#### 1.1.4 VOC

VOCs are those organic compounds that are considered ozone precursors.

VOCs are in solution with Methane in the vapor and liquid phases. The composition changes as the production fluid is brought to the surface and separated from the liquids, flashed at lower pressures in a separator and each stream has a new basis for the vapor/liquid equilibrium. Gas Vapors are very rich in Methane and are driven by the Gas/Oil Ratio of the well. Dry gas and Coal Bed Methane may have little VOC. Once separated from the Hydrocarbon liquid the gas may be cleaned up by eliminating the liquids that are condensing in the pipe (a drip boot) or may be routed to a chiller to remove condensibles (VOC). Commercial gas will have the highest Methane concentration and a very low VOC content.

According to Raoult's Law and vapor pressures, the vapors in the Hydrocarbon liquid streams typically have more VOC that is released. These liquids may be routed to a treater or to subsequent separation prior to being sent to tankage at which point the VOC content is very high relative to methane but the TOC emissions rate is low.

Produced water has very little hydrocarbon in it. The Water/Hydrocarbon system is largely driven by Henry's Law for near infinite dilution conditions. Certain more soluble hydrocarbons may be present and a certain amount of methane may be dissolved in the water, depending on the pressure and temperature of the water when fed to the tank, methane may be released in the produced water tank, Soluble hydrocarbons will also be released at a rate dependent on the water diffusivity and vapor pressure but may also form azeotropes.


#### 1.1.5 Hazardous Air Pollutants

HAPS are those more complex isomers of VOCs including isomers with oxygen, nitrogen, chlorine (ketones, aldehydes, etc.), certain metals, and complex organic salts whose trace quantities are known to be toxic or has a potential to cause cancer. The list of HAPS is maintained by EPA under Clean Air Act, Section 112.

#### 2 Production stream split

The graph below shows the general speciation profiles for various empirically derived sampled streams.<sup>2</sup> The higher Methane content streams were either gas samples or more likely closer to production conditions with higher GOR. These data provide a foundational understanding of how Methane and VOC interrelate and should be considered in the context of mass fraction of the vapors for a given flash.

<sup>&</sup>lt;sup>2</sup> This graph is a compilation of rigourous speciation data from previous studies; it has been developed by WZI for modeling purposes to validate models against empirical data. Included studies are from : API, CARB, TERC, OrgProf and EPA Speciate.



The following model shows the expected HC speciation for vapors split off at saturation and at production conditions (leaking natural gas prior to any clean-up). These vapors do not alter composition as they leak. The VOC to Methane ratio is 0.28.<sup>3</sup>

| Production gas leaks |                |        |               |          |          |               |  |  |  |  |
|----------------------|----------------|--------|---------------|----------|----------|---------------|--|--|--|--|
| MixProps: TP Fla     | ash            |        |               |          |          | EOS: SRK      |  |  |  |  |
|                      |                |        |               |          |          |               |  |  |  |  |
| Initial Conditions   |                |        |               |          |          |               |  |  |  |  |
| Temperature:         | 150            |        |               |          |          |               |  |  |  |  |
| Pressure:            | 14.696         | psia   |               |          |          |               |  |  |  |  |
| Units:               |                |        | Mass Fraction |          |          |               |  |  |  |  |
|                      |                |        |               |          |          |               |  |  |  |  |
| Component            | MW             | BP, C  | Feed          | Vapor    | Liquid   | K-Value       |  |  |  |  |
| METHANE              | 16.0428        | -161.6 | 0.369737      | 0.700173 | 4.49E-03 | 18.15086      |  |  |  |  |
| ETHANE               | 30.0696        |        |               | 0.103222 | 2.67E-03 |               |  |  |  |  |
| PROPANE              | 44.0965        | -42.5  | 3.72E-02      | 6.65E-02 | 4.86E-03 |               |  |  |  |  |
| BUTANE               | 58.1234        | -0.5   | 2.67E-02      | 4.28E-02 | 8.83E-03 | 0.564377      |  |  |  |  |
| PENTANE              | 72.1503        | 36     | 2.16E-02      | 2.73E-02 | 1.53E-02 | 0.207753      |  |  |  |  |
| HEXANE               | 86.1772        | 68.7   | 3.75E-02      | 3.00E-02 | 4.57E-02 | 7.66E-02      |  |  |  |  |
| HEPTANE              | 100.204        | 98.4   | 5.35E-02      | 2.22E-02 | 8.82E-02 | 2.93E-02      |  |  |  |  |
| OCTANE               | 114.231        | 125    | 3.71E-02      | 6.92E-03 | 7.04E-02 | 1.15E-02      |  |  |  |  |
| NONANE               | 128.258        | 150    | 7.57E-03      | 5.82E-04 | 1.53E-02 | 4.43E-03      |  |  |  |  |
| DECANE               | 142.285        | 174.1  | 5.48E-03      | 1.65E-04 | 1.14E-02 | 1.70E-03      |  |  |  |  |
| UNDECANE             | 156.312        | 195.6  | 5.21E-03      | 6.15E-05 | 1.09E-02 | 6.57E-04      |  |  |  |  |
| DODECANE             | 170.338        | 216    | 6.97E-03      | 3.25E-05 | 1.46E-02 | 2.59E-04      |  |  |  |  |
| PENTADECANE          | 212.419        | 270.5  | 0.051578      | 1.51E-05 | 0.108573 | 1.63E-05      |  |  |  |  |
| NONADECANE           | 268.527        | 330    | 2.40E-02      | 2.88E-07 | 0.050439 | 6.65E-07      |  |  |  |  |
| ICOSANE              | 282.553        | 343    | 0.260474      | 1.07E-06 | 0.548384 | 2.27E-07      |  |  |  |  |
|                      |                |        |               |          |          |               |  |  |  |  |
|                      | Flash Results  |        | Feed          | Vapor    | Liquid   |               |  |  |  |  |
|                      | Phase Fracti   | on:    | 1             | 34%      | 66%      | Mass Fraction |  |  |  |  |
|                      | Molecular W    | eight: | 50.2669       | 21.4864  | 158.4392 | lbm/lbmol     |  |  |  |  |
|                      | VOC to Methane |        |               | 0.28     |          |               |  |  |  |  |

<sup>&</sup>lt;sup>3</sup> This table is a summary of calculation results from MixProps using Soave Redlich Kwong method.

#### **3 Post-Separation Liquid Flash Speciation**

The first process piping check on the issues of proper speciaton for leaks should occur at the point where a saturated hydrocarbon solution (having split at production with a gas oil ratio (GOR) sufficiently high to ensure vapor saturation) can be flashed at line pressure and subsequently flashed from liquid as a liquid leak to atmospheric conditions. This was achieved by creating a surrogate solution combining vapors from EPA Speciate with a generalized hydrocarbon liquid with sufficient molecular weight to reflect the general performance of Crude Oil (both at equal weights).<sup>4</sup>

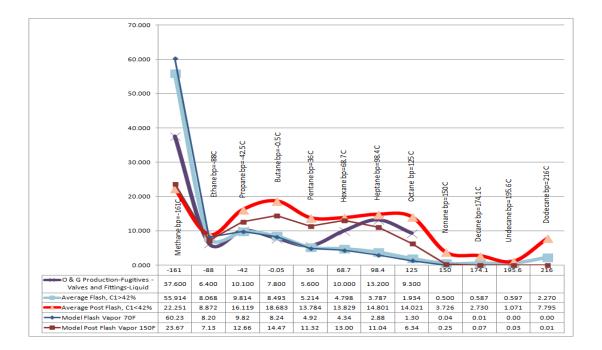
The results below show the production stream being flashed directly to ambient. The vapor phase shows that the VOC to Methane weight ratio is 0.48.<sup>5</sup> This particular model result which tends to agree with accepted speciations values such as those cited by GRI/EPA in their study.<sup>6</sup>

| EPA Leak Flash     |                   |            |               |         |          |               |  |  |  |  |
|--------------------|-------------------|------------|---------------|---------|----------|---------------|--|--|--|--|
| MixProps: TP Fla   | ash               |            |               |         |          | EOS: SRK      |  |  |  |  |
|                    |                   |            |               |         |          |               |  |  |  |  |
| Initial Conditions |                   |            |               |         |          |               |  |  |  |  |
| Temperature:       | 150               |            |               |         |          |               |  |  |  |  |
| Pressure:          | 14.696            | psia       |               |         |          |               |  |  |  |  |
| Units:             |                   |            | Mass Fraction |         |          |               |  |  |  |  |
|                    |                   |            |               |         |          |               |  |  |  |  |
| Component          | MW                | BP, C      | Feed          | Vapor   | Liquid   | K-Value       |  |  |  |  |
| METHANE            | 16.0428           | -161.6     | 21%           | 61%     | 0%       | 18.17921      |  |  |  |  |
| ETHANE             | 30.0696           | -88.6      | 3%            | 9%      | 0%       | 4.521121      |  |  |  |  |
| PROPANE            | 44.0965           | -42.5      | 5%            | 12%     | 1%       | 1.602346      |  |  |  |  |
| BUTANE             | 58.1234           | -0.5       | 4%            | 7%      | 2%       | 0.568642      |  |  |  |  |
| PENTANE            | 72.1503           | 36         | 3%            | 4%      | 2%       | 0.2098179     |  |  |  |  |
| HEXANE             | 86.1772           | 68.7       | 5%            | 3%      | 6%       | 7.75E-02      |  |  |  |  |
| HEPTANE            | VE 100.204        |            | 7%            | 2%      | 10%      | 2.97E-02      |  |  |  |  |
| OCTANE             | ANE 114.231       |            | 5%            | 1%      | 7%       | 1.17E-02      |  |  |  |  |
| NONANE             | 128.258           | 150        | 1%            | 0%      | 1%       | 4.52E-03      |  |  |  |  |
| DECANE             | 142.285           | 174.1      | 1%            | 0%      | 1%       | 1.74E-03      |  |  |  |  |
| UNDECANE           | 156.312           | 195.6      | 1%            | 0%      | 1%       | 6.74E-04      |  |  |  |  |
| DODECANE           | 170.338           | 216        | 1%            | 0%      | 1%       | 2.66E-04      |  |  |  |  |
| PENTADECANE        | 212.419           | 270.5      | 7%            | 0%      | 10%      | 1.69E-05      |  |  |  |  |
| NONADECANE         | 268.527           | 330        | 3%            | 0%      | 5%       | 7.05E-07      |  |  |  |  |
| ICOSANE            | 282.553           | 343        | 34%           | 0%      | 52%      | 2.42E-07      |  |  |  |  |
|                    |                   |            |               |         |          |               |  |  |  |  |
|                    | Flash Result      |            | Feed          | Vapor   | Liquid   |               |  |  |  |  |
|                    | Phase Fracti      | ion:       | 1             | 34%     | 66%      | Mass Fraction |  |  |  |  |
|                    | Molecular Weight: |            | 50.2669       | 21.4864 | 158.4392 | lbm/lbmol     |  |  |  |  |
|                    | VOC to Meth       | nane ratio |               | 0.48    |          |               |  |  |  |  |

However, the complex nature of each well precludes operators from calculating the specific stream composition and conditions for these dynamic conditions.

#### 4 Tankage Emissions Speciations

<sup>&</sup>lt;sup>4</sup> GOR typically ensures that a distinct vapor exists at the well head itself. This production split is realized in gas piping separate of the liquid sent to the separator. The resultant flash mass fraction of vapors was greater than the liquid indicating that the vapor composition loaded into the model dominated the partitioning and that the liquid surrogate did not.


<sup>&</sup>lt;sup>5</sup> This table is a summary of calculation results from MixProps using Soave Redlich Kwong method.

<sup>&</sup>lt;sup>6</sup> GRI/EPA, Methane Emissions from the Natural Gas Industry, Vol. 8, Equipment Leaks, also EPA Gas Star

The Tankage Emissions are largely rich in VOC due to the separation of the vapor and liquid components prior to tankage. More VOC is expected to exist in vapors over condensate and over tanks with weathered crude having less vapor mass fractions. Using EPA Speciate vapors (the regulatory default) as the basis for modeling the Crude/Natural Gas split in a secondary flash at atmospheric (tank conditions), one sees that the ratio of VOC to Methane is approximately 4.5 by weight.

|             | Vapors off Leaked Liquid |           |                      |        |                         |                                         |                          |                                 |                               |                   |                                    |          |
|-------------|--------------------------|-----------|----------------------|--------|-------------------------|-----------------------------------------|--------------------------|---------------------------------|-------------------------------|-------------------|------------------------------------|----------|
| Alkane C.N. | Alkane Group             | MW        | Approximate K-Factor | BP     | AVERAGE-CARB Speciation | EPA Average Pre flash vapor over liquid | KVB Petroleum Production | Censullo Medium Gravity (20-30) | API/Rockwell Sample 10090 WT% | Houston Study Oil | Houston Study Condensate Pre Flash | Average  |
| 1           | METHANE                  | 16.0428   | 189.9926             | -161.6 | 19.665%                 | 16.887%                                 | 11.165%                  | 10.328%                         | 13.936%                       | 10.805%           | 4.294%                             | 11.559%  |
|             | ETHANE                   | 30.0696   | 48.88881             | -88.6  | 1.138%                  | 6.567%                                  | 7.440%                   | 5.802%                          | 10.128%                       | 7.299%            | 6.526%                             | 7.667%   |
|             | PROPANE                  | 44.0965   | 17.57595             | -42.5  | 10.132%                 | 14.592%                                 | 19.371%                  | 18.158%                         | 20.007%                       | 17.235%           | 17.382%                            | 18.693%  |
|             | n-BUTANE                 | 58.1234   | 6.356389             | -0.5   | 25.148%                 | 13.647%                                 | 28.203%                  | 28.000%                         | 20.270%                       | 23.160%           | 26.084%                            | 24.908%  |
|             | n-PENTANE                | 72.1503   | 2.393135             | 36     | 22.088%                 | 12.081%                                 | 5.597%                   | 19.450%                         | 14.445%                       | 17.422%           | 20.161%                            | 14.228%  |
|             | n-HEXANE                 | 86.1772   | 0.906252             | 68.7   | 12.343%                 | 17.029%                                 | 14.067%                  | 8.076%                          | 14.672%                       | 11.748%           | 16.193%                            | 12.141%  |
|             | n-HEPTANE                | 100.204   | 0.357101             | 98.4   | 8.017%                  | 14.080%                                 | 10.397%                  | 6.799%                          | 4.596%                        | 8.039%            | 7.406%                             | 7.458%   |
|             | n-OCTANE                 | 114.231   | 0.143923             | 125    | 0.691%                  | 4.540%                                  | 1.914%                   | 0.985%                          | 0.581%                        | 2.851%            | 1.295%                             | 1.583%   |
|             | n-NONANE                 | 128.258   | 5.78E-02             | 150    | 0.521%                  | 0.387%                                  | 1.659%                   | 2.209%                          | 1.107%                        | 1.015%            | 0.468%                             | 1.498%   |
|             | DECANE                   | 142.285   | 2.31E-02             | 174.1  | 0.152%                  | 0.112%                                  | 0.110%                   | 0.113%                          | 0.153%                        | 0.315%            | 0.119%                             | 0.173%   |
|             | UNDECANE                 | 156.312   | 9.30E-03             | 195.6  | 0.058%                  | 0.042%                                  | 0.042%                   | 0.043%                          | 0.058%                        | 0.077%            | 0.040%                             | 0.055%   |
|             | DODECANE                 | 170.338   | 3.81E-03             | 216    | 0.031%                  | 0.023%                                  | 0.023%                   | 0.023%                          | 0.031%                        | 0.021%            | 0.020%                             | 0.025%   |
|             | PENTADECANE              | 212.419   | 2.75E-04             | 270.5  | 0.015%                  | 0.011%                                  | 0.011%                   | 0.012%                          | 0.016%                        | 0.011%            | 0.010%                             | 0.012%   |
|             | NONADECANE               | 268.527   | 1.34E-05             | 330    | 0.000%                  | 0.000%                                  | 0.000%                   | 0.000%                          | 0.000%                        | 0.000%            | 0.000%                             | 0.000%   |
| 20          | ICOSANE                  | 282.553   | 4.92E-06             | 343    | 0.001%                  | 0.001%                                  | 0.001%                   | 0.001%                          | 0.001%                        | 0.001%            | 0.001%                             | 0.001%   |
|             |                          |           | Vapor Wt f           | ract   | 0.122%                  | 0.157%                                  | 0.243%                   | 0.266%                          | 0.167%                        | 0.256%            | 0.669%                             | 0.233%   |
|             |                          |           | Vapor MW             |        | 40.5311                 | 41.9064                                 | 44.5758                  | 45.6927                         | 40.9893                       | 45.4678           | 53.0455                            | 44.18    |
|             |                          |           | Liquid Wt fract      |        | 99.878%                 | 99.843%                                 | 99.757%                  | 99.734%                         | 99.833%                       | 99.744%           | 99.331%                            | 99.767%  |
|             |                          |           | Liquid MW            |        | 209.5989                | 184.7707                                | 189.87                   | 194.4232                        | 212.2106                      | 187.9987          | 188.5648                           | 196.1256 |
|             |                          | VOC to Me | ethane ratio         |        | 4.0264062               | 4.5322526                               | 7.2892801                | 8.1191283                       | 5.4478302                     | 7.5780425         | 20.764242                          | 6.987104 |
|             |                          |           |                      |        |                         |                                         |                          |                                 |                               |                   |                                    |          |

General modeling results for post separation vapors that are likely sent to tanks, then allowed to weather, as tankage vapors were compared to both crude and condensate speciations from the Texas Environmental Resource Center (TERC) tanks emissions study. The results are shown below.



The TERC study indicates a broad range of results for speciations depending on the manner tanks are managed, as well as the type of process stream being sent to tanks.<sup>7</sup> These results when statistically interpreted and outliers eliminated showed patterns consistent with EOS-based expectations and indicate that the VOC to Methane ratio may be much higher; more study should be conducted of future reporting results to better define the appropriate speciations.<sup>8</sup>

<sup>&</sup>lt;sup>7</sup> Texas Environmental Research Consortium, FINAL REPORT: VOC EMISSIONS FROM OIL AND CONDENSATE STORAGE TANKS, rev. 2009

<sup>&</sup>lt;sup>8</sup> This table is a summary of calculation results from MixProps using Soave Redlich Kwong method.

| High Temp           | Separation | 1            |              |               |              |              |            |          |
|---------------------|------------|--------------|--------------|---------------|--------------|--------------|------------|----------|
| MixProps:           |            |              |              |               |              |              | EOS: SRK   |          |
|                     |            |              |              |               |              |              |            |          |
| Initial Cond        | litions    |              |              |               |              |              |            |          |
| Temperatu           |            |              |              | 130           |              |              |            |          |
| Pressure:           | 147        | psia         |              | 147           | psia         |              |            |          |
| Units:              | Mole Fract | ion          |              | Mass Fraction |              |              |            |          |
| <b>C</b>            | E          | Veree        | 1 Carolat    | Feed          | Veee         | Linuid       | K-Value    |          |
| Componen<br>METHANE |            | Vapor<br>82% | Liquid<br>5% | 21%           | Vapor<br>61% | Liquid<br>0% | 18.17921   |          |
|                     |            |              |              |               |              |              |            | 4 50     |
| ETHANE              | 6%         | 7%           | 1%           | 3%            | 9%           | 0%           | 4.521121   | 1.58     |
| PROPANE             |            | 6%           | 4%           | 5%            | 12%          | 1%           | 1.602346   | 61%      |
| BUTANE              | 3%         | 3%           | 5%           | 4%            | 7%           | 2%           | 0.568642   |          |
| PENTANE             |            | 1%           | 5%           | 3%            | 4%           | 2%           | 0.209818   | 0.478098 |
| HEXANE              | 3%         | 1%           | 11%          | 5%            | 3%           |              | 7.75E-02   |          |
| HEPTANE             |            | 0%           | 15%          | 7%            | 2%           | 10%          |            |          |
| OCTANE              | 2%         | 0%           | 10%          | 5%            | 1%           | 7%           | 1.17E-02   |          |
| NONANE              | 0%         | 0%           | 2%           | 1%            | 0%           | 1%           | 4.52E-03   |          |
| DECANE              | 0%         | 0%           | 1%           | 1%            | 0%           | 1%           | 1.74E-03   |          |
| UNDECAN             | 0%         | 0%           | 1%           | 1%            | 0%           | 1%           | 6.74E-04   |          |
| DODECAN             |            | 0%           | 1%           | 1%            | 0%           | 1%           | 2.66E-04   |          |
| PENTADE             | 2%         | 0%           | 8%           | 7%            | 0%           | 10%          | 1.69E-05   |          |
| NONADEC             | 1%         | 0%           | 3%           | 3%            | 0%           | 5%           | 7.05E-07   |          |
| ICOSANE             | 6%         | 0%           | 29%          | 34%           | 0%           | 52%          | 2.42E-07   |          |
|                     | 100%       | 100%         | 100%         | 100%          | 100%         | 100%         |            |          |
| Flash Res           | Feed       | Vapor        | Liquid       | Feed          | Vapor        | Liquid       |            |          |
| Phase Fra           | 1          | 0.78985      | 0.21015      | 1             | 0.33762      | 0.66238      | Mass Fract | tion     |

While many separate conditions may exist in between the well head (including first process separation) and the tankage, one expects that in those streams where the Natural Gas phase of the production is unseparated, there should be more VOC.

In summary, it is commonly accepted that the ration of VOC to Methane drops as gas moves further into downstream environements.

"To estimate VOC and HAP, weight ratios were developed based on methane emissions per device. The specific ratios used were 0.278 pounds VOC per pound methane and 0.0105 pounds HAP per pound methane in the production and processing segments, and 0.0277 pounds VOC per pound methane and 0.0008 pounds HAP per pound methane in the transmission segment."<sup>9</sup>

Conversely, the EOS model demonstrates that for liquids going to tankage, when there is low pressure separation prior to the condensate tankage, the volume of VOCs is approximately than 0.1% by mass fraction. The assumption in the inventory is that condensate tanks are not necessarily preceded by low pressure separation an estimate that may not reflect the actual surface equipment.<sup>10</sup>

<sup>&</sup>lt;sup>9</sup> EPA NSPS, 5.0 PNEUMATIC CONTROLLERS

<sup>&</sup>lt;sup>10</sup> A conversion of the 13.7 lb/bbl VOC emissions factor results in a mass fraction of 4.4% as opposed to the post flashed value of approximately 0.1%.

#### 5 Glycol Dehydrator Process Emissions

An important element of speciation is the effect of Glycol Dehydration regeneration. This is a process related stream and is a reflection of the dehydration process and selection of type of glycol and recycle rate. The glycol dehydrator uses the solubility of several different forms of glycol to strip the natural gas of certain undesirable components, water being the largest concern. Along with water some methane is removed, acids may be removed and some soluble VOCs, largely along the lines of Henry's Law.<sup>11</sup> The resultant regeneration-related emissions will have a certain amount of methane and water/glycol soluble aromatic VOC isomers, however the relationship between the exhaust and the processed natural gas will not be directly associated with the pre or post processed gasses by flash calculations using partial pressure, due to the solubility effect. Methane emissions can be estimated using general programs such as GlyCalc, ProSim, etc. VOV emissions have been largely focused on the aromatics with Benzene being of particular concern.<sup>12</sup>

<sup>&</sup>lt;sup>11</sup> Wilson, MJ and Frederick JD ed., SPE Monograph: Environmental Engineering for Exploration and Production Activities, Henry L. Dougherty Series, Volume 18

<sup>&</sup>lt;sup>12</sup> EPA/GRI, Methane Emissions from the Natural Gas Industry 14: Glycol Dehydrators, 600/R-96-080n, 1996

# EDF-WZI-APPENDIX VI

### INITIAL ECONOMIC IMPACT ANALYSIS PER § 25-7-110.5(4), C.R.S.

For proposed revisions to Colorado Air Quality Control Commission Regulation Number 7 (5 CCR 1001-9)

### I. INTRODUCTION

The Colorado Air Pollution Control Division (Division) submits the following Initial Economic Impact Analysis in conjunction with its proposed revisions to Colorado Air Quality Control Commission (AQCC) Regulation Number 7 (5 CCR 1001-9). The Regulation Number 7 rulemaking package proposes revisions that expand existing oil and gas control requirements and establish additional monitoring, recordkeeping and reporting requirements. Among other things, the Division proposes to: increase control requirements and improve capture efficiency requirements for oil and gas storage tanks; minimize fugitive emissions of hydrocarbons (including volatile organic compounds, methane and ethane) from leaking components at compressor stations and well production facilities; expand control requirements for pneumatic devices; increase control requirements for glycol dehydrators; and minimize venting at oil and gas production facilities.

In this Initial Economic Impact Analysis, the Division has assessed the costs and benefits associated with each of the proposed strategies based on the reasonably available data. In collecting this data, the Division has sought input from various stakeholders in an effort to generate the most complete and accurate assessment of the costs and benefits of the proposed strategies. Where data was not reasonably available, the Division utilized assumptions that are set forth in this analysis. To the extent that additional data regarding the costs and benefits of the proposed strategies is made available, the Division will assess this data and, where appropriate, incorporate it into the Final Economic Impact Analysis required under AQCC Procedural Rules, Section V.E.7.

#### II. REQUIREMENTS FOR AN INITIAL ECONOMIC IMPACT ANALYSIS

Section 25-7-110.5(4), C.R.S. sets forth the requirements governing the preparation and submittal of economic impact analyses for air quality rules. This section provides that:

Before any permanent rule is proposed pursuant to this section, an initial economic impact analysis shall be conducted in compliance with this subsection (4) of the proposed rule or alternative proposed rules. Such economic impact analysis shall be in writing, developed by the proponent, or the division in cooperation with the proponent and made available to the public at the time any request for hearing on a proposed rule is heard by the commission.

Initial Economic Impact Analysis for Proposed Revisions to AQCC Regulations No. 7, Submitted with Request for Hearing Documents on November 15, 2013 Section 25-7-110.5(4)(a), C.R.S. The statute further provides that:

The proponent and the division shall select one or more of the following economic impact analyses. The commission may ask affected industry to submit information with regard to the cost of compliance with the proposed rule, and, if it is not provided, it shall not be considered reasonably available. The economic impact analysis required by this subsection (4) shall be based upon reasonably available data ....

Section 25-7-110.5(4)(c), C.R.S.. For the purposes of this Initial Economic Impact Analysis, the Division has chosen to utilize the methodology set forth in § 25-7-110.5(4)(c)(I), C.R.S., which requires the following:

(I) Cost-effectiveness analyses for air pollution control that identify:

(A) The cumulative cost including but not limited to the total capital, operation, and maintenance costs of any proposed controls for affected business entity or industry to comply with the provisions of the proposal;

(B) Any direct costs to be incurred by the general public to comply with the provisions of the proposal;

(C) Air pollution reductions caused by the proposal;

(D) The cost per unit of air pollution reductions caused by the proposal;

(E) The cost for the division to implement the provisions of the proposal.

## III. OVERVIEW OF PROPOSED REGULATORY CHANGES

The Division is proposing revisions to AQCC Regulation Number 7 in an effort to enhance the effectiveness of Colorado's air quality requirements for the oil and gas exploration and production sector. These proposed revisions consist of the following:

- 1) Enhancing the existing control program for petroleum storage tanks by:
  - a. Lowering the existing control requirement threshold for condensate storage tanks from twenty to six tons per year of uncontrolled actual volatile organic compound (VOC) emissions;
  - b. Requiring controls for crude oil and produced water storage tanks with uncontrolled actual VOC emissions that are equal to or greater than six tons per year; and
  - c. Expanding non-attainment area requirements for tank controls during the first 90 days of production to the rest of the state;
- 2) Establishing requirements to ensure that emissions from controlled storage tanks are captured and routed to the control device;

- 3) Establishing leak detection and repair requirements for compressor stations and well production facilities;
- 4) Expanding the existing non-attainment area requirements for auto-igniters on flare devices to the rest of the state;
- 5) Expanding the existing non-attainment area requirements for low bleed pneumatic devices to the rest of the state and where feasible requiring no-bleed pneumatic devices;
- 6) Requiring that the gas stream at newly constructed well production facilities either be connected to a pipeline or routed to a control device from the date of first production;
- 7) Lowering the existing control requirement threshold for existing glycol dehydrators to six tons per year of uncontrolled actual VOC emissions and two tons per year of uncontrolled actual VOC emissions for dehydrators located within 1,320 feet of a building, and establishing a two ton per year control threshold for all new glycol dehydrators; and
- 8) Establishing requirements for the use of best management practices both to minimize the need for downhole well maintenance and liquids unloading and to minimize emissions during well maintenance and liquids unloading events.

## IV. COST/BENEFIT ANALYSIS:

The Division's assessment of the costs and benefits for the proposed strategies is set forth below. For each strategy, these assessments identify the cumulative costs for the affected industry, the estimated air pollution reduction, and the projected cost per unit of air pollution reduced. The Division also assessed whether any of the proposed strategies would impose a direct cost on the general public to comply, and determined that based on the available data there will be no direct costs on the general public for any of the proposed requirements. Finally, the Division considered whether there would be any additional costs for the Division to implement the proposed requirements beyond current expenditures, and concluded that there would be no additional implementation costs associated with these proposed strategies.

## A. <u>Control Requirements for Petroleum Storage Tanks</u>

Commencing in 2004 the Air Quality Control Commission has adopted a series of requirements aimed at reducing emissions from petroleum storage tanks at well production facilities, compressor stations and gas processing plants. Currently, condensate tanks with uncontrolled actual emissions of 20 tons per year or greater of VOC must be equipped with a control device that has a control efficiency of at least 95%. Additionally, with certain exceptions, operators in non-attainment areas must achieve a 90% system-wide reduction of VOC emissions from condensate tanks during the period from May 1 through September 30, and 70% during the period from October 1 through April 30. These current requirements only apply to tanks that store condensate, which is defined in the AQCC's Common Provisions regulation as "hydrocarbon liquids . . . with an API gravity of 40 degrees or greater." While most of the petroleum liquid produced in Colorado qualifies as condensate, there are heavier hydrocarbon

liquids, typically referred to as crude oil, with an API gravity below 40 degrees that are not subject to the current control requirements. Additionally, there are a number of high volume produced water tanks that have VOC emissions above six tons per year that are not currently regulated under the existing requirements.

While Colorado has achieved considerable success in controlling emissions from condensate tanks since 2004, petroleum storage tanks at oil and gas production and midstream facilities continue to be the most significant source of VOC emissions from this sector. To address this emission source the Division is proposing the following strategies: 1) reducing the control threshold from twenty tons per year VOC to six tons per year; 2) eliminating the distinction between condensate and other liquids and requiring controls strictly based on emission levels; and 3) extending the current requirement that all condensate tanks in the non-attainment area be controlled during the first 90 days of production to storage tanks throughout the state. In order to meet each of these three strategies, the Division assumes that owners and operators will equip tanks with enclosed flares, as is the typical practice under the existing tank control requirements. The estimated costs associated with installing and maintaining an enclosed flare are set forth in subsection 1 below. Utilizing the calculated flare costs, the estimated costs and benefits for each of the three tank control strategies are discussed in subsections 2-4 below.

### 1. General Cost Estimates for Flares

The estimated cost for a flare control device is based on identified costs from a 2008 oil and gas  $cost study^{1}$  adjusted for inflation. Based on this data, the estimated annualized cost of a flare control device with auto-igniter<sup>2</sup> is about \$6,287.

| Table 1: Flare Control Device with Auto Igniter – Annualized Cost Analysis* |               |                  |             |             |  |  |
|-----------------------------------------------------------------------------|---------------|------------------|-------------|-------------|--|--|
| Item                                                                        | Capital Costs | Non-Recurring    | O&M Costs   | Annualized  |  |  |
|                                                                             | (one time)    | Costs (one time) | (recurring) | Total Costs |  |  |
| Flare                                                                       | \$18,169      |                  |             |             |  |  |
| Freight/Engineering                                                         |               | \$1,648          |             |             |  |  |
| Flare Installation                                                          |               | \$6,980          |             |             |  |  |
| Auto Igniter                                                                | \$1,648       |                  |             |             |  |  |
| Pilot Fuel**                                                                |               |                  | \$768       |             |  |  |
| Maintenance                                                                 |               |                  | \$2,197     |             |  |  |
| Subtotal Costs                                                              | \$19,817      | \$8,628          | \$2,965     |             |  |  |
| Annualized Costs***                                                         | \$2,747       | \$575            | \$2,965     | \$6,287     |  |  |

<sup>&</sup>lt;sup>1</sup> <u>See</u> "Oil & Gas Emissions Reduction Strategies Cost Analysis and Control Efficiency Determination," Lesair Environmental, Inc., June 2008. Information from this study was previously submitted to the AQCC as part of the 2008 Ozone Action Plan process.

 $<sup>^2</sup>$  Currently only flares in the non-attainment area are required to have auto-igniters. Under the current proposal, the auto-igniter requirement would be extended statewide. For the purposes of this cost analysis, it is assumed that auto-igniters will be required statewide. The cost and benefits associated with equipping existing flares outside the non-attainment with auto-igniters are discussed below in Section D.

\*Control cost evaluation based on 2008 Ozone Rulemaking cost survey and producer data. Control device costs were developed based on an oil and gas cost study and information submitted by industry in 2008. However, those costs were escalated by 9.85% to reflect CPI-U increases that have occurred since 2008. \*\* Pilot fuel costs \$3.41/MMBtu (Henry Hub Spot Price - Aug. 2013) \*\*\* Annualized over 15 years at 5% ROR

## 2. Lowering Statewide Condensate Tank Control Threshold (from 20 tpy to 6 tpy)

The Division is proposing to lower the uncontrolled VOC emission control threshold from 20 tpy down to 6 tpy on condensate storage tanks statewide. Based on an analysis of the Air Pollution Emissions Notice (APEN) database, the Division estimates that statewide there are 588 uncontrolled condensate tank batteries with VOC emissions over six tons per year. Of these 588 tanks, 396 are outside the non-attainment area and the remaining 192 are within the current non-attainment area.

| Table 2: Condensate Tank Battery Analysis |           |             |               |                 |  |  |
|-------------------------------------------|-----------|-------------|---------------|-----------------|--|--|
| Toply Pottory Type                        | Ozone NAA | Outside     | Cancelled     | Total Statewide |  |  |
| Tank Battery Type                         | [count]   | NAA [count] | Tanks [count] | Tanks [count]   |  |  |
| Controlled Tanks                          | 4,971     | 490         |               | 5,461           |  |  |
| Uncontrolled Tanks                        | 1,451     | 1,132       | 36            | 2,619           |  |  |
| All Tanks                                 | 6,422     | 1,622       | 36            | 8,080           |  |  |
|                                           |           |             |               |                 |  |  |
| Uncontrolled Tanks ( $\geq 6$ tpy)        | 192       | 396         |               | 588             |  |  |

Based on the reported uncontrolled actual VOC emissions for these 588 tanks, and assuming both that 75% of the VOC emissions are captured and sent to the flare,<sup>3</sup> and that the flare has a 95% destruction efficiency, the total VOC emission reduction associated with lowering the condensate tank threshold statewide is 5,162 tons per year.

| Table 3: Condensate Tank Battery Emissions Analysis for Lowering Statewide Threshold |                      |             |             |  |  |
|--------------------------------------------------------------------------------------|----------------------|-------------|-------------|--|--|
|                                                                                      | Uncontrolled         | Controlled  | VOC         |  |  |
| Tonk Dottomy Type                                                                    | <b>VOC Emissions</b> | VOC         | Emission    |  |  |
| Tank Battery Type                                                                    | [tons/year]          | Emissions   | Reduction   |  |  |
|                                                                                      |                      | [tons/year] | [tons/year] |  |  |
| NAA Uncontrolled Tanks (≥6 tpy)                                                      | 2,355                | 677*        | 1,678       |  |  |
| Outside NAA Uncontrolled Tanks (≥6 tpy)                                              | 4,890                | 1,406*      | 3,484       |  |  |
| Totals:                                                                              | 7,245                | 2,083       | 5,162       |  |  |

\*Emission reduction estimated by accounting for 75% capture and 95% destruction efficiency.

<sup>&</sup>lt;sup>3</sup> The costs and benefits associated with improving the capture percentage for controlled storage tanks are discussed below in Section B.

Initial Economic Impact Analysis for Proposed Revisions to AQCC Regulations No. 7, Submitted with Request for Hearing Documents on November 15, 2013

The annualized cost of installing 588 flare control devices is about \$3.7 million dollars with an average cost effectiveness of about \$716 per ton of VOC reduced. For the smallest individual tank battery subject to controls (six tons/year), the flare cost effectiveness is estimated at \$1,471 per ton of VOC reduced.

| Table 4: Tanks over 6 tpy – Control Cost Estimates for Flare Control Devices |                 |                  |               |               |  |
|------------------------------------------------------------------------------|-----------------|------------------|---------------|---------------|--|
| Affected Tanks                                                               | Each Flare      | Total Annualized | VOC Reduction | Control Costs |  |
| [count]                                                                      | Annualized Cost | Costs            | [tons/year]   | [\$/ton]      |  |
| 588                                                                          | \$6,286.8       | \$3,696,638      | 5,162         | \$716         |  |

## 3. Requiring Controls for Produced Water and Crude Oil Tanks

As discussed above, the Division is proposing to eliminate the distinction between condensate tanks and other storage tanks. If the AQCC adopts this proposal, crude oil tanks and produced water tanks with uncontrolled actual VOC emissions of six tons per year or greater will require controls. Because produced water and crude oil tanks are identified separately in the Division's APEN data base, the costs and benefits for these two types of storage tanks are broken out separately.

The Division is proposing that all statewide produced water tanks with uncontrolled VOC emissions over six tons/year be required to install emission controls. Some uncontrolled produced water tanks could be co-located at sites with condensate or crude oil tanks that have flare controls, but pressure and flow differences may require the installation of a separate flare control device for the water tank. Consequently, the control costs are based on the assumption that each water tank battery will install a new flare control device. Based on an analysis of the APEN database, the Division estimates that statewide there are 52 uncontrolled produced water tank batteries with VOC emissions over six tons/year.

| Table 5: Produced Water Tank Battery Analysis |                             |
|-----------------------------------------------|-----------------------------|
| Tank Battery Type                             | Total Statewide Water Tanks |
| Controlled Water Tanks:                       | 338                         |
| Uncontrolled Water Tanks:                     | 530                         |
| Total:                                        | 868                         |
|                                               |                             |
| Uncontrolled Tanks (≥6 tpy)                   | 52                          |

Based on the reported uncontrolled actual emissions, the Division estimates that the total VOC emission reduction associated with controlling these produced water tanks statewide is 457 tons per year.

| Table 6: Produced Water Tank Battery – Emissions Analysis |               |             |             |  |  |
|-----------------------------------------------------------|---------------|-------------|-------------|--|--|
|                                                           | Uncontrolled  | Controlled  | VOC         |  |  |
| T 1 D (4 T                                                | VOC Emissions | VOC         | Emission    |  |  |
| Tank Battery Type                                         | [tons/year]   | Emissions   | Reduction   |  |  |
|                                                           |               | [tons/year] | [tons/year] |  |  |
| Uncontrolled Tanks (≥6tpy)                                | 641.4         | 184.4*      | 457         |  |  |

\*Emission reduction estimated by accounting for 75% capture and 95% destruction efficiency.

The annualized cost of installing 52 flare control devices is about \$327,000, with an average cost effectiveness of about \$715 per ton of VOC reduced. For the smallest individual tank battery (six tons/year), the flare cost effectiveness is estimated at \$1,471 per ton of VOC reduced.

| Table 7: Produced Water Tanks – Control Cost Estimates for Flare Control Devices |          |            |            |             |          |  |
|----------------------------------------------------------------------------------|----------|------------|------------|-------------|----------|--|
|                                                                                  | Affected | Each Flare | Total      | VOC         | Control  |  |
| Tank Size                                                                        | Tanks    | Annualized | Annualized | Reduction   | Costs    |  |
|                                                                                  | [count]  | Cost       | Costs      | [tons/year] | [\$/ton] |  |
| $\geq$ 6tpy                                                                      | 52       | \$6,286.8  | \$326,914  | 457         | \$715    |  |

The Division is proposing that all statewide hydrocarbon liquid storage tanks with VOC emissions over six tons/year must install emission controls. Based on a recent analysis of 2013 APEN data, there are 67 reported crude oil tanks batteries statewide. Thirty seven of the tank batteries are already equipped with controls. Of the remaining thirty, eight are over the proposed six tons/year threshold. Given that approximately 5% of the total wells in the state report crude oil production to the Colorado Oil and Gas Conservation Commission (COGCC),<sup>4</sup> it appears likely that the Division's APEN database may be undercounting crude oil tanks, either because these tanks have not been reported or because they are being reported as condensate tanks.<sup>5</sup>

| Table 8: Crude Oil Tank Battery Analysis |                                 |
|------------------------------------------|---------------------------------|
| Tank Battery Type                        | Total Statewide Crude Oil Tanks |
| Controlled Crude Oil Tanks               | 37                              |
| Uncontrolled Crude Oil Tanks             | 30                              |
| Total:                                   | 67                              |
|                                          |                                 |
| Uncontrolled Tanks (≥6 tpy)              | 8                               |

<sup>&</sup>lt;sup>4</sup> Based on an analysis of 2010 COGCC data.

<sup>&</sup>lt;sup>5</sup> Prior to 2008 crude oil storage tanks were exempt from APEN reporting requirements, which may explain in part the small numbers of tanks identified in the system.

Initial Economic Impact Analysis for Proposed Revisions to AQCC Regulations No. 7, Submitted with Request for Hearing Documents on November 15, 2013

The total VOC emission reduction associated with controlling these eight crude oil tanks statewide is 118 tons per year.

| Table 9: Crude Oil Tank Battery – Emissions Analysis |                  |               |                     |  |  |
|------------------------------------------------------|------------------|---------------|---------------------|--|--|
|                                                      | Uncontrolled VOC | Controlled    | <b>VOC</b> Emission |  |  |
| Tank Battery Type                                    | Emissions        | VOC Emissions | Reduction           |  |  |
|                                                      | [tons/year]      | [tons/year]   | [tons/year]         |  |  |
| Uncontrolled Tanks (≥6tpy)                           | 165.2            | 47.5*         | 117.7               |  |  |

\*Emission reduction estimated by accounting for 75% capture and 95% destruction efficiency.

The annualized cost of installing eight flare control devices is about \$50,294 dollars with an average cost effectiveness of about \$427 per ton of VOC reduced. For the smallest individual tank battery (six tons/year), the flare cost effectiveness is estimated at \$1,471 per ton of VOC reduced.

| Table 10: Crude Oil Tanks – Control Cost Estimates for Flare Control Devices |          |            |            |             |          |  |
|------------------------------------------------------------------------------|----------|------------|------------|-------------|----------|--|
|                                                                              | Affected | Each Flare | Total      | VOC         | Control  |  |
| Tank Size                                                                    | Tanks    | Annualized | Annualized | Reduction   | Costs    |  |
|                                                                              | [count]  | Cost       | Costs      | [tons/year] | [\$/ton] |  |
| $\geq$ 6tpy                                                                  | 8        | \$6,286.8  | \$50,294.4 | 117.7       | \$427    |  |

## 4. Requiring Controls During the First 90 Days of Production Statewide

Under current requirements owners and operators of new and modified storage tanks outside the non-attainment area have 90 days after the date of first production to determine if emissions from the tank trigger the requirement to install a control. Because production is typically at its highest during this initial period, significant emissions can occur before controls are installed. To address this issue in the non-attainment area, the AQCC mandated in the 2008 Ozone Action Plan that all condensate tanks be controlled during the first 90 days. The Division is now proposing to expand this requirement to storage tanks throughout the state.

To calculate the cost effectiveness of this strategy, the Division first determined the number of new and modified storage tanks outside the non-attainment area based on reported APEN data for the period of 2010-2012. Based on this APEN data, there are on average 141 new and modified tanks each year, with yearly reported uncontrolled actual emissions of 7,370 tons VOC. Assuming that emissions during the first 90 days equal 1/4<sup>th</sup> of the annual reported emissions,<sup>6</sup> total uncontrolled actual VOC emissions from these tanks during the first 90 days is 1,842.5 tons.

<sup>&</sup>lt;sup>6</sup> Because reported emissions typically are based on a calculation assuming a standard rate of production decline after the first 90 days, actual emissions during the first 90 days could be much higher.

Initial Economic Impact Analysis for Proposed Revisions to AQCC Regulations No. 7, Submitted with Request for Hearing Documents on November 15, 2013

Assuming enhanced capture efficiency for these new tanks (<u>See</u> Section B) the flare control efficiency is 95%, thus the calculated benefit from expanding the first 90 day control requirement to tanks outside the non-attainment area will be 1,750.4 tons per year.

While the Division estimates that there are 141 new and modified storage tanks outside the nonattainment area each year, the majority of these, 84, will require control devices regardless of this strategy since their uncontrolled actual emissions are over six tpy. For these 84 tanks, the cost of operating a flare during the first 90 days will be approximately 25% of the total annualized cost, or \$1,571.70 per tank. For the remaining 57 tanks with emissions less than six tons/year, because controls for these tanks will only need to be in place for 90 days, the Division assumes that each flare can control three tanks per year, which means that 19 new flares are required to comply with this proposed strategy. For other applications, the annualized cost of a flare is estimated to be \$6,287. Since flares required for this application will be relocated three times a year, the Division assumes an additional \$3,000 in annual relocation costs, for a total annualized cost of about \$9,287 per flare. Based on the emission reductions calculated above, the total cost effectiveness of this requirement is \$176/ton of VOC reduction.

Table 11: Control Cost Estimates for Flare Control Devices Required During the First 90Days of Production

| Storage<br>Tank<br>Threshold<br>[tpy] | Number of<br>New<br>Storage<br>Tanks | Number<br>of New<br>Flares | Annualized<br>Cost Each<br>Flare | Total Flare<br>Cost | Total VOC<br>Reduction<br>[tons/year] | VOC<br>Control<br>Cost<br>[\$/ton] |
|---------------------------------------|--------------------------------------|----------------------------|----------------------------------|---------------------|---------------------------------------|------------------------------------|
| <6                                    | 57                                   | 19                         | \$9,286.8                        | \$176,449.2         | 44.7                                  | \$3,947                            |
| ≥6                                    | 84                                   | 84                         | \$1,571.7                        | \$132,022.8         | 1,705.7                               | \$77                               |
|                                       | 141                                  |                            |                                  | \$308,472           | 1,750.4                               | \$176                              |

## **B.** Emission Capture Requirements for Controlled Petroleum Storage Tanks

In order for storage tank control requirements to be effective, emissions from the tank must be routed to the control device. Historically the Division has assumed that 100% of a tank's emissions will be captured and routed to the control device, typically a flare, resulting in a 95% reduction of emissions. Field observations using infra-red (IR) cameras and other methodologies indicate that in actuality emissions from controlled storage tanks often escape through the thief hatches and pressure relief valves (PRV) and therefore are not being combusted in the flare. This occurs when the tank cannot adequately contain the flashing emissions that occur when pressurized liquids from the separator are dumped into the atmospheric tank. To address this issue, the Division is proposing new regulatory language clarifying that all emissions from controlled storage tanks must be routed to the control device and that these tanks must be operated without venting emissions from thief hatches, PRVs and other openings, except when venting is reasonably necessary for maintenance, gauging, or safety of personnel and equipment.

To assure compliance with these capture standards, the Division's proposal requires that owners and operators of controlled storage tanks implement a Storage Tank Emission Management (STEM) plan. Pursuant to the STEM plan, owners and operators must evaluate and employ appropriate control technologies and/or operational practices designed to meet the proposed capture requirements, and certify that these technologies and/or operational practices are designed to minimize emissions from the tank. The Division's STEM proposal also requires implementation of a two-pronged monitoring strategy involving a weekly<sup>7</sup> auditory, visual, and olfactory (AVO) inspection for all controlled tanks, and a periodic instrument based monitoring for tanks using Method 21, an IR camera or other Division approved monitoring device or method. As proposed, the frequency of this instrument based monitoring will depend on the level of uncontrolled actual emissions from the tank.

| Table 12: Proposed Tiering for Instrument Based Tank Inspections |                      |  |  |  |  |
|------------------------------------------------------------------|----------------------|--|--|--|--|
| Tank Uncontrolled Actual VOC Emissions                           | Inspection Frequency |  |  |  |  |
| $\geq 6$ tpy to $\leq 12$ tpy                                    | Annually             |  |  |  |  |
| $>12$ tpy to $\leq 50$ tpy                                       | Quarterly            |  |  |  |  |
| > 50 tpy                                                         | Monthly              |  |  |  |  |

In assessing the cost effectiveness of the proposed requirements, the Division first calculated the costs associated with implementing technological and/or operational changes at controlled tanks. For the purposes of this analysis the Division assumed that all tanks with uncontrolled actual emissions greater than or equal to six tons per year would need to be controlled consistent with the Division's proposal discussed in Section A above. Based on reported data, there are currently 5,270 storage tanks statewide with emissions greater than or equal to six tons per day. While the Division's proposal does not specify the type of technology or operational practices that operators will use, for the purposes of this analysis the Division assumed that buffer bottle technology would be installed on each of the subject tanks.<sup>8</sup> The buffer bottle technology utilizes a small tank that is installed after the separator which allows for a secondary flash of pressurized liquids prior to dumping into the storage tank. The second-stage flash reduces the pressure of the flashing emissions that occur when the liquids are brought to atmospheric pressure. Based on industry provided information, the estimated annual cost of a buffer bottle is set forth in Table 13.

<sup>&</sup>lt;sup>7</sup> There is an exception for the weekly inspection requirement where the operator loads out liquids from the storage tank on less than a weekly basis. In these circumstances the operator must conduct the inspection whenever liquids are loaded out, but no less often than every 30 days. Typically liquids are loaded out multiple times in a given week, meaning that for the majority of the tanks AVO inspections will be required weekly.

<sup>&</sup>lt;sup>8</sup> Based on discussions with industry representatives during the stakeholder process there may be other less costly technologies and operational practices that could be used to ensure good emission capture from tanks such as replacing seals, more frequent maintenance, changing the size of piping going to the storage tank, and timing well dumps to avoid overloading the separator. There may also be other options for new facilities that allow for the capture and sale of additional gas such as the installation of high-low pressure separators or utilizing a liquids gathering system that eliminates atmospheric storage tanks at well sites.

| Table 13: Annualized Cost Analysis for Buffer Bottle |               |                                       |             |             |  |  |  |
|------------------------------------------------------|---------------|---------------------------------------|-------------|-------------|--|--|--|
| Item                                                 | Capital Costs | Capital Costs Non-Recurring O&M Costs |             |             |  |  |  |
|                                                      | (one time)    | Costs (one time)                      | (recurring) | Total Costs |  |  |  |
| Buffer Bottle                                        | \$6,000       |                                       |             |             |  |  |  |
| Freight/Engr                                         |               | \$600                                 |             |             |  |  |  |
| Installation                                         |               | \$2,280                               |             |             |  |  |  |
| Maintenance                                          |               |                                       | \$2,000     |             |  |  |  |
| Subtotal Costs                                       | \$6,000       | \$2,880                               | \$2,000     |             |  |  |  |
| Annualized Costs*                                    | \$832         | \$192                                 | \$2,000     | \$3,024     |  |  |  |

\* Annualized over 15 years at 5% ROR

The Division also calculated the costs associated with conducting enhanced inspections. Based on the proposed tiering, operators will need to conduct 24,622 tank inspections per year<sup>9</sup>.

Assuming that each inspection takes two hours and utilizing a \$99/hour inspection cost,<sup>10</sup> the total annual cost associated with conducting enhanced inspections under the proposed rule is \$4,875,156, which equates to \$925 per year for each tank that will be subject to STEM.

| Table 14: Instrument Based Tank Inspections Based on Proposed Tiering |                    |                         |                          |                          |  |  |  |
|-----------------------------------------------------------------------|--------------------|-------------------------|--------------------------|--------------------------|--|--|--|
| Tank Uncontrolled<br>Actual VOC<br>Emissions                          | Number of<br>Tanks | Inspection<br>Frequency | Number of<br>Inspections | STEM Inspection<br>Costs |  |  |  |
| $\geq$ 6 tpy to $\leq$ 12 tpy                                         | 1,390              | Annually                | 1,390                    | \$275,220                |  |  |  |
| >12 tpy to $\leq$ 50 tpy                                              | 2,916              | Quarterly               | 11,664                   | \$2,309,472              |  |  |  |
| > 50 tpy                                                              | 964                | Monthly                 | 11,568                   | \$2,290,464              |  |  |  |
|                                                                       | 5,270              |                         | 24,622                   | \$4,875,156              |  |  |  |

The Division also considered whether additional costs should be included for conducting periodic AVO inspections. Because these activities are already required for controlled storage tanks under existing regulation, the Division did not include these costs in determining the total cost of the proposed capture requirements. The Division also did not include costs associated with certifying that selected technologies and/or operational practices are designed to minimize emissions, since costs for certifying capture efficiency are already included in the annualized cost of required flares.<sup>11</sup> Accordingly, the total projected annual cost of the proposed capture

<sup>&</sup>lt;sup>9</sup> In practice, many operators are already conducting IR camera inspections at storage tanks, however, the Division does not have information regarding how many inspections are currently occurring.

<sup>&</sup>lt;sup>10</sup> The hourly inspection cost is discussed below in Table 20.

<sup>&</sup>lt;sup>11</sup> <u>See</u> "Oil & Gas Emissions Reduction Strategies Cost Analysis and Control Efficiency Determination," Lesair Environmental, Inc., June 2008, at pg. 8.

Initial Economic Impact Analysis for Proposed Revisions to AQCC Regulations No. 7, Submitted with Request for Hearing Documents on November 15, 2013

requirements based on the use of a buffer bottle and enhanced monitoring requirements is \$3,949 per tank.

To calculate the projected emissions reduction from the proposed capture requirements, the Division assumed a current capture rate of 75% for controlled tanks based on analytical work that the Division, EPA and others have performed. Based on this capture rate, the Division calculated the emissions reduction that would occur if the capture rate were increased to 100% using the following equation:

Emission reduction =  $[\text{uncontrolled VOC}^*(1-(0.75^*0.95))] - [\text{uncontrolled VOC}^*(1-0.95)],$ 

Using this equation as applied to the reported uncontrolled actual emissions from the 5,270 storage tanks statewide with emissions greater than or equal to six tons per day, the projected emission reduction from the proposed capture requirements is 52,624 tons per year.

| Table 15: STE | M Emission Conil | rol Analysis (Statewide) | )                 |             |
|---------------|------------------|--------------------------|-------------------|-------------|
| Number of     | Uncontrolled     | Controlled VOC (@        | Controlled VOC (@ | VOC         |
|               | VOC              | 71.25% Control)          | 95% Control)      | Reduction   |
| Tanks ≥6 tpy  | [tons/year]      | [tons/year]              | [tons/year]       | [tons/year] |
| 5,270         | 221,575          | 63,703                   | 11,079            | 52,624      |

Applying this reduction to the costs calculated above, the cost effectiveness of these proposed requirements is \$396/ton of VOC.

| Table 16: STEM Control Cost Estimates (Statewide) |            |                 |              |             |          |  |  |
|---------------------------------------------------|------------|-----------------|--------------|-------------|----------|--|--|
| Type of                                           | Numbor     | Each Device     | Total        | VOC         | Control  |  |  |
| Type of Number                                    | Annualized | Annualized      | Reduction    | Costs       |          |  |  |
| Technology                                        | of Tanks   | Costs [\$/year] | Costs        | [tons/year] | [\$/ton] |  |  |
| Buffer Bottle                                     | 5,270      | \$3,949         | \$20,811,230 | 52,624      | \$395    |  |  |

During the stakeholder process certain parties have raised questions about the Division's assumption that currently controlled tanks have a 75% capture efficiency. In light of this the Division has also calculated cost effectiveness based on the assumption that current capture efficiency is 50% and 95%. For the 50% case, current controlled emissions would be 116,327 tpy VOC. Accordingly, the emission reduction benefit from increasing capture to 100% would be 105,248 tons per year (116,327-11,079) and the cost effectiveness would be \$198/ton VOC<sup>12</sup>. For the 95% capture scenario, current controlled emissions would be 21,604 tons per year VOC

<sup>&</sup>lt;sup>12</sup> This may overestimate the cost effectiveness given that if the current capture rate were only 50% additional costs could be required to increase the capture rate to 100%.

Initial Economic Impact Analysis for Proposed Revisions to AQCC Regulations No. 7, Submitted with Request for Hearing Documents on November 15, 2013

and the emission reduction would be 10,525 tons per year (21,604-11,079). Under this scenario, the cost effectiveness would be \$1,977/ton VOC<sup>13</sup>.

While the buffer bottle technology offers a good alternative in a retrofit situation for reducing pressures to the tank and increasing emission capture, for new facilities, installation of a high-low pressure (HLP) separator to satisfy STEM may prove to be a better performing option. This equipment allows for two stages of separation of the gas and the liquids instead of the single stage separation accomplished in traditional separators. By adding a second stage of separation, the pressure of the liquids sent to the tank is significantly reduced, thereby helping to ensure complete capture of flashing emissions instead of venting a portion of the emission stream through the thief hatch or PRV. Additionally, rather than being routed to the flare, as in the case of the buffer bottle technology, gas from the second stage of separation can be sent to a vapor recovery unit (VRU), recompressed and sent to the sales line, resulting in increased product recovery. Based on information provided from industry, the Division has calculated that the annual cost of a HLP separator w/VRU is about \$19,341.

| Table 17: Annualized Cost Analysis for HLP Separator |               |                  |             |             |  |  |  |
|------------------------------------------------------|---------------|------------------|-------------|-------------|--|--|--|
| Item                                                 | Capital Costs | Non-Recurring    | O&M Costs   | Annualized  |  |  |  |
|                                                      | (one time)    | Costs (one time) | (recurring) | Total Costs |  |  |  |
| HLP/VRU                                              | \$90,000      |                  |             |             |  |  |  |
| Freight/Engr                                         |               | \$1,648          |             |             |  |  |  |
| HLP/VRU Installation                                 |               | \$11,154         |             |             |  |  |  |
| Maintenance                                          |               |                  | \$9,396     |             |  |  |  |
| VRU Recovered NG *                                   |               |                  | \$(3,382)   |             |  |  |  |
| Subtotal Costs                                       | \$90,000      | \$12,802         | \$6,014     |             |  |  |  |
| Annualized Costs**                                   | \$12,474      | \$853            | \$6,014     | \$19,341    |  |  |  |

\* Recovered NG fuel costs \$3.5/MCF (Henry Hub Spot Price - Aug. 2013) and average tank battery size of 63.2 tpy

- based on 3-yr average of APEN data on storage tanks  $\geq$ 6 tpy (uncontrolled VOC).

\*\* Annualized over 15 years at 5% ROR

Unlike the retrofit situation analyzed above where the emission controls are already in place, it is appropriate in new installations to aggregate the cost of the HLP separator w/VRU with the costs of the control unit (flare) to determine the overall cost of controlling emissions from the tank. Based on the \$6,286.8 annual cost of a flare, the total annual control costs for a new tank will be \$25,628 per year. Including instrument based monitoring costs of \$925 per tank each year, the total annual cost for each new tank will be \$26,553.

Based on an analysis of reported data for new tanks during the past three years, the average uncontrolled actual emissions of a new tank is 63.2 tpy. Assuming a 95% overall control

<sup>&</sup>lt;sup>13</sup> This is a conservative calculation given that if the current capture rate were 95% it is likely that the control costs to increase the capture rate to 100% would be significantly less.

Initial Economic Impact Analysis for Proposed Revisions to AQCC Regulations No. 7, Submitted with Request for Hearing Documents on November 15, 2013

efficiency, equipping a tank with an HLP separator and a flare will reduce the emissions from an average new tank by 60 tpy. This yields a cost effectiveness of \$443 per ton VOC reduced. If instead, the highest cost scenario (using a six tpy tank) is assumed, the cost effectiveness is \$4,658 per ton VOC.

## C. Leak Detection and Repair Requirements for Compressor Stations and Well <u>Production Facilities</u>

AQCC Regulation Number 7 requires owners and operators of gas processing plants in Colorado to implement leak detection and repair programs to identify and repair fugitive emission leaks from components at these facilities. Under this requirement, owners and operators must conduct periodic inspections using EPA Reference Method 21<sup>14</sup> and repair leaks within a prescribed time frame.

Although component leaks at compressor stations and well production facilities in Colorado are also a significant source of VOC and methane emissions, Regulation No. 7 does not currently include leak detection and repair requirements for these facilities.<sup>15</sup> To address these emissions, the Division is proposing regulatory changes that would establish leak detection and repair requirements for compressor stations and well production facilities. Pursuant to this proposal, owners and operators of compressor stations and well production facilities will be required to conduct periodic leak inspections, and repair identified leaks. As specified, required inspections may be done either in accordance with Method 21 or utilizing an IR camera. The proposed language also allows the Division to approve other inspection methods as new leak detection technologies are demonstrated to be effective.

The proposed regulation establishes a tiered system to determine inspection frequency. For compressor stations the tiering is based on the uncontrolled actual leak emissions at the facility as follows:

| Table 18: Proposed Tiering for Leak Inspections at Compressor Stations   |           |  |  |  |
|--------------------------------------------------------------------------|-----------|--|--|--|
| Component Leak Uncontrolled Actual VOC<br>Emissions Inspection Frequency |           |  |  |  |
| $\leq 12 \text{ tpy}$                                                    | Annually  |  |  |  |
| >12 tpy to $\leq$ 50 tpy                                                 | Quarterly |  |  |  |
| > 50 tpy                                                                 | Monthly   |  |  |  |

<sup>&</sup>lt;sup>14</sup> While Method 21 sets performance standards for inspection equipment rather than specifying technology, typically Method 21 inspections utilize photo ionization detectors (PIDs) to assess leak levels.

<sup>&</sup>lt;sup>15</sup> Although leak detection is not currently required at most of these facilities, some operators currently conduct voluntary leak detection and repair programs. Additionally, the Division has issued a limited number of permits that include some leak detection requirements. For the purposes of this analysis, however, the Division assumes that there is no leak detection occurring at well production facilities and compressor stations. Accordingly the actual additional costs that operators may incur may be less than the costs calculated in this analysis.

For well production facilities the proposed tiering is based on uncontrolled actual emissions from the largest emitting storage tank at the facility as set forth in Table 19. The tiering is based on tank emissions rather than uncontrolled actual leak emissions in order to create a Method 21/IR camera monitoring schedule that is consistent with the monitoring schedule proposed as part of the STEM emission capture requirements discussed in Section B above.<sup>16</sup>

| Table 19: Proposed Tiering for Leak Inspections at Well Production Facilities |                            |  |  |  |
|-------------------------------------------------------------------------------|----------------------------|--|--|--|
| Tank Uncontrolled Actual VOC EmissionsInspection Frequency                    |                            |  |  |  |
| < 6 tpy                                                                       | One Time (and Monthly AVO) |  |  |  |
| $\geq$ 6 tpy to $\leq$ 12 tpy                                                 | Annually                   |  |  |  |
| $>12$ tpy to $\leq 50$ tpy                                                    | Quarterly                  |  |  |  |
| > 50 tpy                                                                      | Monthly                    |  |  |  |

The Division utilized a multi-step process to calculate the estimated costs and benefits associated with the proposed leak detection and repair requirements. First, the Division calculated an hourly inspection rate based on the total annual cost for each inspector divided by an assumed 1,880 annual work hours.<sup>17</sup> To calculate the total annual cost for each inspector, the Division included salary and fringe benefits for each inspector, annualized equipment and vehicle costs, and add-ons to account for supervision, overhead, travel, record keeping, and reporting. Based on the assumptions set forth in Table 20 below, the total annual cost for each inspector will be \$186,129, which equates to an hourly inspection rate of \$99.

| Table 20: Leak Detection and Repair (LDAR) Inspector       – Annualized Cost Analysis |               |              |                  |  |  |  |
|---------------------------------------------------------------------------------------|---------------|--------------|------------------|--|--|--|
| Item                                                                                  | Capital Costs | Annual Costs | Annualized Total |  |  |  |
|                                                                                       | (one time)    |              | Costs            |  |  |  |
| FLIR Camera                                                                           | \$122,000     |              |                  |  |  |  |
| Photo Ionization Detector                                                             | \$5,000       |              |                  |  |  |  |
| Vehicle (4x4 Truck)                                                                   | \$22,000      |              |                  |  |  |  |
| Inspection Staff                                                                      |               | \$75,000     |                  |  |  |  |
| Supervision (@ 20%)                                                                   |               | \$15,000     |                  |  |  |  |
| Overhead (@10%)                                                                       |               | \$7,500      |                  |  |  |  |
| Travel (@15%)                                                                         |               | \$11,250     |                  |  |  |  |
| Recordkeeping (@10%)                                                                  |               | \$7,500      |                  |  |  |  |
| Reporting (@10%)                                                                      |               | \$7,500      |                  |  |  |  |
| Fringe (@30%)                                                                         |               | \$22,500     |                  |  |  |  |
| Subtotal Costs                                                                        | \$149,000     | \$146,250    |                  |  |  |  |
| Annualized Costs*                                                                     | \$39,879      | \$146,250    | \$186,129        |  |  |  |

<sup>&</sup>lt;sup>16</sup> Because there may be a limited number of instances where well production facilities don't have storage tanks, the proposal also provides that for tank-less facilities, the inspection schedule will be based on the facility's potential to emit VOC.

<sup>&</sup>lt;sup>17</sup> This assumes a 40 hour work week with ten holidays, two weeks of vacation, and one week of sick leave.

| *over 5 years at 6% ROR | Annualized Hourly Rate | \$99 |
|-------------------------|------------------------|------|
|-------------------------|------------------------|------|

Second, the Division calculated the average amount of time that it would take to conduct a Method 21 inspection at compressor stations and well production facilities based on the number of components to be inspected and assuming that a component could be inspected every 30 seconds. The proposed rule also allows owners and operators to use IR cameras either as the sole inspection tool, or as a screening tool to identify potential leaking components followed by a Method 21 inspection. An IR camera inspection or IR Camera/Method 21 hybrid inspection can be conducted more quickly than a Method 21 inspection of each component. While the Division does not currently have actual data regarding how much faster an inspection could be completed using an IR camera, for the purpose of this analysis the Division assumed that an IR camera based inspection would take 50% of the time required for a Method 21 inspection.

For compressor stations, the Division used reported component counts for compressor stations within each of the tiers identified in Table 18 above. Based on these counts, and the inspection times per component discussed above, the Division calculated that the total inspection time per compressor station facility tier are as follows:

| Table 21: Calculated Inspection Time Compressor Station Leak Inspections |                      |            |  |  |  |  |
|--------------------------------------------------------------------------|----------------------|------------|--|--|--|--|
| Component Leak Uncontrolled                                              | IR Camera/ Hybrid    |            |  |  |  |  |
| Actual VOC Emissions                                                     | Method 21 Inspection | Inspection |  |  |  |  |
| $\leq 12 \text{ tpy}$                                                    | 21.2 hours           | 10.6 hours |  |  |  |  |
| >12 tpy to $\leq$ 50 tpy                                                 | 56.2 hours           | 28.1 hours |  |  |  |  |
| > 50 tpy*                                                                |                      |            |  |  |  |  |

\* there are currently no compressor stations in Colorado with calculated leaks at this level

For well production facilities, the Division has limited data on the number of components per facility. Based on this limitation, the Division did not attempt to calculate a separate inspection time for each of the proposed facility tiers, and instead used the overall average component count. Based on this overall average component count each Method 21 inspection will take 9.5 hours and each IR camera based inspection will take 4.75 hours.

Next, the Division calculated the projected inspection costs for both compressor stations and well production facilities. To make this calculation the Division used industry reported emission data to determine the number of facilities that will be subject to annual, quarterly and monthly inspections to determine the total number of inspections for each tier, and multiplied these inspections by the calculated inspection time and projected hourly inspection rate. The calculated inspection costs for compressor stations and well production facilities do not include the cost to repair leaking components or re-monitor these components post-repair to verify that the repair was effective. Conversely, the calculated costs also do not account for the cost savings from capturing additional product as a result of repairs. For the purposes of this initial cost analysis the Division assumes that the cost savings from additional product capture will be equal

to or greater than the cost of repair and re-inspection. However, the Division welcomes additional input from stakeholders on the costs and benefits associated with repairing leaking components.

Based on this methodology, the calculated costs for compressor stations are set forth in Table 22.

| Table 22: Compressor Station Leak Inspection Costs Using IR Camera/Method 21 Hybrid |                                     |                                   |                                                |                                               |                                 |  |
|-------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|------------------------------------------------|-----------------------------------------------|---------------------------------|--|
| Compressor<br>Station Fugitive<br>VOC Tier [tpy]                                    | Number of<br>Compressor<br>Stations | Annual<br>Inspection<br>Frequency | Time per<br>IR Camera<br>Inspection<br>[hours] | Total Annual<br>Inspection<br>Time<br>[hours] | Total Annual<br>Inspection Cost |  |
| $\leq$ 12 tpy                                                                       | 147                                 | 1                                 | 10.6                                           | 1,558.2                                       | \$154,262                       |  |
| >12 to $\leq$ 50 tpy                                                                | 53                                  | 4                                 | 28.1                                           | 5,957.2                                       | \$589,763                       |  |
| $\geq$ 50 tpy                                                                       | 0                                   | 12                                |                                                |                                               |                                 |  |
| Total:                                                                              | 200                                 |                                   |                                                | 7,515.4                                       | \$744,025                       |  |

Estimated annual inspection costs for well production facilities are set forth in Table 23.

| Table 23: Well Production Facility Leak Inspection Costs Using IR Camera/Method 21Hybrid |                         |                                   |                                                 |                                        |                                    |  |  |
|------------------------------------------------------------------------------------------|-------------------------|-----------------------------------|-------------------------------------------------|----------------------------------------|------------------------------------|--|--|
| Uncontrolled<br>VOC at<br>Storage Tank<br>Battery Tier<br>[tpy]                          | Number of<br>Facilities | Annual<br>Inspection<br>Frequency | Inspection<br>Time Per<br>Inspection<br>[hours] | Total<br>Inspection<br>Time<br>[hours] | Total Annual<br>Inspection<br>Cost |  |  |
| $\geq$ 6 to $\leq$ 12                                                                    | 1,390                   | 1                                 | 4.75                                            | 6,602.5                                | \$653,648                          |  |  |
| $> 12$ to $\leq 50$                                                                      | 2,916                   | 4                                 | 4.75                                            | 55,404.0                               | \$5,484,996                        |  |  |
| > 50                                                                                     | 964                     | 12                                | 4.75                                            | 54,498.0                               | \$5,439,852                        |  |  |
| Total:                                                                                   | 5,270                   |                                   |                                                 | 116,954.5                              | \$11,578,496                       |  |  |

Additionally, there are 2,810 well production facilities with uncontrolled actual storage tank emissions below six tons per year that will be subject to a one-time instrument based inspection. The one-time cost for inspecting these facilities is estimated to be \$1,321,403.<sup>18</sup>

<sup>&</sup>lt;sup>18</sup> The Division's proposal also requires monthly AVO inspections at these facilities. Based on information provided during the stakeholder process, the Division understands that AVO inspections are part of current standard operational practice. Accordingly, the regulatory provisions should not result in additional costs. The Division requests, however, additional information from interested parties during the pre-hearing process regarding this issue.

Initial Economic Impact Analysis for Proposed Revisions to AQCC Regulations No. 7, Submitted with Request for Hearing Documents on November 15, 2013

Finally, the Division calculated the cost effectiveness of the proposed leak detection and repair requirements based on the costs identified above and the projected emission reductions. To determine emission reductions the Division first calculated pre-inspection program VOC and methane emissions based on the reported component counts, standard emission factors for these components, and the average fraction of VOC and non-VOC emissions (methane/ethane). Based on EPA reported information, the Division calculated a 40% reduction for annual inspections, a 60% reduction for quarterly inspections, and an 80% reduction for monthly inspections.

Using this information the Division calculated that the total emission reductions from leaks at compressor stations will be 1,115 tpy VOC and 2,320 tons per year methane/ethane.

| Table 24: Con       | Table 24: Compressor Station Leak Inspection Emission Reductions |           |             |           |                |           |  |  |  |  |
|---------------------|------------------------------------------------------------------|-----------|-------------|-----------|----------------|-----------|--|--|--|--|
| Comp.               |                                                                  | LDAR      | Fugitive    | Total     | Fugitive       | Total     |  |  |  |  |
| Station             | Number                                                           | Program   | VOC         | VOC       | Methane-Ethane | Methane-  |  |  |  |  |
| Fugitive            | of Comp                                                          | Reduction | Emissions   | Reduction | Emissions for  | Ethane    |  |  |  |  |
| VOC Tier            | Stations                                                         | %         | for each CS | [tpy]     | each CS tier   | Reduction |  |  |  |  |
| [tpy]               |                                                                  | 70        | tier [tpy]  | [tpy]     | [tpy]          | [tpy]     |  |  |  |  |
| ≤ 12                | 147                                                              | 40%       | 10.1        | 593.9     | 15.5           | 911.4     |  |  |  |  |
| $> 12$ to $\leq 50$ | 53                                                               | 60%       | 16.4        | 521.5     | 44.3           | 1,408.7   |  |  |  |  |
| > 50                |                                                                  | 80%       |             |           |                |           |  |  |  |  |
|                     | 200                                                              |           |             | 1,115.4   |                | 2,320.1   |  |  |  |  |

Based on these reductions, the cost effectiveness of conducting leak inspections at compressor stations is estimated to be \$667/ton VOC and \$321/ton methane/ethane.

| Table 25: Com                                     | Table 25: Compressor Station Leak Inspection Cost Effectiveness using IR Camera/Method 21 |                                       |                                   |                                    |                                    |                                                   |                                                   |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------------------|--|--|--|
| Comp.<br>Station<br>Fugitive<br>VOC Tier<br>[tpy] | Number<br>of Comp<br>Stations                                                             | Total<br>Annual<br>Inspection<br>Cost | LDAR<br>Program<br>Reduction<br>% | Total<br>VOC<br>Reduction<br>[tpy] | VOC<br>Control<br>Cost<br>[\$/ton] | Total<br>Methane-<br>Ethane<br>Reduction<br>[tpy] | Methane<br>-Ethane<br>Control<br>Cost<br>[\$/ton] |  |  |  |
| $\leq 12$                                         | 147                                                                                       | \$154,262                             | 40%                               | 593.9                              | \$260                              | 911.4                                             | \$169                                             |  |  |  |
| $> 12$ to $\leq 50$                               | 53                                                                                        | \$589,763                             | 60%                               | 521.5                              | \$1,131                            | 1,408.7                                           | \$419                                             |  |  |  |
| > 50                                              |                                                                                           |                                       | 80%                               |                                    |                                    |                                                   |                                                   |  |  |  |
|                                                   | 200                                                                                       | \$744,025                             |                                   | 1,115.4                            | \$667                              | 2,320.1                                           | \$321                                             |  |  |  |

For well production facilities the total emission reductions is estimated to be 14,153 tpy VOC and 22,461 tpy methane/ethane.

| Table 26: We                                         | Table 26: Well Production Facility Leak Inspection Emission Reductions |                                   |                                                                   |                                 |                                                                               |                                                   |  |  |  |  |
|------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|
| Uncontrolled<br>VOC at<br>Tank Battery<br>Tier [tpy] | Number<br>of<br>Facilities                                             | LDAR<br>Program<br>Reduction<br>% | Fugitive<br>VOC<br>Emissions<br>for each<br>Tank<br>Battery [tpy] | Total VOC<br>Reduction<br>[tpy] | Fugitive<br>Methane-<br>Ethane<br>Emissions for<br>each Tank<br>Battery [tpy] | Total<br>Methane-<br>Ethane<br>Reduction<br>[tpy] |  |  |  |  |
| $\geq$ 6 to $\leq$ 12                                | 1,390                                                                  | 40%                               | 4.6                                                               | 2,557.6                         | 7.3                                                                           | 4,058.8                                           |  |  |  |  |
| $> 12$ to $\leq 50$                                  | 2,916                                                                  | 60%                               | 4.6                                                               | 8,048.2                         | 7.3                                                                           | 12,772.1                                          |  |  |  |  |
| > 50                                                 | 964                                                                    | 80%                               | 4.6                                                               | 3,547.5                         | 7.3                                                                           | 5,629.8                                           |  |  |  |  |
| Total:                                               | 5,270                                                                  |                                   |                                                                   | 14,153.3                        |                                                                               | 22,460.7                                          |  |  |  |  |

Based on these reductions, the cost effectiveness of conducting ongoing instrument based inspections at well production facilities is estimated to be \$818/ton VOC and \$516/ton methane/ethane.

| Table 27: We                                    | Table 27: Well Production Facility Leak Cost-Effectiveness Using IR Camera/Method 21 |                                    |                                   |                                    |                                    |                                                   |                                                   |  |  |  |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------------------|--|--|--|--|
| Uncont.<br>VOC at Tank<br>Battery Tier<br>[tpy] | Number<br>of Tanks                                                                   | Total Annual<br>Inspection<br>Cost | LDAR<br>Program<br>Reduction<br>% | Total<br>VOC<br>Reduction<br>[tpy] | VOC<br>Control<br>Cost<br>[\$/ton] | Total<br>Methane-<br>Ethane<br>Reduction<br>[tpy] | Methane<br>-Ethane<br>Control<br>Cost<br>[\$/ton] |  |  |  |  |
| $\geq$ 6 to $\leq$ 12                           | 1,390                                                                                | \$653,648                          | 40%                               | 2,557.6                            | \$256                              | 4,058.8                                           | \$161                                             |  |  |  |  |
| $> 12$ to $\leq 50$                             | 2,919                                                                                | \$5,484,996                        | 60%                               | 8,048.2                            | \$682                              | 12,772.1                                          | \$429                                             |  |  |  |  |
| > 50                                            | 964                                                                                  | \$5,439,852                        | 80%                               | 3,547.5                            | \$1533                             | 5,629.8                                           | \$966                                             |  |  |  |  |
| Total:                                          | 5,270                                                                                | \$11,578,496                       |                                   | 14,153.3                           | \$818                              | 22,460.7                                          | \$516                                             |  |  |  |  |

Additionally, for the 2,810 well production facilities with uncontrolled actual storage tank emissions below six tons per year that will be subject to a one-time instrument based inspection, the calculated one-time benefit is 5,170 tons VOC and 8,205 tons methane/ethane, assuming a 40% reduction and a current leak rate of 4.6 tpy VOC and 7.3 tpy methane/ethane. Based on these reductions, for the one-time inspections of well production facilities with tanks that are less than six tons per year the cost effectiveness of the proposed rule is calculated to be \$256/ton VOC and \$161/ton methane/ethane.

In addition to conducting its own cost effectiveness analysis for the proposed leak detection requirements, the Division has considered cost information provided by industry<sup>19</sup> and

<sup>&</sup>lt;sup>19</sup> <u>See</u> "Analysis of Industry Survey LDAR Responses" Lisa McDonald, PhD and Holly Bender PhD, September 11, 2013.

Initial Economic Impact Analysis for Proposed Revisions to AQCC Regulations No. 7, Submitted with Request for Hearing Documents on November 15, 2013

environmental groups<sup>20</sup> as part of the stakeholder process leading up to the Division's request for a hearing on its proposed changes. While none of this information specifically analyzed the Division's proposed leak detection program, the information provides additional perspectives on the likely costs and benefits of the Division's proposal.

To assess potential costs of a Colorado leak detection program for well production facilities, McDonald and Bender analyzed industry survey responses on leak detection to determine total costs for annual, quarterly and monthly inspections at 8,702 well production facilities<sup>21</sup> in Colorado. Since the inspection numbers in this analysis is different than the number of inspections that will be required under the Division's proposal, the overall cost that McDonald and Bender calculated is less relevant to this analysis. Based on the data they present, however, it is possible to calculate a per inspection cost that can be used to analyze the cost effectiveness of the Division's proposal. Specifically, McDonald and Bender's analysis shows that on average an annual leak detection inspection costs \$2,468, a quarterly inspection costs \$1,067, and a monthly inspections required under the Division's proposal (See Table 23 above) yields a total annual cost of \$24,725,528. This equates to \$1,747/ton of VOC reduced, and \$1,101/ton of methane/ethane reduced based on the Division's emission reduction calculations (See Table 26 above).

In their analysis, McCabe *et.al.*, looked at cost and benefit data from actual IR camera inspections at gas plants, compressor stations and well-sites conducted pursuant to Canada's oil and gas leak detection program. The information they provided includes a range of cost assumptions. At the high end the cost per ton of VOC reduced at well facilities is approximately \$300 per ton. For compressor stations the high end shows a net cost benefit from conducting IR camera inspections.

Environmental Defense Fund's analysis looked at a number of different scenarios and concluded that the cost effectiveness of quarterly leak detection and repair ranged from between approximately \$1,000/ton and \$7,000/ton for VOCs and between approximately \$400/ton and \$2,300/ton for methane. For monthly leak detection they estimated that the cost per ton for VOCs ranged between approximately \$2,000 per ton and \$13,000/ton. For methane, monthly leak detection costs ranged between approximately \$600/ton and \$4,100/ton.

## D. Auto Igniter Requirements on Existing Flare Control Devices Outside the Non-Attainment Area

Unlike the non-attainment area, flares used to control emissions at condensate tank batteries and glycol dehydration units outside the NAA are not required to have auto-igniters. The Division is

<sup>&</sup>lt;sup>20</sup> See "An Examination of the Cost-Effectiveness of Leak Detection and Repair Programs Using Infrared Cameras" David McCabe, Ellen Baum, Stephanie Saunier, September 11, 2013; "Analysis of Leak Detection and Repair Program for O&G Emissions in Colorado" Environmental Defense Fund, September 20, 2013.

<sup>&</sup>lt;sup>21</sup> The analysis did not look at leak detection costs for compressor stations.

Initial Economic Impact Analysis for Proposed Revisions to AQCC Regulations No. 7, Submitted with Request for Hearing Documents on November 15, 2013

proposing that all flares used to control emissions at condensate tank batteries and glycol dehydration units statewide should have auto igniters. Based on an analysis of the APEN database, the Division estimates the statewide number of existing flare control devices without auto-igniters on condensate tank batteries and glycol dehydration is 652. The reported uncontrolled actual emissions from these units are 47,675 tons per year VOC.

The estimated annualized cost for an auto-igniter is \$475 based on information that the industry provided to the Division in 2008, adjusted for inflation.<sup>22</sup>

| Table 28: Auto Igniter Control Device – Retrofit Cost Analysis |               |                  |                         |             |  |  |  |  |  |
|----------------------------------------------------------------|---------------|------------------|-------------------------|-------------|--|--|--|--|--|
| Item                                                           | Capital Costs | Non-Recurring    | Non-Recurring O&M Costs |             |  |  |  |  |  |
|                                                                | (one time)    | Costs (one time) | (recurring)             | Total Costs |  |  |  |  |  |
| Auto Igniter                                                   | \$1,648       |                  |                         |             |  |  |  |  |  |
| Freight/Engineering                                            |               | \$200            |                         |             |  |  |  |  |  |
| Flare Installation                                             |               | \$500            |                         |             |  |  |  |  |  |
| Maintenance                                                    |               |                  | \$200                   |             |  |  |  |  |  |
| Subtotal Costs                                                 | \$1,648       | \$700            | \$200                   |             |  |  |  |  |  |
| Annualized Costs*                                              | \$228.4       | \$46.7           | \$200                   | \$475       |  |  |  |  |  |

\* Annualized over 15 years at 5% ROR

The Division estimates that a flare without an auto-igniter could experience about 3% pilot light downtime (262.8 hours) over a one year period. During the downtime period, any VOC emissions routed to the flare control device are uncontrolled. Based on the total uncontrolled actual emissions of 47,675 tons per year VOC from units equipped with flares without auto-igniters, the emissions during this downtime period will be 1,430.2 tons of VOC. Of this total, 495.1 tons of the emissions are from dehydrators and 935.1 tons are from storage tanks. The Division assumes that as a result of the installation of an auto-igniter, the amount of downtime can be eliminated, for a total emission reduction of 1,137 tons/year. Given that the annualized cost of installing 652 auto-igniters is about \$309,700, the estimated cost effectiveness of this strategy is about \$272 per ton of VOC reduced.

| Table 29: Auto Igniter Control Cost Estimates (Outside NAA) |                                                                                                               |                  |                |               |  |  |  |  |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------|----------------|---------------|--|--|--|--|
| Number                                                      | Each Auto-Igniter                                                                                             | Total Annualized | VOC Reduction* | Control Costs |  |  |  |  |
| Inumber                                                     | NumberLaten Auto IgniterFour AnnualizedFour AnnualizedFour AnnualizedAnnualized CostsCosts[tons/year][\$/ton] |                  |                |               |  |  |  |  |
| 652                                                         | \$475                                                                                                         | \$309,700        | 1,136.6        | \$272         |  |  |  |  |

\* Dehydrator flares assumed to have 95% control (1.0\*0.95)-thus VOC reduction is 495.1\*0.95 = 470.3 tpy; Tank flares assumed to have 71.25% control (0.75\*0.95)-thus VOC reduction is 935.1\*0.75\*0.95=666.3 tpy. Total VOC reduction = 470.3 + 666.3 = 1,136.6 tpy.

<sup>22</sup> <u>See</u> "Oil & Gas Emissions Reduction Strategies Cost Analysis and Control Efficiency Determination," Lesair Environmental, Inc., June 2008.

## E. Expanding Low Bleed Pneumatics Requirements Statewide

As part of the 2008 Ozone Action Plan the AQCC adopted regulatory requirements mandating the use of low bleed pneumatic controllers in the non-attainment area. The current proposal would expand this requirement statewide.

To estimate the costs and benefits of this proposed strategy, the Division estimated the number of high-bleed pneumatic devices based on Independent Petroleum Association of the Mountain States (IPAMS) survey data from 2006, which identified the average number of such devices per well. The Division then scaled this number up based on 2012 Colorado Oil and Gas Conservation Commission (COGCC) well count data. Based on this methodology, there are 9,877 high-bleed pneumatic devices outside the nonattainment area. Assuming a 95% replacement rate, the proposed rule will result in the replacement of 9,384 high bleed devices with low bleed devices. Based on this count, and the average emission reductions per device replaced identified in the IPAMS survey, the projected benefit from the proposed expansion of the current non-attainment area low bleed pneumatic rule will be approximately 14,921 tons per year VOC (40.9 tons per day).

The average retrofit cost of a high-bleed pneumatic device is based on costs from the 2008 cost study<sup>23</sup> adjusted for inflation. Utilizing this methodology, the annualized cost for each replaced device is \$169. However, because the reduced bleed rate results in more natural gas being sold, operators will receive additional revenue as a result of the installation of a low bleed device. Based on the emission reduction data from the IPAMS survey and August 2013 spot prices for natural gas, the estimated average value of the recovered gas will be \$1,268 for each device replaced. As a result, the net annual gain is \$1,084 per replaced device. Based on this projected net gain, this strategy will pay for itself in approximately one year and four months.

| Table 30: Replace High-Bleed Pneumatics with Low-Bleed Pneumatics – Annualized Cost |               |                  |             |             |  |  |  |  |  |
|-------------------------------------------------------------------------------------|---------------|------------------|-------------|-------------|--|--|--|--|--|
| Analysis*                                                                           |               |                  |             |             |  |  |  |  |  |
| Item                                                                                | Capital Costs | Non-Recurring    | O&M Costs   | Annualized  |  |  |  |  |  |
|                                                                                     | (one time)    | Costs (one time) | (recurring) | Total Costs |  |  |  |  |  |
| Low/No Bleed                                                                        | \$1,033       |                  |             |             |  |  |  |  |  |
| Device*                                                                             |               |                  |             |             |  |  |  |  |  |
| Labor                                                                               |               | \$387            |             |             |  |  |  |  |  |
| Value of NG Saved**                                                                 |               |                  | \$(1,268)   |             |  |  |  |  |  |
| Maintenance                                                                         |               |                  | \$16        |             |  |  |  |  |  |
| Subtotal Costs                                                                      | \$1,033       | \$387            | \$(1,253)   |             |  |  |  |  |  |
| Annualized Costs***                                                                 | \$143         | \$26             | \$(1,253)   | \$(1,084)   |  |  |  |  |  |

<sup>23</sup> <u>See</u> "Oil & Gas Emissions Reduction Strategies Cost Analysis and Control Efficiency Determination," Lesair Environmental, Inc., June 2008.

\* Control device costs were developed based on an Oil and Gas Cost Study and information submitted by industry in 2008. However, those costs were escalated by 9.85% to reflect CPI-U increases that have occurred since 2008. \*\* Recovered NG fuel costs \$3.5/MCF (Henry Hub Spot Price - Aug. 2013) \*\*\* Annualized over 15 years at 5% ROR

Assuming 9,384 total devices replaced, adoption of this strategy will result in \$10,172,256 in annual cost savings.

| Table 31: Low Bleed Pneumatic Control Cost Estimates (Outside NAA) |                  |                  |               |               |  |  |  |  |
|--------------------------------------------------------------------|------------------|------------------|---------------|---------------|--|--|--|--|
| Number                                                             | Each Device      | Total Annualized | VOC Reduction | Control Costs |  |  |  |  |
| Number                                                             | Annualized Costs | Costs            | [tons/year]   | [\$/ton]      |  |  |  |  |
| 9,384                                                              | \$(1,084)        | \$(10,172,256)   | 14,921        | NA            |  |  |  |  |

The proposed rule also requires the use of no-bleed pneumatic devices if it is technically and economically feasible and where on-site electrical grid power is being used. Since the Division does not have information indicating the number of no-bleed pneumatic devices that could be required, it is not possible to calculate the cost effectiveness of this particular provision. The Division requests that interested parties provide additional information regarding this issue.

## **F.** Require Newly Constructed Gas Wells be Connected to a Pipeline or Route Emissions to A Control Device

Currently in Colorado, natural gas produced at oil and gas sites is typically routed to a transmission pipeline. With the advent of new drilling technologies, additional areas of the state without established pipeline infrastructure may experience oil and gas exploration and production. This can lead to instances where produced gas is vented or flared instead of being put into a transmission line. To date the Division has identified 61 instances in Colorado where this is occurring. To address this, the proposed regulation provides that for newly constructed, hydraulically fractured, or recompleted wells, the gas stream must either be connected to a pipeline or routed to a control device achieving 95% control efficiency. Currently all of the sites that are not routed to a pipeline are flaring their gas. Additionally, because venting the gas at such sites would create a safety issue, the Division assumes that in the limited future instances where the gas stream is not routed to a pipeline, operators will route the emissions to a flare or other control device. Accordingly, adoption of this portion of the proposed regulation will not result in any additional costs.

## **<u>G.</u>** Control Requirements for Glycol Dehydrators

The Division is proposing to revise the control requirements applicable to glycol natural gas dehydrators statewide. Currently any glycol natural gas dehydrator with uncontrolled actual VOC emissions of two tons per year or greater that is located at a facility where the sum of uncontrolled actual emissions from all of the dehydrators at the facility is greater than fifteen

tons per year, must be equipped with a control device that reduces emissions by at least 90%. Under the Division's proposal, all existing dehydrators with uncontrolled actual emissions of six tons per year or greater VOC must be controlled with air pollution control equipment achieving at least 95% reduction. The proposal also provides that existing dehydrators with uncontrolled actual emissions of two tons per year or greater VOC must be controlled if they are located within 1,320 feet of a building unit or designated outside activity area. Finally, the proposal requires that all new dehydrators with uncontrolled actual emissions of two tons per year or greater VOC be controlled. The Division assumes that newly subject glycol dehydrators will be controlled using flares that achieve a 95% destruction efficiency. The annual cost for these units is \$6,286.80 per unit. See Section IV.A.1. above.

Based on industry reported APEN data, there are currently 433 uncontrolled dehydrators at sites with total dehydrator uncontrolled actual VOC emissions below 15 tpy. Of these, 217 have uncontrolled actual emissions greater than or equal to two tons per year. The total uncontrolled actual emissions for these 217 dehydrators are 1,827.5 tpy VOC. There are 148 dehydrators with uncontrolled actual VOC emissions greater than or equal to six tons per year. The total uncontrolled actual emissions for these 148 dehydrators are 1,549.7 tpy VOC. Currently, the Division does not have information regarding the location of these uncontrolled dehydrators relative to a building unit or designated outside activity area. Given this, the Division conducted two cost calculations for dehydrators. The first cost calculation assumed that all of the two to six ton dehydrators are located within 1,320 feet of a building unit or designated outside activity area and thus will require a control. Based on this assumption the proposed requirement will reduce 1,736 tpy of VOC at a cost effectiveness of \$786/ton VOC.

| Table 32: Dehydrator Control Cost Estimates (2 TPY Control Threshold) |                  |       |             |          |  |  |  |  |
|-----------------------------------------------------------------------|------------------|-------|-------------|----------|--|--|--|--|
| Each Device Total Annualized VOC Reduction Control                    |                  |       |             |          |  |  |  |  |
| Number                                                                | Annualized Costs | Costs | [tons/year] | [\$/ton] |  |  |  |  |
| 217                                                                   |                  |       |             |          |  |  |  |  |

The second calculation assumed that assumed that none of the two to six ton existing dehydrators will require controls. Based on this assumption the proposed requirement will reduce 1,472 tpy of VOC at a cost effectiveness of \$632/ton VOC.

| Table 33: Dehydrator Control Cost Estimates (6 TPY Control Threshold) |                  |                  |               |               |  |  |  |
|-----------------------------------------------------------------------|------------------|------------------|---------------|---------------|--|--|--|
| Number                                                                | Each Device      | Total Annualized | VOC Reduction | Control Costs |  |  |  |
| Inullibel                                                             | Annualized Costs | Costs            | [tons/year]   | [\$/ton]      |  |  |  |
| 148                                                                   |                  |                  |               |               |  |  |  |

## **H.** Control Requirements for Downhole Well Maintenance and Liquids Unloading Events

Historically, Colorado has not regulated air emissions from temporary activities such as well completions and well maintenance at well production sites. Recently, however, EPA, Colorado and other jurisdictions have identified these activities as potentially large sources of emissions from the oil and gas sector. In recognition of this, the Colorado Oil and Gas Conservation Commission and more recently EPA have adopted requirements for green completions to reduce hydrocarbon emissions during well completion activities. The Division is now proposing additional regulatory requirements designed to reduce emissions during well maintenance.

Well maintenance is required when, over time, liquids build up inside the well and reduce gas and oil flow out of the well. To remove these liquids and improve flow, the liquids are blown out of the well under pressure. This process is typically referred to as "liquids load-out" or "well blow-down." Historically emissions from well blow-downs are vented to the atmosphere. EPA has established emission factors for liquid unloading based on fluid equilibrium calculations to calculate the amount of gas needed to blow down a column of fluids blocking a well and Natural Gas STAR partner data on the amount of additional venting after a blow-down. Based on its calculations, EPA estimated that, in the United States, the combined methane emissions for liquid unloading may account for 33% of the uncontrolled methane emissions from the natural gas industry.<sup>24</sup> For Colorado, the Division has calculated that emissions from well blow-downs in 2008 were approximately 9,306 tons of VOC per year.

To address these emissions, the Division is proposing a two-pronged requirement aimed at reducing the number of required liquids unloading events and reducing the amount of emissions vented to the atmosphere during these events. Under the Division's proposal operators shall use best management practices to minimize the need for venting associated with downhole maintenance and liquids unloading. For example, EPA's Gas Star program advocates the use of a plunger lift system to reduce the need for liquids unloading. According to EPA, use of a plunger lift will on average pay for itself in less than one year through the capture of additional product. The Division's proposal also provides that emissions during well maintenance and liquids unloading shall be captured or controlled using best management practices to limit venting during well blow-downs to the maximum extent practicable. Given the wide variety of practices that this could entail, the Division currently does not have information about the potential cost-effectiveness of this provision, but requests additional information from interested parties during the pre-hearing process regarding this issue.

<sup>&</sup>lt;sup>24</sup> See EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2009, April, 2011.

Initial Economic Impact Analysis for Proposed Revisions to AQCC Regulations No. 7, Submitted with Request for Hearing Documents on November 15, 2013

## V. CONCLUSION

The Division projects that the entire proposal will reduce VOC emissions in Colorado by approximately 92,000 tons per year at a cost of approximately \$29 million per year. The leak detection component of the package is estimated to reduce methane/ethane emissions by approximately 25,000 tons per year. The calculated cost per ton of VOC reduced ranges from \$176 to \$818 per ton. The overall cost effectiveness for the entire package is approximately \$300 per ton of VOC reduced.

The Division prepared this Initial Economic Impact Analysis in accordance with the requirements of Section 25-7-110.5(4), C.R.S. Specifically, the Division utilized the methodology identified in § 25-7-110.5(4)(c)(I), C.R.S. In completing this analysis, the Division assessed the costs and benefits associated with each of the proposed strategies based on the reasonably available data. In collecting this data, the Division sought input from various stakeholders in an effort to generate the most complete and accurate assessment of the costs and benefits of the proposed strategies. Where data was not reasonably available, the Division utilized assumptions that are set forth in the analysis. To the extent that additional data regarding the costs and benefits of the proposed strategies is made available, the Division will assess this data and where appropriate incorporate it into the Final Economic Impact Analysis required under AQCC Procedural Rules, Section V.E.7.

# EDF-WZI-APPENDIX VII





## Options For Reducing Methane Emissions From Pneumatic Devices In The Natural Gas Industry



### **Executive Summary**

Pneumatic devices powered by pressurized natural gas are used widely in the natural gas industry as liquid level controllers, pressure regulators, and valve controllers. Methane emissions from pneumatic devices, which have been estimated at 51 billion cubic feet (Bcf) per year in the production sector, 14 Bcf per year in the transmission sector and <1 Bcf per year in the processing sector, are one of the largest sources of vented methane emissions from the natural gas industry. Reducing these emissions by replacing high-bleed devices with low-bleed devices, retrofitting high-bleed devices, and improving maintenance practices can be profitable.

Natural Gas STAR Partners have achieved significant savings and methane emission reductions through replacement, retrofit, and maintenance of high-bleed pneumatics. Partners have found that most retrofit investments pay for themselves in little over a year, and replacements in as little as 6 months. To date, Natural Gas STAR Partners have saved 36.4 Bcf by retrofitting or replacing high-bleed with low-bleed pneumatic devices, representing a savings of \$254.8 million worth of gas. Individual savings will vary depending on the design, condition and specific operating conditions of the controller.

#### **Technology Background**

The natural gas industry uses a variety of control devices to automatically operate valves and control pressure, flow, temperature or liquid levels. Control devices can be powered by electricity or compressed air, when available and economic. In the vast majority of applications, however, the gas industry uses pneumatic devices that employ energy from pressurized natural gas.

Natural gas powered pneumatic devices perform a variety of functions in all three sectors of the natural gas industry. In the production sector, an estimated 400,000 pneumatic devices are used to control and monitor gas and liquid flows and levels in dehydrators and separators, temperature in dehydrator regenerators, and pressure in flash tanks. In the processing sector, about 13,000 gas pneumatic devices are used for compressor and glycol dehydration control in gas gathering/booster stations and isolation valves in processing plants (process control in gas processing plants is predominantly instrument air).

|                                                                                               |                       | Econ           | Economic and Environmental Benefits    |                  |                             |                   |                   |                   |
|-----------------------------------------------------------------------------------------------|-----------------------|----------------|----------------------------------------|------------------|-----------------------------|-------------------|-------------------|-------------------|
| Method for Volume of Natural Gas                                                              |                       | Value of N     | Value of Natural Gas Savings (\$/year) |                  |                             | Payback (Months)  |                   |                   |
| Reducing Natural<br>Gas Losses                                                                | Savings<br>(Mcf/year) | \$3 per Mcf    | \$5 per Mcf                            | \$7 per Mcf      | Cost (\$)                   | \$3 per<br>Mcf    | \$5 per<br>Mcf    | \$7 per<br>Mcf    |
| Replacement                                                                                   |                       |                |                                        |                  |                             |                   |                   |                   |
| Change to low-<br>bleed device at<br>end of life.                                             | 50 to 200             | \$150 to \$600 | \$250 to \$1,000                       | \$350 to \$1,400 | \$210 to \$340 <sup>a</sup> | 4 to 27           | 3 to 17           | 2 to 12           |
| Early-<br>replacement of<br>high-bleed unit.                                                  | 260                   | \$780          | \$1,300                                | \$1,820          | \$1,850                     | 29                | 17                | 13                |
| Retrofit                                                                                      | 230                   | \$690          | \$1,150                                | \$1,610 per year | \$675                       | 12                | 7                 | 5                 |
| Maintenance                                                                                   | 45 to 260             | \$135 to \$780 | \$225 to \$1,300                       | \$315 to \$1,820 | Negligible to \$500         | Immediate<br>to 8 | Immediate<br>to 5 | Immediate<br>to 4 |
| General Assumptions:<br><sup>a</sup> Incremental cost of low-bleed over high-bleed equipment. |                       |                |                                        |                  |                             |                   |                   |                   |

## Options For Reducing Methane Emissions From Pneumatic Devices In The Natural Gas Industry (Cont'd)

#### Definition of High-Bleed Pneumatic

Any pneumatic device that bleeds in excess of 6 scfh (over 50 Mcf per year) is considered a high-bleed device by the Natural Gas STAR Program. In the transmission sector, an estimated 85,000 pneumatic devices actuate isolation valves and regulate gas flow and pressure at compressor stations, pipelines, and storage facilities. Non-bleed pneumatic devices are also found on meter runs at

distribution company gate stations for regulating flow, pressure, and temperature.

As part of normal operation, pneumatic devices release or bleed natural gas to the atmosphere and, consequently, are a major source of methane emissions from the natural gas industry. The actual bleed rate or emissions level largely depends on the design of the device.

Exhibit 1 shows a schematic of a gas pneumatic control system. Clean, dry, pressurized natural gas is regulated to a constant pressure, usually around 20 psig. This gas supply is used both as a signal and a power supply. A small stream is sent to a device that measures a process condition (liquid level, gas pressure, flow, temperature). This device regulates the pressure of this small gas stream (from 3 to 15 psig) in proportion to the process condition. The stream flows to the pneumatic valve controller, where its variable pressure is used to regulate a valve actuator.

To close the valve pictured in Exhibit 1, 20-psig pneumatic gas is directed to the actuator, pushing the diaphragm down against the spring, which, through the valve stem, pushes the valve plug closed. When gas is vented off the actuator, the spring pushes the valve back open. The weak signal continuously vents (bleeds) to the atmosphere. Electro-pneumatic devices use weak electric current instead of the weak gas stream to signal pneumatic valve actuation.

In general, controllers of similar design usually have similar steady-state bleed rates regardless of brand name. Pneumatic devices come in three basic designs:

- ★ Continuous bleed devices are used to modulate flow, liquid level, or pressure and will generally vent gas at a steady rate;
- ★ Actuating or intermittent bleed devices perform snap-acting control and release gas only when they stroke a valve open or closed or as they throttle gas flows; and



Exhibit 1: Pneumatic Device Schematic

★ Self-contained devices release gas into the downstream pipeline, not to the atmosphere.

To reduce emissions from pneumatic devices the following options can be pursued, either alone or in combination:

- 1. Replacement of high-bleed devices with low-bleed devices having similar performance capabilities.
- 2. Installation of low-bleed retrofit kits on operating devices.
- 3. Enhanced maintenance, cleaning and tuning, repairing/replacing leaking gaskets, tubing fittings, and seals.

Field experience shows that up to 80 percent of all highbleed devices can be replaced with low-bleed equipment or retrofitted. Exhibit 2 lists the generic options applicable for different controller requirements.

In general, the bleed rate will also vary with the pneumatic gas supply pressure, actuation frequency, and age or condition of the equipment. Due to the need for precision, controllers that must operate quickly will bleed more gas than slower operating devices. The condition of a pneumatic device is a stronger indicator of emission potential than age; well-maintained pneumatic devices operate efficiently for many years.

| Exhibit 2: Options for Reducing Gas-Bleed<br>Emissions by Controller Type |                      |                         |                             |  |  |  |  |  |  |
|---------------------------------------------------------------------------|----------------------|-------------------------|-----------------------------|--|--|--|--|--|--|
|                                                                           |                      | Pneumatic Typ           | es                          |  |  |  |  |  |  |
| Action                                                                    | Level<br>Controllers | Pressure<br>Controllers | Positioners/<br>Transducers |  |  |  |  |  |  |
| Replacements                                                              |                      |                         | х                           |  |  |  |  |  |  |
| High-bleed with<br>low-bleed                                              | Х                    | Х                       | (electro-<br>pneumatic)     |  |  |  |  |  |  |
| <u>Retrofits</u><br>Install retrofit kits                                 | х                    | х                       | х                           |  |  |  |  |  |  |
| Maintenance                                                               |                      |                         |                             |  |  |  |  |  |  |
| Lower gas supply<br>pressure/replace<br>springs/re-bench                  | Х                    | Х                       | Х                           |  |  |  |  |  |  |
| Repair leaks, clean<br>and tune                                           | х                    | Х                       | х                           |  |  |  |  |  |  |
| Change gain setting                                                       | Х                    | Х                       |                             |  |  |  |  |  |  |
| Remove unnecessary positioners                                            |                      |                         | х                           |  |  |  |  |  |  |

#### **Economic and Environmental Benefits**

Reducing methane emissions from high-bleed pneumatic devices through the options presented above will yield significant benefits, including:

- ★ Financial return from reducing gas-bleed losses. Using a natural gas price of \$7.00 per thousand cubic feet (Mcf), savings from reduced emissions can range from \$315 to \$1,820 or more per year per device. In many cases, the cost of implementation is recovered in less than a year.
- ★ Increased operational efficiency. The retrofit or complete replacement of worn units can provide better system-wide performance and reliability and improve monitoring of parameters such as gas flow, pressure, or liquid level.
- ★ Lower methane emissions. Reductions in methane emissions can range from 45 to 260 Mcf per device per year, depending on the device and the specific application.

#### **Decision Process**

Operators can determine the gas-bleed reduction option that is best suited to their situation, by following the decision process laid out below. Depending on the types of devices that are being considered, one or more options for reducing pneumatic gas bleed may be appropriate.

## Step 1: Locate and describe the high-bleed devices.

Partners should first identify the high-bleed devices that are candidates for replacement, retrofit, or repair. The identification and description process can occur during normal maintenance or during a system-wide or facilityspecific pneumatics survey. For each pneumatic device, record the location, function, make and model, condition, age, estimated remaining useful life, and bleed rate characteristics (volume and whether intermittent or continuous).

The pneumatic device's bleed rate can be determined through direct measurement or from data provided by the manufacturer. Direct measurement might include bagging studies at selected instruments, high-volume sampler measurements (see "Directed Inspection and Maintenance at Compressor Stations" Lessons Learned) or the operator's standard leak measurement approach. Operators will find it unnecessary to measure bleed rates at each device. In most cases, sample measurements of a few devices are sufficient. Experience suggests that manufacturers' bleed rates are understated, so measurement data should be used when it can be acquired.

Appendix A lists brand, model, and gas bleed information—as provided by manufacturers—for various pneumatic devices. This is not an exhaustive list, but it covers the most commonly used devices. Where available, actual field data on bleed rates are included.

## *Step 2: Establish the technical feasibility and costs of alternatives.*

Nearly all high-bleed pneumatic devices can be replaced or retrofitted with lower-bleed equipment. Consult your pneumatic device vendor or an instrumentation specialist for availability, specifications and costs of suitable devices. Low-bleed devices can be requested by specifying bleed rates less than 6 standard cubic feet per hour (scfh). It is important to note that not all manufacturers report bleed rates in the same manner, and companies should exercise

## Five Steps for Reducing Methane Emissions from Pneumatic Devices:

- 1. Locate and describe the high-bleed devices;
- 2. Establish the technical feasibility and costs of alternatives;
- 3. Estimate the savings;
- 4. Evaluate the economics; and
- 5. Develop an implementation plan.

caution when making purchases of low-bleed devices.

Appendix B lists cost data for many low-bleed pneumatic devices and summarizes the compatibility of retrofit kits with various controllers. This is not an exhaustive list, but it covers the most commonly used devices.

Maintenance of pneumatics is a cost-effective method for reducing emissions. All companies should consider maintenance as an important part of their implementation plan. Cleaning and tuning, in addition to repairing leaking gaskets, tubing fittings, and seals, can save 5 to 10 scfh per device. Tuning to operate over a broader range of proportional band often reduces bleed rates by as much as 10 scfh. Eliminating unnecessary valve positioners can save up to 18 scfh per device.

Some high-bleed devices, however, should not be replaced with low-bleed devices. Control of very large valves that require fast and/or precise response to process changes often require high-bleed controllers. These are found most frequently on large compressor discharge and bypass pressure controllers. EPA recommends contacting vendors for new fast-acting devices with lower bleed rates.

#### Step 3: Estimate the savings.

Determine the quantity of gas that can be saved with a low -bleed controller, using field measurement of the highbleed controller and a similar low-bleed device in service. If these actual bleed rates are not available, use bleed specifications provided by manufacturers.

Gas savings can be monetized to annual savings using \$7.00 per Mcf and multiplying bleed reduction, typically specified in scfh, by 8,670 hours per year.

Gas Savings = (High-bleed, scfh) - (Low-bleed, scfh)

Annual Gas Savings = Gas Savings (scfh) \* 8,760 hrs/yr \* 1 Mcf/1000scf \* \$7.00/Mcf

#### Step 4: Evaluate the economics.

The cost-effectiveness of replacement, retrofit, or maintenance of high-bleed pneumatic devices can be evaluated using straightforward economic analysis. A cost -benefit analysis for replacement or retrofit is appropriate unless high-bleed characteristics are required for operational reasons.

Exhibit illustrates a cost-benefit analysis 3 for replacement of a high-bleed liquid level controller. Cash flow over a five-year period is analyzed by showing the magnitude and timing of costs (shown in parenthesis) and benefits. In this example, a \$513 initial investment buys a level controller that saves 19 scfh of gas. At \$7.00 per Mcf, the low-bleed device saves \$1,165 per year. Annual maintenance costs for the new and old controllers are shown. The maintenance cost for the older high-bleed controller is shown as a benefit because it is an avoided cost. Net present value (NPV) is equal to the benefits minus the costs accrued over five years and discounted by 10 percent each year. Internal rate of return (IRR) is the discount rate at which the NPV generated by the investment equals zero.

| Exhibit 3: Cost-Effectiveness<br>Calculation for Replacement         |           |           |           |           |           |           |  |
|----------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| Type of Costs                                                        | Year<br>0 | Year<br>1 | Year<br>2 | Year<br>3 | Year<br>4 | Year<br>5 |  |
| Implementation<br>Costs, \$<br>(Capital Costs) <sup>a</sup>          | (513)     |           |           |           |           |           |  |
| Annual Savings, \$<br>(New vs. Old) <sup>b</sup>                     |           | 1,165     | 1,165     | 1,165     | 1,165     | 1,165     |  |
| Maintenance<br>Costs, \$<br>(New Controller) <sup>c</sup><br>Avoided |           | (34)      | (34)      | (34)      | (34)      | (34)      |  |
| Maintenance, \$<br>(Replaced<br>Controller) <sup>c</sup>             |           | 70        | 70        | 70        | 70        | 70        |  |
| Net Benefit                                                          | (513)     | 1,202     | 1,202     | 1,202     | 1,202     | 1,202     |  |
| NPV <sup>d</sup> = \$4,042<br>IRR = 234%                             |           |           |           |           |           |           |  |
| Notes:                                                               |           |           |           |           |           |           |  |

<sup>a</sup> Quoted cost of a Fisher 2680 device. Adjusted to 2006 equipment costs. See Appendix B. <sup>b</sup> Annual savings per device calculated as the change in bleed rate of 19 scfh x 8,760 hrs/hr = 167 Mcf/ yr at \$7/Mcf.

c Maintenance costs are estimated.

<sup>d</sup> Net Present Value (NPV) based on 10% discount rate for 5 years.

Exhibit 4 illustrates the range of savings offered by proven methods for reducing gas bleed emissions. For simplicity, it is assumed that the cost of maintenance of the pneumatic device will be the same before and after the replacement, retrofit, or enhanced maintenance activity.

As seen in Exhibit 4, sometimes more than one option to reduce gas bleed may be appropriate and cost-effective for a given application. For the listed options, please note that the payback period with respect to implementation cost can range from less than one month to two years.

## Options For Reducing Methane Emissions From Pneumatic Devices In The Natural Gas Industry

(Cont'd)

| Action                    | Costª (\$) | Bleed Rate<br>Reductions <sup>b</sup> (Mcf/<br>yr/device) | Annual Savings <sup>c</sup><br>(\$/year) | Payback Period<br>(months) | IRR <sup>d</sup> (%) |
|---------------------------|------------|-----------------------------------------------------------|------------------------------------------|----------------------------|----------------------|
| Replacement               |            |                                                           |                                          |                            |                      |
| Level Controllers         |            |                                                           |                                          |                            |                      |
| High-bleed to low-bleed   | 513        | 166                                                       | 1,165                                    | 6                          | 226                  |
| Pressure Controllers      |            |                                                           |                                          |                            |                      |
| High-bleed to low-bleed   | 1,809      | 228                                                       | 1,596                                    | 14                         | 84                   |
| Airset metal to soft-seal | 104        | 219                                                       | 1,533                                    | <1                         | >1,400               |
| Retrofit                  |            |                                                           |                                          |                            |                      |
| Level Controllers         |            |                                                           |                                          |                            |                      |
| Mizer                     | 675        | 219                                                       | 1,533                                    | 6                          | 226                  |
| Large orifice to small    | 41         | 184                                                       | 1,288                                    | <1                         | >3,100               |
| Large nozzle to small     | 189        | 131                                                       | 917                                      | 3                          | >450                 |
| Pressure Controllers      |            |                                                           |                                          |                            |                      |
| Large orifice to small    | 41         | 184                                                       | 1,288                                    | <1                         | >3,100               |
| Maintenance               |            |                                                           |                                          |                            |                      |
| All types                 |            |                                                           |                                          |                            |                      |
| Reduce supply pressure    | 207        | 175                                                       | 1,225                                    | 3                          | >500                 |
| Repair leaks, retune      | 31         | 44                                                        | 308                                      | 2                          | >900                 |
| Level Controllers         |            |                                                           |                                          |                            |                      |
| Change gain setting       | 0          | 88                                                        | 616                                      | Immediate                  |                      |
| Positioners               |            |                                                           |                                          |                            |                      |
| Remove unnecessary        | 0          | 158                                                       | 1,106                                    | Immediate                  |                      |

<sup>a</sup> Implementation costs represent average costs for Fisher brand pneumatic instruments installed.

<sup>b</sup> Bleed rate reduction = change in bleed rate scf/hr x 8,760 hr/yr.

c Savings based on \$7.00/Mcf cost of gas.

d Internal rate of return (IRR) calculated over 5 years.

The case studies in Exhibit 5 on the next page present analyses performed and savings achieved by two Natural Gas STAR Partners who installed retrofit kits at gas production facilities.

#### Step 5: Develop an implementation plan.

After identifying the pneumatic devices that can be profitably replaced, retrofitted or maintained, devise a systematic plan for implementing the required changes. This can include modifying the current inspection and maintenance schedule and prioritizing replacement or retrofits. It may be most cost-effective to replace all those devices that meet the technical and economic criteria of your analysis at one time to minimize labor costs and disruption of operation.

Where a pneumatic device is at the end of its useful life and is scheduled for replacement, it should be replaced with a low-bleed model instead of a new high-bleed device whenever possible.

When assessing options for replacement of high-bleed pneumatic devices, natural gas price may influence the decision making process. Exhibit 6 shows an economic analysis of early replacement of a high bleed pneumatic device with a lower bleed device at different natural gas prices.

| (00111 | ~) |  |
|--------|----|--|
|        |    |  |
|        |    |  |
|        |    |  |
|        |    |  |
|        |    |  |
|        |    |  |
|        |    |  |
|        |    |  |

| Exhibit 5: Case Studies on Retrofit To Reduce Gas<br>Leaks at Natural Gas STAR Partner Sites |                                  |                                     |                                    |                     |            |  |  |  |
|----------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|------------------------------------|---------------------|------------|--|--|--|
| Study                                                                                        | Impleme<br>ntation<br>Costs (\$) | Emissions<br>Reductions<br>(Mcf/yr) | Annual<br>Savings<br>(\$/<br>year) | Payback<br>(months) | IRR<br>(%) |  |  |  |
| Company 1:                                                                                   |                                  |                                     |                                    |                     |            |  |  |  |
| Platform 1                                                                                   | 8,988                            | 2,286                               | 16,002                             | 7                   | 177        |  |  |  |
| Platform 2                                                                                   | 13,892                           | 3,592                               | 25,144                             | 7                   | 180        |  |  |  |
| Retrofit<br>Liquid-level<br>controllers                                                      | 5,452                            | 1,717                               | 12,019                             | 6                   | 220        |  |  |  |
| Company 2:                                                                                   |                                  |                                     |                                    |                     |            |  |  |  |
| Per device                                                                                   | 702                              | 219                                 | 1,533                              | 6                   | 218        |  |  |  |

| Exhibit 6: Gas Price Impact on<br>Economic Analysis |         |         |         |         |          |  |  |
|-----------------------------------------------------|---------|---------|---------|---------|----------|--|--|
|                                                     | \$3/Mcf | \$5/Mcf | \$7/Mcf | \$8/Mcf | \$10/Mcf |  |  |
| Value of Gas<br>Saved                               | \$780   | \$1,300 | \$1,820 | \$2,080 | \$2,600  |  |  |
| Payback<br>Period<br>(months)                       | 29      | 18      | 13      | 11      | 9        |  |  |
| Internal Rate<br>of Return<br>(IRR)                 | 31%     | 64%     | 95%     | 110%    | 139%     |  |  |
| Net Present<br>Value<br>( <i>i</i> =10%)            | \$1,107 | \$3,078 | \$5,049 | \$6,035 | \$8,006  |  |  |

## **Other Technologies**

Instrument air, nitrogen gas, electric valve controllers, and mechanical control systems are some of the alternatives to gas powered pneumatics implemented by Partners.

★ Instrument Air. These systems substitute compressed, dried air in place of natural gas in pneumatic devices, and thus eliminate methane emissions entirely. Instrument air systems are typically installed at facilities where there is a high concentration of pneumatic control valves and fulltime operator presence (for example, most gas

### **Nelson Price Indexes**

In order to account for inflation in equipment and operating & maintenance costs, Nelson-Farrar Quarterly Cost Indexes (available in the first issue of each quarter in the *Oil and Gas Journal*) are used to update costs in the Lessons Learned documents.

The "Refinery Operation Index" is used to revise operating costs while the "Machinery: Oilfield Itemized Refining Cost Index" is used to update equipment costs.

To use these indexes in the future, simply look up the most current Nelson-Farrar index number, divide by the February 2006 Nelson-Farrar index number, and, finally multiply by the appropriate costs in the Lessons Learned. processing plants use instrument air for pneumatic devices). The major costs associated with instrument air systems are capital and energy. Instrument air systems are powered by electric compressors, and require the installation of dehydrators and volume tanks to filter, dry and store the air for instrumentation use. Generally, Partners have found that cost-effective implementation of instrument air systems is limited to field sites with available utility or self-generated electrical power. The Lessons Learned study, "Covert Gas Pneumatic Controls to Instrument Air," provides a detailed description of the technical and economic decision process required to evaluate conversion from gas pneumatic devices to instrument air.

- ★ Nitrogen Gas. Unlike instrument air systems that require capital expenditures and electric power, these systems only require the installation of a cryogenic liquid nitrogen cylinder, that is replaced periodically, and a liquid nitrogen vaporizer. The system uses a pressure regulator to control the expansion of the nitrogen gas (i.e., the gas pressure) as it enters the control system. The primary disadvantage of these systems stems from the cost of liquid nitrogen and the potential safety hazard associated with using cryogenic liquids.
- ★ Electric Valve Controllers. Due to advances in technology, the use of electronic control instrumentation is increasing. These systems use small electrical motors to operate valves and therefore do not bleed natural gas into the atmosphere. While they are reliant on a constant

#### **Methane Content of Natural Gas**

The average methane content of natural gas varies by natural gas industry sector. The Natural Gas STAR Program assumes the following methane content of natural gas when estimating methane savings for Partner Reported Opportunities.

| 79 % |
|------|
| 87 % |
| 94 % |
|      |

supply of electricity, and have high associated operating costs, they have the advantage of not requiring the utilization of natural gas or a compressor to operate.

★ Mechanical Control Systems. These devices have been widely used in the natural gas and petroleum industry. They operate using a combination of springs, levers, flow channels and hand wheels. While they are simple in design and require no natural gas or power supply to operate, their application is limited due to the need for the control valve to be in close proximity to the process measurement. Also, these systems are unable to handle large flow fluctuations and lack the sensitivity of pneumatic systems.

Each of these options has specific advantages and disadvantages. Where Natural Gas STAR Partners do install these systems as replacements to gas powered pneumatic devices, they should report the resulting emissions reductions and recognize the savings.

#### **One Partner's Experience**

Union Pacific Resources replaced 70 high-bleed pneumatic devices with low-bleed pneumatic devices and retrofitted 330 high-bleed pneumatic devices. As a result, this Partner has estimated a total reduction of methane emissions of 49,600 Mcf per year. Assuming a gas price of \$7 per Mcf, the savings corresponds to \$347,200. The costs of replacing and retrofitting all the devices, including materials and labor, is \$166,300 at 2006 costs, resulting in a payback period of less than one year.

#### **One Partner's Experience**

Marathon Oil Company surveyed 158 pneumatic control devices at 50 production sites using the Hi-Flow Sampler to measure emissions. Half of these controllers were identified as non-bleed devices (e.g., weighted dump valves, spring operated regulators, enclosed capillary temperature controllers, non-bleed pressure switches). High-bleed devices accounted for 35 of 67 level controllers, 5 of 76 pressure controllers, and 1 of 15 temperature controllers. Measured gas emissions were 583 scfh total; 86 percent of emissions came from level controllers, with leaks up to 48 scfh, and averaging 7.6 scfh. Marathon concluded that "control devices with higher emissions can be identified qualitatively by sound prior to leak measurement, making it unnecessary to quantitatively measure methane emissions using technologically advanced equipment."

#### **Lessons Learned**

Natural Gas STAR Partners offer the following Lessons Learned:

- ★ Hear it; feel it; replace it. Where emissions can be heard or felt, this is a sign that emissions are significant enough to warrant corrective action.
- ★ Control valve cycle frequency is another indicator of excessive emissions. When devices cycle more than once per minute, they can be replaced or retrofitted profitably.
- ★ Manufacturer bleed rate specifications are not necessarily what users will experience. Actual bleed rates will generally exceed manufacturer's specifications because of operating conditions different from manufacturer's assumptions, installation settings and maintenance.
- ★ Combine equipment retrofits or replacements with improved maintenance activities. Do not overlook simple solutions such as replacing tubes and fittings or rearranging controllers.
- ★ The smaller orifices in low-bleed devices and retrofit kits can be subject to clogging from debris in corroded pipes. Therefore, pneumatic supply gas piping and tubing should be flushed out before retrofitting with

smaller orifice devices, and gas filters should be well maintained.

- ★ When replacing pneumatic control systems powered by pressurized natural gas with instrument air or other systems, do not forget to account for the savings from the resulting methane emission reductions.
- ★ Include methane emission reductions from pneumatics in annual reports submitted as part of the Natural Gas STAR Program.

#### References

Adams, Jim, Norriseal, personal contact.

Burlage, Brian, Fisher Controls International, Inc., personal contact.

Colwell, Chris, Masoneilan, personal contact.

- Fisher Controls International, Inc. *Pneumatic Instrument Gas Bleed Reduction Strategy and Practical Application.*
- Garvey, J. Michael, DFC Becker Operations, personal contact.
- Hankel, Bill, Ametek PMT Division, personal contact.
- Henderson, Carolyn, U.S. EPA Natural Gas STAR Program, personal contact.
- Husson, Frank, ITT Barton, personal contact.
- Loupe, Bob, Control Systems Specialist Inc., personal contact.
- Murphy, John, Bristol Babcock, personal contact.
- Radian Corporation. *Pneumatic Device Characterization*. Draft Final Report, Gas Research Institute and U.S. Environmental Protection Agency, January 1996.
- Tingley, Kevin, U.S. EPA Natural Gas STAR Program, personal contact.

Wilmore, Martin R., Shafer Valve Company, personal contact.

Ulanski, Wayne. Valve and Actuator Technology. McGraw-Hill, 1991.

#### Appendix A

The following chart contains manufacturer-reported bleed rates. Actual bleed rates have been included whenever possible. Discrepancies occur due to a variety of reasons, including:

- ★ Maintenance.
- ★ Operating conditions.
- ★ Manufacturer vs. operating assumptions.

It is important to note that manufacturer information has not been verified by any third party and there may be large differences between manufacturer-reported bleed rates and those found during operations. Until a full set of information is available, companies should be careful to compare bleed rates in standard units (CFH) when comparing manufacturers and models. During this study we found that manufacturers reported information in a wide range of different units and operating assumptions.

| Gas Bleed Rate for Various Pneumatic Devices |                                                 |                        |                                    |  |  |  |  |  |
|----------------------------------------------|-------------------------------------------------|------------------------|------------------------------------|--|--|--|--|--|
|                                              |                                                 | Consumption Rate (CFH) |                                    |  |  |  |  |  |
| Controller Type<br>Model                     |                                                 | Manufacturer<br>Data   | Field Data<br>(where<br>available) |  |  |  |  |  |
| High-Bleed Pneumatic Devices                 |                                                 |                        |                                    |  |  |  |  |  |
| **Fisher 4100<br>Series                      | Pressure controller<br>(large orifice)          | 35                     |                                    |  |  |  |  |  |
| **Fisher 2500<br>Series                      | Liquid-level controllers<br>(P.B. in mid range) | 10-34                  | 44-72                              |  |  |  |  |  |
| *Invalco AE-155                              | Liquid-level controller                         |                        | 44-63                              |  |  |  |  |  |
| *Moore<br>Products—Model<br>750P             | Positioner                                      | 42                     |                                    |  |  |  |  |  |
| * Invalco CT<br>Series                       | Liquid-level controllers                        | 40                     | 34-87                              |  |  |  |  |  |
| **Fisher<br>4150/4160K                       | Pressure controller<br>(P.B. 0 or 10)           | 2.5-29                 |                                    |  |  |  |  |  |
| **Fisher 546                                 | Transducer                                      | 21                     |                                    |  |  |  |  |  |
| **Fisher 3620J                               | Electro-pneumatic<br>positioner                 | 18.2                   |                                    |  |  |  |  |  |
| Foxboro 43AP                                 | Pressure controller                             | 18                     |                                    |  |  |  |  |  |
| **Fisher 3582i                               | Electro-pneumatic<br>positioner                 | 17.2                   |                                    |  |  |  |  |  |

| **Fisher 4100<br>Series | Pressure controller<br>(small orifice) | 15    |  |
|-------------------------|----------------------------------------|-------|--|
| **Fisher DVC<br>6000    | Electro-pneumatic<br>positioner        | 14    |  |
| **Fisher 846            | Transducer                             | 12    |  |
| **Fisher 4160           | Pressure controller<br>(P.B. 0.5)      | 10-34 |  |
| **Fisher 2506           | Receiver controller<br>(P.B. 0.5)      | 10    |  |
| **Fisher DVC<br>5000    | Electro-pneumatic positioner           | 10    |  |
| **Masoneilan<br>4700E   | Positioners                            | 9     |  |
| **Fisher 3661           | Electro-pneumatic<br>positioner        | 8.8   |  |
| **Fisher 646            | Transducer                             | 7.8   |  |
| **Fisher 3660           | Pneumatic positioner                   | 6     |  |
| **ITT Barton<br>335P    | Pressure controller                    | 6     |  |
| *Ametek Series<br>40    | Pressure controllers                   | 6     |  |
|                         |                                        |       |  |

#### Low- or No-Bleed Pneumatic Devices

| **Masoneilan<br>SV                                    | Positioners              | 4   |  |
|-------------------------------------------------------|--------------------------|-----|--|
| **Fisher 4195<br>Series                               | Pressure controllers     | 3.5 |  |
| **ITT Barton<br>273A                                  | Pressure transmitter     | 3   |  |
| **ITT Barton<br>274A                                  | Pressure transmitter     | 3   |  |
| **ITT Barton<br>284B                                  | Pressure transmitter     | 3   |  |
| **ITT Barton<br>285B                                  | Pressure transmitter     | 3   |  |
| **Bristol<br>Babcock Series<br>5457-70F               | Transmitter              | 3   |  |
| **Bristol<br>Babcock Series<br>5453-Model 624<br>-11  | Liquid-level controllers | 3   |  |
| **Bristol<br>Babcock Series<br>5453-Model 10F         | Pressure controllers     | 3   |  |
| **Bristol<br>Babcock Series<br>5455 Model 624<br>-111 | Pressure controllers     | 3   |  |
| **ITT Barton<br>358                                   | Pressure controller      | 1.8 |  |

# Options For Reducing Methane Emissions From Pneumatic Devices In The Natural Gas Industry (Cont'd)

| **ITT Barton<br>359                     | Pressure controller                                                                                                                                   | 1.8   |       | Actuator<br>Model                        | Size        | Manufacturer<br>Data     | Field Data                 |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------------------------------------|-------------|--------------------------|----------------------------|
| **Fisher 3610J                          | Pneumatic positioner                                                                                                                                  | 16    |       | *Shafer RV-<br>Series Rotary             | 33" x 32"   | 1,084                    |                            |
| **Bristol<br>Babcock Series             | Recording pneumatic controllers                                                                                                                       | <6    |       | Vane Valve<br>Actuators                  | 36" x 26"   | 768                      |                            |
| 502 A/D                                 | High-low pressure                                                                                                                                     |       |       |                                          | 26" x 22"   | 469                      |                            |
| **Fisher 4660                           | pilot                                                                                                                                                 | <5    |       |                                          | 25" x 16"   | 323                      |                            |
| **Bristol<br>Babcock Series<br>9110-00A | Transducers                                                                                                                                           | 0.42  |       |                                          | 20" x 16"   | 201                      |                            |
| Fisher 2100                             | Liquid-level controllers                                                                                                                              | 1     |       |                                          | 16.5" x 16" | 128                      |                            |
| Series                                  | Elquid-level controllers                                                                                                                              | I     |       |                                          | 14.5" x 14" | 86                       |                            |
| **Fisher 2680                           | Liquid-level controllers                                                                                                                              | <1    |       |                                          | 12.5" x 12" | 49                       |                            |
| *Norriseal 1001<br>(A) (snap)           | Liquid-level controller                                                                                                                               | 0.2   | 0.2   |                                          | 12" x 9"    | 22                       |                            |
| *Norriseal 1001                         |                                                                                                                                                       |       |       |                                          | 11″ x 10″   | 32                       |                            |
| (A)<br>('Envirosave')                   | Liquid-level controller                                                                                                                               | 0     | 0     |                                          | 9″ x 7″     | 12                       |                            |
| *Norriseal 1001<br>(A) (throttle)       | Liquid-level controller                                                                                                                               | 0.007 | 0.007 |                                          | 8″ x 6.5″   | 8                        |                            |
|                                         | Double-acting pilot                                                                                                                                   |       |       |                                          | 6.5" x 3.5" | 6                        |                            |
| **Becker VRP-B                          | pressure control<br>system (replaces                                                                                                                  | 0-10  |       |                                          | 5″ x 3″     | 6                        |                            |
| -CH                                     | controllers and<br>positioners)<br>Pneumatic positioner                                                                                               |       |       | Actuator                                 | Size        | Number of<br>Snap-acting | Number<br>of<br>Throttling |
| **Becker HPP-5                          | (Double-acting)                                                                                                                                       | 0-10  |       | Model                                    |             | Strokes per<br>CF        | Strokes<br>per CF          |
| **Becker EFP-<br>2.0                    | Electro-pneumatic<br>positioner                                                                                                                       | 0     |       | **Fisher Valve<br>Actuators              | 20          | 21                       | 39                         |
|                                         | Single-acting pilot<br>pressure control                                                                                                               |       |       | **Fisher Valve                           | 30          | 12                       | 22                         |
| **Becker VRP-<br>SB                     | system (replaces controllers and                                                                                                                      | 0     |       | Actuators<br>**Fisher Valve<br>Actuators | 34/40       | 6                        | 10                         |
| **Becker VRP-                           | positioners)                                                                                                                                          |       |       | **Fisher Valve<br>Actuators              | 45/50       | 3                        | 5                          |
| SB GAP<br>Controller                    | Replaces pneumatic<br>"gap" type controllers                                                                                                          | 0     |       | **Fisher Valve<br>Actuators              | 46/50       | 2                        | 3                          |
| **Becker VRP-<br>SB-PID<br>Controller   | Single-acting pilot<br>pressure control<br>system specifically<br>designed for power<br>plant type feeds<br>(replaces controllers<br>and positioners) | 0     |       | * Last updated ir<br>** Last updated     |             |                          |                            |
| **Becker VRP-                           | Single-acting pilot<br>pressure control<br>system (replaces                                                                                           | 0     |       |                                          |             |                          |                            |
| SB-CH<br>**Becker HPP-                  | controllers and<br>positioners)<br>Pneumatic positioner                                                                                               |       |       |                                          |             |                          |                            |

# Options For Reducing Methane Emissions From Pneumatic Devices In The Natural Gas Industry (Cont'd)

# Appendix B

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Туре                                                        | Brand/Model Numbe               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|
| versure controllers     Norriseal – 4300       uggested Retail Prices for Various Brand Low-Bleed Pneumatic Devices     Frice per Device       stimates Based on Best Information Available at Time of Publication)     Price per Device       ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d-level controllers                                         | C.E. Invalco — 215, 402, AE-155 |
| uggested Retail Prices for Various Brand Low-Bleed Pneumatic Devices         Price per Device           Estimates Based on Best Information Available at Time of Publication)         Price per Device           rand/Model         \$920           'ITT Barton 335P (pressure controller)         \$1.010           'ITT Barton 273A (pressure transmitter)         \$1.385           'ITT Barton 274A (pressure transmitter)         \$1.005           'ITT Barton 284B (pressure transmitter)         \$1.000           'ITT Barton 284B (pressure transmitter)         \$1.400           'ITT Barton 285B (pressure transmitter)         \$1.400           'ITT Barton 38E (recorder controller)         \$1.400           'ITT Barton 340E (recording pressure controllers)         \$1.100 (average cost)           'Becker VRP-Se 40 (pressure controllers)         \$1.100 (average cost)           'Becker VRP-SB         \$1.675.00           'Becker VRP-SB         \$1.675.00           'Becker VRP-SB         \$1.675.00           'Becker VRP-SB-CH         \$1.575.00           'Becker VRP-SB-CH         \$1.675.00           'Becker VRP-SB-CH         \$1.675.00           'Becker VRP-SB         \$1.675.00           'Becker VRP-SB-CH         \$1.575.00           'Becker VRP-SB         \$1.675.00           'Itsher Arbets for sour |                                                             | Norriseal — 1001, 1001A         |
| Stimates Based on Best Information Available at Time of Publication)         Price per Device           rand/Model         Price per Device           *1TT Barton 335P (pressure controller)         \$1.010           *1TT Barton 273A (pressure transmitter)         \$1.385           *1TT Barton 274A (pressure transmitter)         \$1.000           *1TT Barton 284B (pressure transmitter)         \$1.000           *1TT Barton 285B (pressure transmitter)         \$1.400           *1TT Barton 336E (recording pressure controller)         \$1.400           *1TT Barton 336E (recorder controller)         \$2.800           *Ametek Series 40 (pressure controllers)         \$1.100 (average cost)           *Becker VRP-B-CH         \$1.575.00           *Becker VRP-SB         \$1.675.00           *Becker VRP-SB-CH-PID         \$2.075.00           *Becker VRP-SB-CH-PID         \$2.075.00           *Becker VRP-SB-CH-PID         \$2.075.00           *Becker VRP-SB-CH         \$1.675.00           *Becker VRP-SB         \$1.675.00           *Becker VRP-SB         \$1.675.00           *Becker VRP-SB         \$1.675.00           *Fisher Afalse regulators)         \$1.675.00           *Fisher Afalse regulators)         \$1.675.00           *Fisher Afalse regulators)         \$1.675.00                            | sure controllers                                            | Norriseal — 4300                |
| rand/ModelPrice per Device*1TT Barton 335P (pressure controller)\$920*1TT Barton 273A (pressure transmitter)\$1,010*1TT Barton 274A (pressure transmitter)\$1,385*1TT Barton 284B (pressure transmitter)\$1,605*1TT Barton 285B (pressure transmitter)\$1,400*1TT Barton 340E (recording pressure controller)\$1,400*1TT Barton 340E (recorder controller)\$2,800*1TT Barton 340E (recorder controller)\$1,000 (average cost)*Becker VRP-B-CH\$1,575.00*Becker VRP-B-CH\$1,575.00*Becker VRP-SB\$1,575.00*Becker VRP-SB-CH-PID\$2,075.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Bister 6480 (liquid-level controllers)\$380*Fisher 6480 (liquid-level controllers)\$360*Bister 6480 (liquid-level controllers)\$3,500                                                                                                                                                                           |                                                             |                                 |
| ITT Barton 335P (pressure controller)\$920ITT Barton 273A (pressure transmitter)\$1,100ITT Barton 274A (pressure transmitter)\$1,385ITT Barton 284B (pressure transmitter)\$1,605ITT Barton 285B (pressure transmitter)\$1,990ITT Barton 340E (recording pressure controller)\$1,400ITT Barton 338E (recorder controller)\$2,800*Mettek Series 40 (pressure controllers)\$1,100 (average cost)*Becker VRP-B-CH\$1,575.00*Becker VRP-SB\$1,575.00*Becker VRP-SB\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Bistol Babcock Series 5453 (controllers)\$3,600                                                                                                                                                                                                         |                                                             |                                 |
| HTT Barton 273A (pressure transmitter)\$1,010*HTT Barton 274A (pressure transmitter)\$1,385*HTT Barton 284B (pressure transmitter)\$1,605*HTT Barton 285B (pressure transmitter)\$1,400*HTT Barton 285B (pressure controller)\$1,400*HTT Barton 340E (recorder controller)\$2,800*HTT Barton 338E (recorder controller)\$1,100 (average cost)*Becker VRP-B-CH\$1,575.00*Becker VRP-B-CH\$1,575.00*Becker VRP-SB\$1,675.00*Becker VRP-SB-CH-PID\$2,000.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,675.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB\$1,675.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Bister Babcock Series 543.00\$1,535.51,550*Fisher 2680 (liquid-level controllers)\$3,500<                                                                                                                                                                                                    |                                                             |                                 |
| ITT Barton 274A (pressure transmitter)\$1,385ITT Barton 284B (pressure transmitter)\$1,605ITT Barton 285B (pressure transmitter)\$1,990ITT Barton 285B (pressure controller)\$1,400ITT Barton 340E (recorder controller)\$2,800'ITT Barton 338E (recorder controller)\$1,100 (average cost)'Becker VRP-B-CH\$1,575.00'Becker VRP-B-CH\$1,575.00'Becker VRP-SB\$1,675.00'Becker VRP-SB-CH-PID\$2,005.00'Becker VRP-SB-CH\$1,575.00'Becker VRP-SB-CH\$1,575.00'Becker VRP-SB-CH\$1,675.00'Becker VRP-SB-CH\$1,675.00'Becker VRP-SB-CH\$1,675.00'Becker VRP-SB-CH\$1,675.00'Becker VRP-SB-CH\$1,675.00'Becker VRP-SB-CH\$1,675.00'Becker VRP-SB-CH\$1,675.00'Brister detrofit Kits\$400-\$600'Fisher 67AFR (airset regulators)\$380'Fisher 2680 (liquid-level controllers)\$380'Bristol Babcock Series 5453 (controllers)\$1,535'Bristol Babcock Series 5453 (controllers)\$3,500'Bristol Babcock Series 5457-624 II (controllers)\$3,000'Bristol Babcock Series 5457-624 III (pressure controllers)\$3,000'Bristol Babcock Series 5457-624 III (pressure controllers)\$3,000'Bristol Babcock Series 5457-624 III (pressure controllers)\$3,000'Bristol Babcock Series 5455-624 III (pressure controllers)\$3,000'Bristol Babcock Series 5455-624 III (pressure controllers)\$3,000'Bristol Babcock Se                                                         |                                                             |                                 |
| ITT Barton 284B (pressure transmitter)\$1,605*ITT Barton 285B (pressure transmitter)\$1,990*ITT Barton 285B (pressure transmitter)\$1,400*ITT Barton 340E (recording pressure controller)\$2,800*ITT Barton 338E (recorder controller)\$2,800*Ametek Series 40 (pressure controllers)\$1,100 (average cost)*Becker VRP-B-CH\$1,575.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,575.00-\$2,000.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker HPP-SB\$1,675.00*Becker HPP-SB\$1,675.00*Becker HPP-SB\$1,675.00*Becker HPP-SB\$1,675.00*Becker HPP-SB\$1,675.00*Bistor Babcock Series 9110-00A (transducers)\$380*Fisher 4195 (pressure controllers)\$1,535-\$1,550*Bristol Babcock Series 5453 (controllers)\$3,500*Bristol Babcock Series 5457-624 II (controllers)\$3,140*Bristol Babcock Series 5457-624 III (pressure controllers)\$3,000*Bristol Babcock Series 5455-624 III (pressure controllers)\$3,000*Bristol Babcock Series 5455-624 III (pressure controllers)\$3,000*Bristol                                                                                                            |                                                             |                                 |
| *ITT Barton 285B (pressure transmitter)\$1,990*ITT Barton 285B (pressure transmitter)\$1,400*ITT Barton 334C (recording pressure controller)\$2,800*ITT Barton 338E (recorder controller)\$2,800*Ametek Series 40 (pressure controllers)\$1,100 (average cost)*Becker VRP-B-CH\$1,575.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,575.00*Becker VRP-SB\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker HPP-SB\$1,675.00*Becker HPP-SB\$1,675.00*Hizer Retrofit Kits\$400-\$600*Fisher 2680 (liquid-level controllers)\$380*Fisher 2680 (liquid-level controllers)\$1,340*Fisher 2680 (liquid-level controllers)\$1,340*Bristol Babcock Series 9110-00A (transducers)\$1,535-\$1,550*Bristol Babcock Series 5453 (controllers)\$3,500*Bristol Babcock Series 5457-624 II (controllers)\$3,000*Bristol Babcock Series 502 A/D (recording controllers)\$3,000*Bristol Babcock Series 5455-624 III (pressure controllers)\$3,140*Bristol Babcock Series 5455-624 III (pressure controllers)\$3,100*Bristol Babcock Series 5455-624 II                                                                                  | · · ·                                                       |                                 |
| *1TT Barton 340E (recording pressure controller)\$1,400*1TT Barton 338E (recorder controller)\$2,800*ITT Barton 338E (recorder controllers)\$1,100 (average cost)*Ametek Series 40 (pressure controllers)\$1,575.00*Becker VRP-B-CH\$1,575.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,575.00*Becker VRP-SB-CH-PID\$2,075.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,675.00*Becker VRP-SB-CH\$1,675.00*Becker VRP-SB-CH\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Bister detrofit Kits\$300*Fisher 67AFR (airset regulators)\$1,340*Fisher 67AFR (airset regulators)\$1,535*Fisher 2680 (liquid-level controllers)\$1,535*Bristol Babcock Series 5453 (controllers)\$3,500*Bristol Babcock Series 5457-624 II (controllers)\$3,000*Bristol Babcock Series 5455-624 III (pressure controllers)\$3,000*Bristol Babcock Series 5455-624                                                                                                                                                                   | T Barton 284B (pressure transmitter)                        | \$1,605                         |
| *ITT Barton 338E (recorder controller)       \$2,800         *Ametek Series 40 (pressure controllers)       \$1,100 (average cost)         *Becker VRP-B-CH       \$1,575.00         *Becker VRP-SB       \$1,675.00         *Becker VRP-SB       \$1,575.00-\$2,000.00         *Becker VRP-SB-CH-PID       \$2,075.00         *Becker VRP-SB-CH       \$1,575.00         *Becker VRP-SB-CH       \$1,575.00         *Becker VRP-SB-CH       \$1,575.00         *Becker VRP-SB-CH       \$1,575.00         *Becker VRP-SB (models)       \$1,675.00         *Bistol Babcock Series 910-00A (transducers)       \$1,340         *Bristol Babcock Series 5453 (controllers)       \$1,540         *Bristol Babcock Series 5457-624 II (controllers)       \$3,140<                                                                                  | T Barton 285B (pressure transmitter)                        | \$1,990                         |
| *Ametek Series 40 (pressure controllers)\$1,100 (average cost)*Becker VRP-B-CH\$1,575.00*Becker HPP-5\$1,675.00*Becker VRP-SB\$1,575.00-\$2,000.00*Becker VRP-SB-CH-PID\$2,075.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,575.00*Becker VRP-SB-CH\$1,675.00*Becker VRP-SB-CH\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Becker VRP-SB\$1,675.00*Bister Retrofit Kits\$400-\$600*Fisher 2680 (liquid-level controllers)\$80*Fisher 2680 (liquid-level controllers)\$1,340*Fisher 4195 (pressure controllers)\$1,535-\$1,550*Bristol Babcock Series 9110-00A (transducers)\$1,540*Bristol Babcock Series 5453 40 G (temperature controllers)\$3,500*Bristol Babcock Series 5457-624 II (controllers)\$3,140*Bristol Babcock Series 502 A/D (recording controllers)\$3,000*Bristol Babcock Series 5455-624 III (pressure controllers)\$1,135*Bristol Babcock Series 5455-624 III (pressure controllers)\$1,135                                                                                                                                                                                                                                                   | T Barton 340E (recording pressure controller)               | \$1,400                         |
| *Becker VRP-B-CH         \$1,575.00           *Becker HPP-5         \$1,675.00           *Becker VRP-SB         \$1,575.00-\$2,000.00           *Becker VRP-SB         \$1,575.00-\$2,000.00           *Becker VRP-SB-CH-PID         \$2,075.00           *Becker VRP-SB-CH         \$1,575.00           *Becker VRP-SB-CH         \$1,575.00           *Becker VRP-SB-CH         \$1,675.00           *Becker VRP-SB-CH         \$1,675.00           *Becker VRP-SB         \$1,675.00           *Becker VRP-SB         \$1,675.00           *Becker VRP-SB         \$1,675.00           *Becker HPP-SB         \$1,675.00           *Becker HPP-SB         \$1,675.00           *Mizer Retrofit Kits         \$400-\$600           *Fisher 67AFR (airset regulators)         \$80           *Fisher 2680 (liquid-level controllers)         \$80           *Fisher 4195 (pressure controllers)         \$1,340           *Bristol Babcock Series 9110-00A (transducers)         \$1,535-\$1,550           *Bristol Babcock Series 5453 (controllers)         \$1,540           *Bristol Babcock Series 5457-624 II (controllers)         \$3,140           *Bristol Babcock Series 502 A/D (recording controllers)         \$3,000           *Bristol Babcock Series 5455-624 III (pressure controllers)         \$1,                                     | T Barton 338E (recorder controller)                         | \$2,800                         |
| *Becker HPP-5         \$1,675.00           *Becker VRP-SB         \$1,575.00-\$2,000.00           *Becker VRP-SB-CH-PID         \$2,075.00           *Becker VRP-SB-CH         \$1,575.00           *Becker VRP-SB-CH         \$1,575.00           *Becker VRP-SB-CH         \$1,675.00           *Becker VRP-SB-CH         \$1,675.00           *Becker VRP-SB-CH         \$1,675.00           *Becker HPP-SB         \$1,675.00           *Bister Fattree tregulators)         \$1,675.00           *Fisher 2680 (liquid-level controllers)         \$80           *Fisher 2680 (liquid-level controllers)         \$380           *Fisher 4195 (pressure controllers)         \$1,340           *Bristol Babcock Series 9110-00A (transducers)         \$1,535           *Bristol Babcock Series 5453 (controllers)         \$1,540           *Bristol Babcock Series 5457-624 II (controllers)         \$3,140               *Bristol Babcock Series 5455-624 III (pre                                                              | netek Series 40 (pressure controllers)                      | \$1,100 (average cost)          |
| *Becker VRP-SB \$1,575.00-\$2,000.00<br>*Becker VRP-SB-CH-PID \$2,075.00<br>*Becker VRP-SB-CH \$1,575.00<br>*Becker HPP-SB \$1,675.00<br>*Mizer Retrofit Kits \$400-\$600<br>*Fisher 67AFR (airset regulators) \$80<br>*Fisher 2680 (liquid-level controllers) \$380<br>*Fisher 2680 (liquid-level controllers) \$380<br>*Fisher 4195 (pressure controllers) \$1,340<br>*Bristol Babcock Series 9110-00A (transducers) \$1,535-\$1,550<br>*Bristol Babcock Series 5453 (controllers) \$3,500<br>*Bristol Babcock Series 5457-624 II (controllers) \$3,140<br>*Bristol Babcock Series 5457-624 II (controllers) \$3,000<br>*Bristol Babcock Series 5455-624 III (pressure controllers) \$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ecker VRP-B-CH                                              | \$1,575.00                      |
| *Becker VRP-SB-CH-PID \$2,075.00<br>*Becker VRP-SB-CH \$1,575.00<br>*Becker HPP-SB \$1,675.00<br>*Mizer Retrofit Kits \$100<br>*Fisher 67AFR (airset regulators) \$400-\$600<br>*Fisher 2680 (liquid-level controllers) \$80<br>*Fisher 2680 (liquid-level controllers) \$380<br>*Fisher 4195 (pressure controllers) \$1,340<br>*Bristol Babcock Series 9110-00A (transducers) \$1,535-\$1,550<br>*Bristol Babcock Series 5453 (controllers) \$1,540<br>*Bristol Babcock Series 5453 40 G (temperature controllers) \$3,500<br>*Bristol Babcock Series 5457-624 II (controllers) \$3,140<br>*Bristol Babcock Series 5455-624 III (pressure controllers) \$3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ecker HPP-5                                                 | \$1,675.00                      |
| *Becker VRP-SB-CH\$1,575.00*Becker HPP-SB\$1,675.00*Mizer Retrofit Kits\$400-\$600*Fisher 67AFR (airset regulators)\$80*Fisher 2680 (liquid-level controllers)\$380*Fisher 4195 (pressure controllers)\$1,340*Bristol Babcock Series 9110-00A (transducers)\$1,535-\$1,550*Bristol Babcock Series 5453 (controllers)\$1,540*Bristol Babcock Series 5453 40 G (temperature controllers)\$3,500*Bristol Babcock Series 5457-624 II (controllers)\$3,140*Bristol Babcock Series 5455-624 III (pressure controllers)\$3,000*Bristol Babcock Series 5455-624 III (pressure controllers)\$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ecker VRP-SB                                                | \$1,575.00-\$2,000.00           |
| *Becker HPP-SB\$1,675.00*Mizer Retrofit Kits\$400-\$600*Fisher 67AFR (airset regulators)\$80*Fisher 2680 (liquid-level controllers)\$380*Fisher 2680 (liquid-level controllers)\$1,340*Fisher 4195 (pressure controllers)\$1,340*Bristol Babcock Series 9110-00A (transducers)\$1,535-\$1,550*Bristol Babcock Series 5453 (controllers)\$1,540*Bristol Babcock Series 5453 40 G (temperature controllers)\$3,500*Bristol Babcock Series 5457-624 II (controllers)\$3,140*Bristol Babcock Series 502 A/D (recording controllers)\$3,000*Bristol Babcock Series 5455-624 III (pressure controllers)\$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ecker VRP-SB-CH-PID                                         | \$2,075.00                      |
| *Mizer Retrofit Kits       \$400-\$600         *Fisher 67AFR (airset regulators)       \$80         *Fisher 2680 (liquid-level controllers)       \$380         *Fisher 4195 (pressure controllers)       \$1,340         *Bristol Babcock Series 9110-00A (transducers)       \$1,535-\$1,550         *Bristol Babcock Series 5453 (controllers)       \$1,540         *Bristol Babcock Series 5453 (controllers)       \$3,500         *Bristol Babcock Series 5457-624 II (controllers)       \$3,140         *Bristol Babcock Series 502 A/D (recording controllers)       \$3,000         *Bristol Babcock Series 5455-624 III (pressure controllers)       \$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ecker VRP-SB-CH                                             | \$1,575.00                      |
| *Fisher 67AFR (airset regulators)\$80*Fisher 2680 (liquid-level controllers)\$380*Fisher 4195 (pressure controllers)\$1,340*Bristol Babcock Series 9110-00A (transducers)\$1,535-\$1,550*Bristol Babcock Series 5453 (controllers)\$1,540*Bristol Babcock Series 5453 40 G (temperature controllers)\$3,500*Bristol Babcock Series 5457-624 II (controllers)\$3,140*Bristol Babcock Series 502 A/D (recording controllers)\$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ecker HPP-SB                                                | \$1,675.00                      |
| *Fisher 2680 (liquid-level controllers)\$380*Fisher 4195 (pressure controllers)\$1,340*Bristol Babcock Series 9110-00A (transducers)\$1,535-\$1,550*Bristol Babcock Series 5453 (controllers)\$1,540*Bristol Babcock Series 5453 40 G (temperature controllers)\$3,500*Bristol Babcock Series 5457-624 II (controllers)\$3,140*Bristol Babcock Series 502 A/D (recording controllers)\$3,000*Bristol Babcock Series 5455-624 III (pressure controllers)\$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | zer Retrofit Kits                                           | \$400-\$600                     |
| * Fisher 4195 (pressure controllers)\$1,340* Bristol Babcock Series 9110-00A (transducers)\$1,535-\$1,550* Bristol Babcock Series 5453 (controllers)\$1,540* Bristol Babcock S453 40 G (temperature controllers)\$3,500* Bristol Babcock Series 5457-624 II (controllers)\$3,140* Bristol Babcock Series 502 A/D (recording controllers)\$3,000* Bristol Babcock Series 5455-624 III (pressure controllers)\$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sher 67AFR (airset regulators)                              | \$80                            |
| * Bristol Babcock Series 9110-00A (transducers)       \$1,535-\$1,550         * Bristol Babcock Series 5453 (controllers)       \$1,540         * Bristol Babcock Series 5453 40 G (temperature controllers)       \$3,500         * Bristol Babcock Series 5457-624 II (controllers)       \$3,140         * Bristol Babcock Series 502 A/D (recording controllers)       \$3,000         * Bristol Babcock Series 5455-624 III (pressure controllers)       \$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sher 2680 (liquid-level controllers)                        | \$380                           |
| *Bristol Babcock Series 5453 (controllers)\$1,540*Bristol Babcock 5453 40 G (temperature controllers)\$3,500*Bristol Babcock Series 5457-624 II (controllers)\$3,140*Bristol Babcock Series 502 A/D (recording controllers)\$3,000*Bristol Babcock Series 5455-624 III (pressure controllers)\$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sher 4195 (pressure controllers)                            | \$1,340                         |
| *Bristol Babcock 5453 40 G (temperature controllers)       \$3,500         *Bristol Babcock Series 5457-624 II (controllers)       \$3,140         *Bristol Babcock Series 502 A/D (recording controllers)       \$3,000         *Bristol Babcock Series 5455-624 III (pressure controllers)       \$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | istol Babcock Series 9110-00A (transducers)                 | \$1,535-\$1,550                 |
| * Bristol Babcock Series 5457-624 II (controllers)       \$3,140         * Bristol Babcock Series 502 A/D (recording controllers)       \$3,000         * Bristol Babcock Series 5455-624 III (pressure controllers)       \$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | istol Babcock Series 5453 (controllers)                     | \$1,540                         |
| *Bristol Babcock Series 502 A/D (recording controllers)       \$3,000         *Bristol Babcock Series 5455-624 III (pressure controllers)       \$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | istol Babcock 5453 40 G (temperature controllers)           | \$3,500                         |
| *Bristol Babcock Series 5455-624 III (pressure controllers) \$1,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | istol Babcock Series 5457-624 II (controllers)              | \$3,140                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | istol Babcock Series 502 A/D (recording controllers)        | \$3,000                         |
| *Bristol Babcock Series 5453-624 II (liquid level controllers) \$2,345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | istol Babcock Series 5455-624 III (pressure controllers)    | \$1,135                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | istol Babcock Series 5453-624 II (liquid level controllers) | \$2,345                         |
| *Bristol Babcock Series 5453-10F (pressure controllers) \$1,440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | istol Babcock Series 5453-10F (pressure controllers)        | \$1,440                         |



United States Environmental Protection Agency Air and Radiation (6202J) 1200 Pennsylvania Ave., NW Washington, DC 20460

October 2006

EPA provides the suggested methane emissions estimating methods contained in this document as a tool to develop basic methane emissions estimates only. As regulatory reporting demands a higher-level of accuracy, the methane emission estimating methods and terminology contained in this document may not conform to the Greenhouse Gas Reporting Rule, 40 CFR Part 98, Subpart W methods or those in other EPA regulations.

# EDF-WZI-APPENDIX VIII

| Methane Emissions Analysis          |                  |            |                                                |                   |                 |                    |                  |               |
|-------------------------------------|------------------|------------|------------------------------------------------|-------------------|-----------------|--------------------|------------------|---------------|
| For Statewide Change-out to Low Ble | ed Pneumatic Dev | vices      |                                                |                   |                 |                    |                  |               |
|                                     |                  |            |                                                |                   |                 |                    |                  |               |
| IPAMS High Bleed Rate Average:      | 16.8             | cfh        | See below                                      | / TSD             |                 |                    |                  |               |
| IPAMS Low Bleed Rate Average:       | 1.93             | cfh        | See below                                      | / TSD             |                 |                    |                  |               |
|                                     |                  |            |                                                | 130 (             |                 |                    |                  |               |
| Per Device Change in total gas:     | 14.87            |            |                                                | 33198             |                 |                    |                  |               |
| Per Device Change in total gas:     | 130.3            | Mcf/year   |                                                | 25936 I<br>7262 V | Methane<br>VOC  |                    |                  |               |
| Number of Pnuematic Devices:        | 9,384            |            |                                                |                   |                 |                    |                  |               |
| Total Amount of Gas Saved:          | 1,222,371        | Mcf/year   |                                                |                   |                 |                    |                  |               |
| % of Methane in NG*                 | 80.00%           |            | *http://w                                      | ww.naturalgas.    | org/overview/l  | ackground.asp      |                  |               |
| Total Methane Gas Saved             | 977,897          | Mcf/year   | other sou                                      | rces general agr  | ee on this perc | entage, but it vai | ries by region b | etween 70-90% |
| Molecular Weight of Natural Gas:    | 19.5             | g/mol      |                                                |                   |                 |                    |                  |               |
| Molecular Weight of Methane:        | 16.043           | g/mol      | from engineering tool box- gas densities sheet |                   |                 |                    |                  |               |
| Mcf to 1000 liter conversion:       | 28.317           | 1000L/Mcf  |                                                |                   |                 |                    |                  |               |
| Volume of Methane Gas emissions:    | 27,691,106       | 1000L/year |                                                |                   |                 |                    | using NTP 20 C   | C, 0.84 atm   |
| Methane Molar Emission:             | 1,235,399,963    | moles/year | used STP=                                      | 1 atm, 0 degre    | es C            |                    | 966,936,995      |               |
| Methane Mass Emissions:             | 19,819,522       | kg/year    |                                                |                   |                 |                    | 15,512,570       |               |
| Methane Mass Emissions:             | 21,847           | tons/year  |                                                |                   |                 |                    | 17,099           |               |
| Methane Emissions (@STP):           | 21,847           | tons/year  |                                                |                   |                 |                    | 17,099           | tpy           |
|                                     |                  |            |                                                |                   | 90,455.46146    | mcfrVOC/yr         |                  | -             |
|                                     | 14921            |            |                                                |                   | 13606113.98     |                    |                  |               |
| Nethane Control Costs               | 0.68             |            |                                                |                   | 6803.05699      |                    |                  |               |
| Cost of each pneumatic device:      | -\$1,083.7       |            |                                                |                   |                 |                    |                  |               |
| Number of pneumatic devices:        | 9,384            |            |                                                |                   |                 |                    |                  |               |
| total cost:                         | -\$10,169,444    |            |                                                |                   |                 |                    |                  |               |
| Methane Control Costs:              | \$ (465.49)      | per ton    |                                                |                   |                 |                    |                  |               |
|                                     |                  |            |                                                |                   |                 |                    |                  |               |

Determining How Bleed Rate Relates to Emissions

| Parameter                             | Eq. | Value   | Units        |
|---------------------------------------|-----|---------|--------------|
| Surveyed Producer Total Gas Emissions | Α   | 989848  | MCF          |
| Annual Hours of Operation             | В   | 8760    | hrs          |
| Well Count - surveyed producers       | С   | 8247    | wells        |
| Well Count - basinwide                | D   | 16894   | wells        |
| Basinwide VOC Fraction (molar)        | E   | 7.47%   |              |
| Basinwide VOC molecular weight        | F   | 54.7    | g/mol        |
| R                                     | G   | 0.08206 | L atm / K-mo |
| standard temp                         | н   | 273.15  | К            |
| standard press                        | 1   | 1       | atm          |
| MCF to 1000 liter conversion          | J   | 28.317  | 1000L/MCF    |

#### Basin-wide Emissions

| Basin-wide VOC volume emissions | K | 151,567 MCF/year     |
|---------------------------------|---|----------------------|
| Basin-wide VOC volume emissions | L | 4,291,903 1000L/year |
| Basin-wide VOC mass emissions   | M | 10,473,301 kg/year   |
| Basin-wide VOC mass emissions   | N | 11,545 tons/year     |

|                                        | IPAMS Calc | High Bleed<br>(by<br>definition) | High Bleed<br>(highest<br>IPAM) | High Bleed<br>(avg.,<br>IPAM) |       | Bleed Rate<br>that gives 1<br>tpy |       |                      |
|----------------------------------------|------------|----------------------------------|---------------------------------|-------------------------------|-------|-----------------------------------|-------|----------------------|
|                                        |            | 6                                | 35                              | 16.8                          | 42.0  | 20.1                              | 1.93  | cfh total gas        |
| IPAMS calc (use as example, modified)  |            | 52.56                            | 306.6                           | 147.4                         | 367.9 | 176.1                             | 16.94 | MCF natural gas/year |
| $K = A \times D / C \times E$          | 151,567    | 3.9                              | 22.9                            | 11.0                          | 27.5  | 13.2                              | 1.3   | MCF VOC/year         |
| L = K x J                              | 4,291,903  | 111                              | 649                             | 312                           | 779   | 373                               | 36    | 1000L VOC/year       |
| M = I x L x 1000 / (G x H ) x F / 1000 | 10,473,301 | 271                              | 1,584                           | 761                           | 1,900 | 909                               | 88    | kg VOC/year          |
| N = M / 907.185                        | 11,545     | 0.30                             | 1.75                            | 0.84                          | 2.09  | 1.00                              | 0.10  | tpy VOC              |

MCF = thousand cubic feet

| Replace High Bleed Pneumation | 8/1/2013 U                  | SDOL Da                     | ata on CPI-U       |                                   |          |      |                        |
|-------------------------------|-----------------------------|-----------------------------|--------------------|-----------------------------------|----------|------|------------------------|
| ltem                          | Capital Costs<br>(one time) | Non Recurring<br>(one time) | O&M<br>(recurring) | Annualized Total<br>Cost (15 yrs) | ує       | ear  | Annual Avg<br>% change |
| Materials                     | \$1,033.4                   |                             |                    |                                   |          | 2008 | 3.70%                  |
| Labor                         |                             | \$387.2                     |                    |                                   |          | 2009 | -0.50%                 |
| Value Gas Saved               |                             |                             | -\$1,268.3         |                                   |          | 2010 | 1.40%                  |
| Maintenance:                  |                             |                             | \$15.6             |                                   |          | 2011 | 3.10%                  |
| Subtotal Costs:               | \$1,033                     | \$387                       | -\$1,253           |                                   |          | 2012 | 1.80%                  |
| Annualized Costs:             | \$143.2                     | \$25.8                      | -\$1,252.7         | -\$1,083.7                        | \$169.04 | 2013 | 0.35%                  |
|                               |                             |                             |                    |                                   |          |      |                        |

| Statewide Devices (outside NAA)     |                             | 9,384.0    |
|-------------------------------------|-----------------------------|------------|
| Statewide Initial Cost              |                             | 331,497.72 |
| Statewide Annual Cost               |                             | 69,443.77) |
|                                     |                             |            |
| Statewide Emissions reduction (tpy) |                             | 14,921.0   |
| Cost per ton VOC reduction          |                             | -\$681.6   |
| Payback Period:                     | 14 months at 2013 gas price |            |

| Cost Amortization Calculations: |                               |                             |                    |                                   |  |  |  |  |  |
|---------------------------------|-------------------------------|-----------------------------|--------------------|-----------------------------------|--|--|--|--|--|
| Life/YRS                        | Equipment Costs<br>(one-time) | Non Recurring<br>(one time) | O&M<br>(recurring) | Annualized Total<br>Cost (15 yrs) |  |  |  |  |  |
| 0                               | \$1,033                       | \$387                       | -\$1,253           |                                   |  |  |  |  |  |
| 1                               | \$1,085                       |                             |                    |                                   |  |  |  |  |  |
| 2                               | \$1,139                       |                             |                    |                                   |  |  |  |  |  |
| 3                               | \$1,196                       |                             |                    |                                   |  |  |  |  |  |
| 4                               | \$1,256                       |                             |                    |                                   |  |  |  |  |  |
| 5                               | \$1,319                       |                             |                    |                                   |  |  |  |  |  |
| 6                               | \$1,385                       |                             |                    |                                   |  |  |  |  |  |
| 7                               | \$1,454                       |                             |                    |                                   |  |  |  |  |  |
| 8                               | \$1,527                       |                             |                    |                                   |  |  |  |  |  |
| 9                               | \$1,603                       |                             |                    |                                   |  |  |  |  |  |

2008 Costs

Pneumatic Device: \$ 940.78

Labor: \$ 352.50

| 10                  | \$1,683 |        |            |            |
|---------------------|---------|--------|------------|------------|
| 11                  | \$1,768 |        |            |            |
| 12                  | \$1,856 |        |            |            |
| 13                  | \$1,949 |        |            |            |
| 14                  | \$2,046 |        |            |            |
| 15                  | \$2,148 |        |            |            |
| Annualized (15 yr): | \$143.2 | \$25.8 | -\$1,252.7 | -\$1,083.7 |

Assumptions: Equipment Life = 15 yrs; Interest Rate\* = 5% \*If the equipment was not purchased, the money could earn 5% per year

# EDF-WZI-APPENDIX IX

| Permit Number:                         | 00AD0041                                                | [Leav              | e blank unle | ss APCD has a  | lready a  | ssigned a   | permi  | it # & Al      | irs id]     |           | Emission Source AIRS ID: 001 / 0229 / 006                                                                                             |
|----------------------------------------|---------------------------------------------------------|--------------------|--------------|----------------|-----------|-------------|--------|----------------|-------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------|
| Facility Equipment I                   | D: Facility Fugitives                                   |                    | [Provide F   | acility Equipm | ent ID to | o identify  | how t  | his equij      | pment i     | s referei | nced within your organization.]                                                                                                       |
| <u>Section 01 – Admin</u>              | istrative Information                                   |                    |              |                |           |             |        | Section        | on 02       | – Req     | uested Action (Check applicable request boxes)                                                                                        |
| Company Name: Kerr-McGee Gathering LLC |                                                         |                    |              | NAICS, or      |           |             |        |                | Req         | uest fo   | r NEW permit or newly reported emission source                                                                                        |
| Source Name:                           | Radar Compressor Statio                                 | n                  |              | SIC Code:      | 1311      |             |        |                | Req         | uest M    | ODIFICATION to existing permit (check each box below that applies)                                                                    |
| Source Location:                       | SE/4 NW/4 S 34 T2S R64                                  | W                  |              | County:        | Ada       | ms          | _      |                |             | Chan      | ge process or equipment 🔲 Change company name                                                                                         |
|                                        |                                                         |                    |              | Elevation:     | 5,39      | 0 F         | `eet   | _              |             | Chan      | ge permit limit Transfer of ownership Other                                                                                           |
| Mailing Address:                       | P.O. Box 173779                                         |                    |              | ZIP Code:      | 8021      | 17          | _      |                | Req         | uest to   | limit HAPs with a Federally enforceable limit on PTE                                                                                  |
| _                                      | Denver, CO                                              |                    |              |                |           |             |        | $\boxtimes$    | Req         | uest Al   | PEN update only (check the box below that applies)                                                                                    |
| Person To Contact:                     | Micah Carter                                            |                    | Phone Nu     | mber: (720     | )) 929-(  | 6788        |        |                | $\boxtimes$ |           | ision to actual calendar year emissions for emission inventory                                                                        |
| E-mail Address:                        | micah.carter@anadarko.                                  | com                | Fax Nu       | mber: (720     | )) 929-'  | 7788        |        |                |             | -         | late 5-Year APEN term without change to permit limits or previously orted emissions                                                   |
| _                                      |                                                         |                    |              |                |           |             | -      |                | tional      |           | APEN update only. Emissions calculations use factor of 1.2 on                                                                         |
| Section 03 - Genera                    | al Information                                          |                    |              |                |           |             |        | Info.<br>Note: |             |           | iponent count, per Note 3) in Construction Permit (see attached).                                                                     |
| For existing sources, o                | neration began on:                                      | 1                  | /            |                |           |             |        | Fo             | r new       | or reco   | nstructed sources, the projected startup date is: / /                                                                                 |
| Normal Hours of Sour                   |                                                         | 24 hour            | rs/day 7     | 7 days/wee     | ek 5      | 52 wee      | eks/ye |                |             | 01 1000   |                                                                                                                                       |
|                                        | uipment associated with the                             |                    |              |                |           |             | •      |                | o engi      | nes, de   | hy including Jatco system and 1 x 300 bbl tank                                                                                        |
| W/11 al. to a section and has          | A A A A A A A A A A A A A A A A A A A                   |                    |              |                |           |             |        |                | Dom         | •.        |                                                                                                                                       |
|                                        | operated in any NAAQS r<br>te.co.us/ap/attainmaintain.h |                    | ea?          | $\boxtimes$    | Yes       |             | No     |                | Don<br>knov |           |                                                                                                                                       |
| Section 04 – Regula                    | atory Information                                       |                    |              |                |           |             |        |                |             |           | Colorado Department of Public Health and Environment<br><u>Air Pollution Control Division (APCD)</u>                                  |
| Is this equipment subje                | ect to NSPS 40 CFR Part 6                               | ). Subpart KKK     | ?            |                | Yes       | $\boxtimes$ | No     |                | Don<br>knov |           | This notice is valid for five (5) years. Submit a revised APEN prior to                                                               |
| Is this equipment subje                | ect to NESHAP 40 CFR Pa                                 | rt 63, Subpart H   | H?           |                | Yes       | $\boxtimes$ | No     |                | Don         | `t        | expiration of five-year term, or when a significant change is made<br>(increase production, new equipment, change in fuel type, etc). |
|                                        | r NESHAP Subpart that ap                                |                    |              |                |           |             |        |                | knov        | N         | Mail this form along with a check for \$152.90 to:                                                                                    |
| List any other NSPS o                  | r NESHAP Subpart that ap                                | pries to this equi | ipment.      |                |           |             |        |                |             |           | Colorado Department of Public Health & Environment                                                                                    |
| Section 05 – Stream                    | n Constituents                                          |                    |              |                |           |             |        |                |             |           | APCD-SS-B1<br>4300 Cherry Creek Drive South                                                                                           |
| Identify the VOC & 1                   | HAP content of each applic                              | able stream.       |              |                |           |             |        |                |             |           | Denver, CO 80246-1530                                                                                                                 |
| Stream                                 | VOC                                                     | Benzene            | Toluene      |                |           | Xyle        |        |                | Hexar       |           | For guidance on how to complete this APEN form:                                                                                       |
|                                        | (wt. %)                                                 | (wt. %)            | (wt. %)      | (wt. '         | %)        | (wt.        | %)     | (              | wt. %       | )         | Air Pollution Control Division:(303) 692-3150Small Business Assistance Program (SBAP):(303) 692-3148 or                               |
| Gas                                    |                                                         |                    |              |                |           |             |        | _              |             |           | (303) 692-3175                                                                                                                        |
| Heavy Oil (or Heav                     |                                                         |                    |              |                |           |             |        | _              |             |           | APEN forms: <u>http://www.cdphe.state.co.us/ap/downloadforms.html</u>                                                                 |
| Light Oil (or Light                    | Liquid)                                                 |                    |              |                |           |             |        |                |             |           | Application status: <u>http://www.cdphe.state.co.us/ap/ss/sspcpt.html</u>                                                             |
| Water/Oil                              |                                                         |                    |              |                |           |             |        |                |             |           |                                                                                                                                       |
| Submit a repres                        | entative gas and liquid exte                            | nded analysis (i   | ncluding B7  | FEX) to supp   | ort emi   | ssion cale  | culati | ions           |             |           | Check box to request copy of draft permit prior to issuance.                                                                          |
|                                        |                                                         |                    |              |                |           |             |        |                |             |           | Check box to request copy of draft permit prior to public notice.                                                                     |

# AIR POLLUTANT EMISSION NOTICE (APEN) & Application for Construction Permit - Fugitive Component Leak Emissions

# Permit Number: 00AD0041

Section 06 - Location Information (Provide Datum and either Lat/Long or UTM)

| Horizontal Datum | UTM        | UTM Easting or      | UTM Northing or     | Method of Collection for      |
|------------------|------------|---------------------|---------------------|-------------------------------|
| (NAD27, NAD83,   | Zone       | Longitude           | Latitude            | Location Data (e.g. map, GPS, |
| WGS84)           | (12 or 13) | (meters or degrees) | (meters or degrees) | GoogleEarth)                  |
| WGS84            |            | -104.53645579°      | 39.83405953°        | Google Earth                  |

#### Section 08 - Emission Factor Information

Emission Source AIRS ID: 001 / 0229 / 006

## Section 07 -Leak Detection & Repair (LDAR) & Control Information

Check appropriate boxes to identify LDAR program conducted at this site:

| LDAR | per | NSPS | KKK |
|------|-----|------|-----|
|------|-----|------|-----|

Other:

No LDAR program

If LDAR per NSPS KKK with 10,000 ppmv leak definition:

Monthly monitoring. Control: 88% gas valve, 76% lt. liq. valve, 68% lt. liq. pump

Quarterly monitoring. Control: 70% gas valve, 61% lt. liq. valve, 45% lt. liq. pump

Identify the emission factor used to estimate emissions under "E.F.", along with the units relating to the emission factor (e.g. lb/hr/component). Check this box if you used Table 2-4 of U.S. EPA's 1995 Protocol for Equipment Leak Emission Estimates to estimate emissions. You do not need to enter the emission factors below if checked.

|                  |                    | Service |       |                    |                |           |                             |      |         |                    |      |       |
|------------------|--------------------|---------|-------|--------------------|----------------|-----------|-----------------------------|------|---------|--------------------|------|-------|
| Equipment Type   |                    | Gas     |       | Heav               | y Oil (or Heav | y Liquid) | Light Oil (or Light Liquid) |      | Liquid) | Water/Oil          |      |       |
|                  | Count <sup>1</sup> | E.F.    | Units | Count <sup>1</sup> | E.F.           | Units     | Count <sup>1</sup>          | E.F. | Units   | Count <sup>1</sup> | E.F. | Units |
| Connectors       | 1040.4             |         |       | 439.2              |                |           | 474                         |      |         |                    |      |       |
| Flanges          | 193.2              |         |       | 3.6                |                |           | 4.8                         |      |         |                    |      |       |
| Open-Ended Lines | 70.8               |         |       | 22.8               |                |           | 19.2                        |      |         |                    |      |       |
| Pump Seals       | 0                  |         |       | 0                  |                |           | 1.2                         |      |         |                    |      |       |
| Valves           | 402                |         |       | 109.2              |                |           | 136.8                       |      |         |                    |      |       |
| Other            | 26.4               |         |       | 1.2                |                |           | 1.2                         |      |         |                    |      |       |

Count shall be the actual or estimated number of components in each type of service used to calculate the "Actual Calendar Year Emissions" below. 🛛 Estimated Count 🗋 Actual Count conducted on the following date:

#### Section 09 - Emissions Inventory Information & Emission Control Information

| Emission     | n Factor Docum             | entation attached |                       | Data year for actual c    | alendar year emis | sions below (e.g. 2007):    | 2011                      | ]                           |                            |                           |                                 |                         |
|--------------|----------------------------|-------------------|-----------------------|---------------------------|-------------------|-----------------------------|---------------------------|-----------------------------|----------------------------|---------------------------|---------------------------------|-------------------------|
| Pollutant    | Control Device Description |                   | Control<br>Efficiency | Emission Factor           |                   | Emission Factor             |                           | Actual Calendar Y           | ear Emissions <sup>2</sup> | Requested<br>Emiss        | Permitted<br>sions <sup>3</sup> | Estimation Method<br>or |
| ronutant     | Primary                    | Secondary         |                       | Uncontrolled Basis        | Units             | Uncontrolled<br>(Tons/Year) | Controlled<br>(Tons/Year) | Uncontrolled<br>(Tons/Year) | Controlled<br>(Tons/Year)  | Emission Factor<br>Source |                                 |                         |
| VOC          |                            |                   |                       |                           | ALCEN F           | 8.41                        |                           |                             |                            | Permit 00AD0041           |                                 |                         |
| Benzene      |                            |                   |                       |                           |                   |                             |                           |                             |                            |                           |                                 |                         |
| Toluene      | Identify in Section 07     |                   | tion 07               | Identify in Section 08    |                   |                             |                           |                             |                            |                           |                                 |                         |
| Ethylbenzene |                            | luentity in Seci  |                       | Identity in Sec           |                   |                             |                           |                             |                            |                           |                                 |                         |
| Xylene       |                            |                   |                       |                           |                   |                             |                           |                             |                            |                           |                                 |                         |
| n-Hexane     |                            |                   |                       |                           |                   |                             |                           |                             |                            |                           |                                 |                         |
|              |                            | Ple               | ase use the APCD N    | on-Criteria Reportable Ai | r Pollutant Adde  | endum form to report        | pollutants not lis        | sted above.                 |                            |                           |                                 |                         |

<sup>2</sup> Annual emission fees will be based on actual emissions reported here. If left blank, annual emission fees will be based on requested emissions.

<sup>3</sup> You may request permitted emissions in excess of actual emissions to account for component count and gas composition variability. If Requested Permitted Emissions is left blank, emissions will be based on info. in Sec. 03 - 09.

Section 10 - Applicant Certification - I hereby certify that all information contained herein and information submitted with this application is complete, true and correct.

Signature of Person Legally Authorized to Supply Data

Date

Micah Carter Name of Legally Authorized Person (Please print) EHS Representative Title

#### RADAR COMPRESSOR STATION **Facility Fugitives**

| Source ID Number             | S006     |
|------------------------------|----------|
| Equipment ID                 | FUG      |
| Source Description           | Facility |
| Source Usage                 | N/A      |
| Potential Hours of Operation | 8760     |

|                            |                                                |                                        |                                        | PERMITTE    | D EMISSIONS               | ACTUAL 20                         | 11 EMISSIONS              |
|----------------------------|------------------------------------------------|----------------------------------------|----------------------------------------|-------------|---------------------------|-----------------------------------|---------------------------|
| Calculation Methodology    |                                                |                                        |                                        | Based on Pe | ermit 00AD0041            | Based on 12/28/11<br>Gas Analysis |                           |
| Equipment<br>Type          | Emission Factor <sup>1</sup><br>(Ib/hr/source) | Actual<br>Source<br>Count <sup>2</sup> | Source<br>Count<br>Factor <sup>3</sup> | voc         | VOC<br>Emissions<br>(tpy) | %<br>VOC                          | VOC<br>Emissions<br>(tpy) |
| Valves-Gas/Vapor           | 0.00992                                        | 335                                    | 402                                    | 38%         | 6.69                      | 15%                               | 2.62                      |
| Valves-Light Liquids       | 0.0055                                         | 114                                    | 136.8                                  | 100%        | 3.30                      | 100%                              | 3.30                      |
| Valves-Heavy Liquids       | 0.000019                                       | 91                                     | 109.2                                  | 100%        | 0.01                      | 100%                              | 0.01                      |
| Others-Gas                 | 0.0194                                         | 22                                     | 26.4                                   | 38%         | 0.86                      | 15%                               | 0.34                      |
| Others-Heavy Oil           | 0.0000705                                      | 1                                      | 1.2                                    | 100%        | 0.00                      | 100%                              | 0.00                      |
| Others-Light Liquids       | 0.0165                                         | 1                                      | 1.2                                    | 100%        | 0.09                      | 100%                              | 0.09                      |
| Compressor Seals           | 0.0194                                         | 0                                      | 0                                      | 38%         | 0.00                      | 15%                               | 0.00                      |
| Pump Seals-Water/Oil       | 0.00529                                        | 0                                      | 0                                      | 100%        | 0.00                      | 100%                              | 0.00                      |
| Pump Seals-Light Liquids   | 0.02866                                        | 1                                      | 1.2                                    | 100%        | 0.15                      | 100%                              | 0.15                      |
| Pump Seals-Heavy Liquids   | 0.00113                                        | 0                                      | 0                                      | 100%        | 0.00                      | 100%                              | 0.00                      |
| Sample Connections         | 0.000243                                       | 0                                      | 0                                      | 38%         | 0.00                      | 15%                               | 0.00                      |
| Open-Ended Lines - Gas     | 0.00441                                        | 59                                     | 70.8                                   | 38%         | 0.52                      | 15%                               | 0.21                      |
| Open-Ended Lines - Lgt Lig | 0.00309                                        | 16                                     | 19.2                                   | 100%        | 0.26                      | 100%                              | 0.26                      |
| Open-Ended Lines - Hvy Lig | 0.00031                                        | 19                                     | 22.8                                   | 100%        | 0.03                      | 100%                              | 0.03                      |
| Connectors - Gas           | 0.00044                                        | 867                                    | 1040.4                                 | 38%         | 0.77                      | 15%                               | 0.30                      |
| Connectors - Light Lig.    | 0.000463                                       | 395                                    | 474                                    | 100%        | 0.96                      | 100%                              | 0.96                      |
| Connectors - Heavy Lig.    | 0.00002                                        | 366                                    | 439.2                                  | 100%        | 0.04                      | 100%                              | 0.04                      |
| Flanges-Gas/Vapor          | 0.00086                                        | 161                                    | 193.2                                  | 38%         | 0.28                      | 15%                               | 0.11                      |
| Flanges-Light Liquids      | 0.000243                                       | 4                                      | 4.8                                    | 100%        | 0.01                      | 100%                              | 0.01                      |
| Flanges-Heavy Liquids      | 0.0000086                                      | 3                                      | 3.6                                    | 100%        | 0.00                      | 100%                              | 0.00                      |
| Totals                     |                                                | 2455                                   | 2946                                   | 2           | 13.96                     |                                   | 8.41                      |

<sup>1</sup> Oil and Gas Production Operations equipment leak emission factors (from OAQPS TTN BBS) EPA 453/R-95-017 Table 2-4, November 1995.

<sup>2</sup> Source Count submitted for, and used in Facility Fugitives Permit (Permit 00AD0041)
 <sup>3</sup> Source Count multiplied by factor of 1.2 per 'Note 3)' in Facility Fugitives Permit (Permit 00AD0041)

Fugitives

hr/yr



#### 303-637-0150

#### EXTENDED NATURAL GAS ANALYSIS (\*DHA)

MAIN PAGE

| PROJECT NO. :<br>COMPANY NAME :<br>ACCOUNT NO. :<br>PRODUCER :<br>LEASE NO. :<br>NAME/DESCRIP : | 201112177<br>ANADARKO<br>88124318<br>RADAR COMPRESSOR | ANALYSIS NO. :<br>ANALYSIS DATE:<br>SAMPLE DATE :<br>CYLINDER NO. :<br>SAMPLED BY : | 04<br>JANUARY 12, 2012<br>DECEMBER 28, 2011<br>476<br>JOHN MOSER - EMPACT |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| NAME/DESCRIP .                                                                                  | RADAR COMPRESSOR<br>RADAR DEHY INLET                  |                                                                                     |                                                                           |
| ***FIELD DATA***                                                                                | 225                                                   | SAMPLE TEMP. :                                                                      | 65                                                                        |
| SAMPLE PRES. :<br>VAPOR PRES. :                                                                 | 225                                                   | AMBIENT TEMP.:<br>GRAVITY :                                                         |                                                                           |
| COMMENTS :                                                                                      | SPOT; NO PROBE                                        |                                                                                     |                                                                           |

|                |           |           | GPM @  | GPM @  |
|----------------|-----------|-----------|--------|--------|
| COMPONENT      | MOLE %    | MASS %    | 14.650 | 14.730 |
| ALCOHOLS       | 0.0015    | 0.0036    |        |        |
| HELIUM         | 0 02      | 0.00      |        |        |
| OXYGEN/ARGON   | 0.01      | 0.01      |        |        |
| NITROGEN       | 1.36      | 1.57      |        |        |
| CARBON DIOXIDE | 2.53      | 4.59      |        |        |
| METHANE        | 66.70650  | 44.11490  |        |        |
| ETHANE         | 14.2732   | 17.6924   | 3.8125 | 3.8334 |
| PROPANE        | 9.2720    | 16.8544   | 2.5517 | 2.5656 |
| I-BUTANE       | 1.0530    | 2.5230    | 0.3445 | 0.3464 |
| N-BUTANE       | 2.9841    | 7.1499    | 0.9394 | 0.9445 |
| I-PENTANE      | 0.7728    | 2.2944    | 0.2794 | 0.2809 |
| N-PENTANE      | 0.7173    | 2.1334    | 0.2594 | 0.2608 |
| HEXANES PLUS   | 0.2996    | 1.0640    | 0.1180 | 0.1186 |
| TOTALS         | 100.00000 | 100.00000 | 8.3049 | 8.3502 |
|                |           |           |        |        |
|                |           |           |        |        |

| BTEX COMPONENTS | MOLE% WT%  | BTU @                    | 14.650      | 14.730      |
|-----------------|------------|--------------------------|-------------|-------------|
| BENZENE         | 0.0186 0.0 | 99 LOW NET DRY REAL :    | 1243.7 /sef | 1250.5 /scf |
| TOLUENE         | 0.0017 0.0 | 65 NET WET REAL :        | 1222.0 /scf | 1228.8 /scf |
| ETHYLBENZENE    | 0.0000 0.0 | 00 HIGH GROSS DRY REAL : | 1366.9 /scf | 1374.4 /scf |
| XYLENES         | 0.0001 0.0 | 05 GROSS WET REAL :      | 1343.0 /scf | 1350.5 /scf |
| TOTAL BTEX      | 0.0204 0.0 | 69 NET DRY REAL :        | 19457.3 /lb | 19563.6 /lb |
|                 |            | GROSS DRY REAL :         | 21383.3 /lb | 21500.1 /lb |
|                 |            |                          |             |             |

|                                                         | RELATIVE DENSITY (AIR=1). | 0.8376  |
|---------------------------------------------------------|---------------------------|---------|
| (CALC <sup>.</sup> GPA STD 2145 & TP-17 @14 696 & 60 F) | COMPRESSIBILITY FACTOR :  | 0.99542 |
| *(DETAILED HYDROCARBON ANALYSIS NJ 1993) ; ASTM D6730   |                           |         |

.

5

THIS DATA HAS BEEN ACQUIRED THROUGH APPLICATION OF CURRENT STATE-OF-THE-ART ANALYTICAL TECHNIQUES THE USE OF THIS INFORMATION IS THE RESPONSIBILITY OF THE USER. EMPACT ANALYTICAL SYSTEMS, ASSUMES NO RESPONSIBLITY FOR ACCURACY OF THE REPORTED INFORMATION NOR ANY CONSEQUENCES OF IT'S APPLICATION



.

#### 303-637-0150

## EXTENDED NATURAL GAS ANALYSIS (\*DHA) GLYCALC INFORMATION

| PROJECT NO. :<br>COMPANY NAME :<br>ACCOUNT NO. :<br>PRODUCER :  | 201112177<br>ANADARKO                            | ANALYSIS NO. :<br>ANALYSIS DATE:<br>SAMPLE DATE :<br>CYLINDER NO. : | 04<br>JANUARY 12, 2012<br>DECEMBER 28, 2011<br>476 |
|-----------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|
| LEASE NO. :<br>NAME/DESCRIP :                                   | 88124318<br>RADAR COMPRESSOR<br>RADAR DEHY INLET | SAMPLED BY                                                          | JOHN MOSER - EMPACT                                |
| ***FIELD DATA***<br>SAMPLE PRES.<br>VAPOR PRES. :<br>COMMENTS : | 225<br>SPOT; NO PROBE                            | SAMPLE TEMP.<br>AMBIENT TEMP.:<br>GRAVITY                           | 65                                                 |

| Componet               | Mole %    | Wt %      |
|------------------------|-----------|-----------|
| Helium                 | 0.02      | 0.00      |
| Carbon Dioxide         | 2.53      | 4.59      |
| Nitrogen               | 1.36      | 1.57      |
| Methane                | 66.70650  | 44.11490  |
| Ethane                 | 14.2732   | 17.6924   |
| Propane                | 9.2720    | 16.8544   |
| Isobutane              | 1.0530    | 2.5230    |
| n-Butane               | 2.9841    | 7.1499    |
| Isopentane             | 0.7232    | 2.1510    |
| n-Pentane              | 0.7173    | 2.1334    |
| Cyclopentane           | 0.0496    | 0.1434    |
| n-Hexane               | 0.0664    | 0.2359    |
| Cyclohexane            | 0.0192    | 0.0666    |
| Other Hexanes          | 0.1762    | 0.6228    |
| Heptanes               | 0.0128    | 0.0524    |
| Methycyclohexane       | 0.0038    | 0.0154    |
| 2,2,4 Trimethylpentane | 0 0000    | 0.0000    |
| Benzene                | 0.0186    | 0.0599    |
| Toluene                | 0.0017    | 0.0065    |
| Ethylbenzene           | 0 0000    | 0.0000    |
| Xylenes                | 0.0001    | 0.0005    |
| C8+ Heavies            | 0.0008    | 0.0040    |
| Subtotal               | 99.98850  | 99.98640  |
| Oxygen/Argon           | 0.01      | 0.01      |
| Alcohols               | 0.0015    | 0.0036    |
| Total                  | 100.00000 | 100.00000 |

THE DATA PRESENTED HEREIN HAS BEEN ACQUIRED THROUGH JUDICIOUS APPLICATION OF CURRENT STATE-OF-THE ART ANALYTICAL TECHNIQUES THE APPLICATIONS OF THIS INFORMATION IS THE RESPONSIBILITY OF THE USER. EMPACT ANALYTICAL SYSTEMS, INC ASSUMES NO RESPONSIBILITY FOR ACCURACY OF THE REPORTED INFORMATION NOR ANY CONSEQUENCES OF IT'S APPLICATION.



## EXTENDED NATURAL GAS ANALYSIS (\*DHA) DHA COMPONENT LIST

| PROJECT NO. :    | 201112177        |
|------------------|------------------|
| COMPANY NAME :   | ANADARKO         |
| ACCOUNT NO. :    |                  |
| PRODUCER :       |                  |
| LEASE NO. :      | 88124318         |
| NAME/DESCRIP :   | RADAR COMPRESSOR |
|                  | RADAR DEHY INLET |
| ***FIELD DATA*** |                  |
| SAMPLE PRES. :   | 225              |
| VAPOR PRES. :    |                  |
| COMMENTS :       | SPOT; NO PROBE   |

ANALYSIS NO : 04 ANALYSIS DATE: JANUARY 12, 2012 SAMPLE DATE : DECEMBER 28, 2011 CYLINDER NO. 476 SAMPLED BY : JOHN MOSER - EMPACT

GPM @

GPM @

SAMPLE TEMP.: 65 AMBIENT TEMP.: GRAVITY :

COMPONENT PIANO# MOLE % MASS % 14.650 14,730 0.02 0.00 Helium ---------0.01 0.01 Oxygen/Argon ---**\_\_\_** ---1.36 1.57 Nitrogen ---------Carbon Dioxide 2.53 4.59 ----------ΡI 44.11490 Methane 66.70650 \_\_\_\_ ---P2 17.6924 Ethane 14.2732 3.813 3.833 Propane P3 9.2720 16.8544 2.552 2.566 0.346 i-Butane I4 1.0530 2.5230 0.345 0 945 P4 2.9841 7.1499 0.939 n-Butane 0.002 2,2-Dimethylpropane I5 0.0049 0.0146 0.002 X2 0.0002 0.0004 0.000 0.000 Ethanol 0.264 i-Pentane I5 0.7183 2.1364 0.262 X3 0.0029 0 0 0 0 0 0.000 0.0012 Acetone 0.261 n-Pentane P5 0.7173 2.1334 0.259 X4 0.0001 0.0003 0 000 0.000 t-Butanol 0.002 I6 0.0054 0.0192 0.002 2,2-Dimethylbutane 0.1434 0.015 0.015 Cyclopentane N5 0 0496 2,3-Dimethylbutane I6 0.0156 0.0554 0.006 0.006 2-Methylpentane I6 0.0797 0.2831 0.033 0.033 0.1353 0.016 0.016 3-Methylpentane I6 0.0381 P6 0.027 0.2359 0.027 n-Hexane 0.0664 0.000 2,2-Dimethylpentane 17 0.0005 0 0021 0.000 N6 0.0374 0.1298 0.013 0 0 1 3 Methylcyclopentane I7 0.0012 0.0050 0.001 0.001 2,4-Dimethylpentane 0 0 0 0 0 17 0.000 0.0001 0.0004 2,2,3-Trimethylbutane Benzene A6 0.0186 0.0599 0.005 0.005 3,3-Dimethylpentane 17 0.0002 0.0008 0.000 0.000 0.007 N6 0.0192 0.0666 0.007 Cyclohexane 0 0019 0.0078 0.001 0.001 2-Methylhexane Ι7 0.000 2,3-Dimethylpentane 17 0.0007 0.0029 0.000 1,1-Dimethylcyclopentane N7 0 0010 0.0040 0.000 0.000 0.001 I7 0.0017 0 0070 0.001 3-Methylhexane 0.001 0 0045 0.001 N7 0.0011 1c,3-Dimethylcyclopentane 1t,3-Dimethylcyclopentane N7 0.0009 0.0036 0.000 0.000 0.0004 0.000 0.000 3-Ethylpentane I7 0.0001 N7 0.0013 0.0053 0.001 0.001 1t,2-Dimethylcyclopentane

Page 1

| n-Heptane                      | P7            | 0.0019    | 0.0078         | 0.001       | 0 001       |
|--------------------------------|---------------|-----------|----------------|-------------|-------------|
| 1c,2-Dimethylcyclopentane      | N7            | 0.0001    | 0.0004         | 0.000       | 0.000       |
| Methylcyclohexane              | N7            | 0.0038    | 0.0154         | 0.002       | 0 002       |
| 2,2-Dimethylhexane             | 18            | 0.0001    | 0 0005         | 0.000       | 0.000       |
| Ethylcyclopentane              | N7            | 0.0001    | 0.0004         | 0.000       | 0.000       |
| 2,4-Dimethylhexane             | 18            | 0.0001    | 0.0005         | 0.000       | 0.000       |
| 1c,2t,4-Trimethylcyclopentane  | N8            | 0.0001    | 0.0005         | 0.000       | 0.000       |
| 1t,2c,4-Trimethylcyclopentane  | N8            | 0.0001    | 0.0005         | 0.000       | 0.000       |
| Toluene                        | A7            | 0.0017    | 0.0065         | 0.001       | 0.001       |
| 2-Methylheptane                | 18            | 0.0001    | 0.0005         | 0.000       | 0.000       |
| 1c,2t,3-Trimethylcyclopentane  | N8            | 0.0001    | 0.0005         | 0.000       | 0.000       |
| It,4-Dimethylcyclohexane       | N8            | 0.0001    | 0.0005         | 0.000       | 0.000       |
| n-Octane                       | P8            | 0 0001    | 0.0005         | 0 000       | 0.000       |
| 1,3-Dimethylbenzene (m-Xylene) | A8            | 0 0001    | 0.0005         | 0.000       | 0.000       |
| TOTAL                          |               | 100 00000 | 100 00000      | 8.3049      | 8.3502      |
| IOTAL                          |               | 100 00000 | 100 00000      | 0.5047      | 8.5502      |
| BTEX COMPONENTS MOLE           | % WT%         |           | BTU @          | 14.650      | 14.730      |
|                                | 0.0186 0.0599 | LOW NE    |                | 1243.7 /scf | 1250.5 /scf |
|                                |               |           |                |             |             |
|                                | 0.0017 0.0065 | +         |                | 1222.0 /sef | 1228.8 /scf |
|                                | 0.0000 0.0000 |           | OSS DRY REAL : | 1366.9 /scf | 1374.4 /scf |
| XYLENES                        | 0.0001 0.0005 | GR        | OSS WET REAL : | 1343.0 /scf | 1350.5 /scf |
| TOTAL BTEX                     | 0.0204 0.0669 | NE.       | T DRY REAL :   | 19457.3 /lb | 19563.6 /lb |
|                                |               | GR        | OSS DRY REAL : | 21383.3 /lb | 21500.1 /Ib |
|                                |               |           |                |             |             |

|                                             | RELATIVE DENSITY (AIR=1): | 0.8376  |
|---------------------------------------------|---------------------------|---------|
| (CALC: GPA STD 2145 & TP-17 @14 696 & 60 F) | COMPRESSIBILITY FACTOR :  | 0.99542 |

\*(DETAILED HYDROCARBON ANALYSIS NJ 1993), ASTM D6730

•

THIS DATA HAS BEEN ACQUIRED THROUGH APPLICATION OF CURRENT STATE-OF-THE-ART ANALYTICAL TECHNIQUES THE USE OF THIS INFORMATION IS THE RESPONSIBLITY OF THE USER EMPACT ANALYTICAL SYSTEMS, ASSUMES NO RESPONSIBLITY FOR ACCURACY OF THE REPORTED INFORMATION NOR ANY CONSEQUENCES OF IT'S APPLICATION.

# EDF-WZI-APPENDIX X

Available Upon Request

# EDF-WZI-APPENDIX XI

# Leak Detection and Repair Cost Analysis

Assuming 200 Statewide Compressor Stations (CS)

|                                                       |                                 |                                   |                              |                                    | Me                                               | ethod 21 Inspection                           | ıs                               |         |                                    | F                                                | LIR camera- 50%                                  | time savings                     | over Method 21     |                                                                                   |                   |                                       |           | VOC Emissions | 5       | Meth                               | ane-Ethane Ei | missions                                                                          |
|-------------------------------------------------------|---------------------------------|-----------------------------------|------------------------------|------------------------------------|--------------------------------------------------|-----------------------------------------------|----------------------------------|---------|------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------|--------------------|-----------------------------------------------------------------------------------|-------------------|---------------------------------------|-----------|---------------|---------|------------------------------------|---------------|-----------------------------------------------------------------------------------|
| CS Tiers based on<br>Fugitive VOCs from<br>Components | CS<br>Number<br>in each<br>Tier | Annual<br>Inspection<br>Frequency | Hourly<br>Inspection<br>Rate | Inspection<br>Hours for<br>each CS | Total<br>Inspection<br>Hours for<br>each CS Tier | Total Inspection<br>Costs for each<br>CS Tier | VOC Control<br>Costs<br>[\$/ton] | Control | Inspection<br>Hours for<br>each CS | Total<br>Inspection<br>Hours for<br>each CS Tier | Total<br>Inspection<br>Costs for each<br>CS Tier | VOC Control<br>Costs<br>[\$/ton] | Composite<br>Model | Total<br>Number of<br>Inspection<br>Hours for<br>listed<br>Compressor<br>Stations | Ethane<br>Control | LDAR<br>Program<br>Effective-<br>ness | Emissions | i logiani voc |         | Ethane<br>Emissions<br>for each CS | Ethane        | Total<br>Methane-<br>Ethane<br>Emission<br>Reduction for<br>each CS Tier<br>[tpy] |
| <= 12 tpy VOC                                         | 147.0                           | 1                                 | \$ 99.0                      | 21.20                              | 3,116.4                                          | \$ 308,524                                    | \$ 610                           | \$ 309  | 10.60                              | 1,558.2                                          | \$ 154,262                                       | \$ 305                           | 4.2                | 623                                                                               | \$ 154            | 40%                                   | 8.60      | 3.44          | 505.7   | 17.0                               | 6.8           | 999.6                                                                             |
| >12 to <=50 tpy VOC                                   | 53.0                            | 4                                 | \$ 99.0                      | 56.20                              | 11,914.4                                         | \$ 1,179,526                                  | \$ 2,262                         | \$ 837  | 28.10                              | 5,957.2                                          | \$ 589,763                                       | \$ 1,131                         | 11.2               | 1,191                                                                             | \$ 419            | 60%                                   | 16.40     | 9.84          | 521.5   | 44.3                               | 26.6          | 1,408.7                                                                           |
| over 50 tpy VOC                                       | -                               | 12                                | \$ 99.0                      | -                                  | -                                                | \$ -                                          | \$-                              | \$ -    | -                                  | -                                                | \$ -                                             | \$ -                             | -                  | -                                                                                 | \$ -              | 80%                                   | -         | -             | -       | -                                  | -             | -                                                                                 |
|                                                       | 200.0                           |                                   |                              |                                    | 15,030.8                                         | \$ 1,488,049.2                                | \$ 1,449                         | \$ 618  |                                    | 7,515.4                                          | \$ 744,024.6                                     | \$ 724                           |                    | 1,815                                                                             | \$ 309            |                                       |           |               | 1,027.2 |                                    |               | 2,408.3                                                                           |

| Number of Staff:          | 1                  |                  |              |                  |
|---------------------------|--------------------|------------------|--------------|------------------|
| Lea                       | k Detection And F  | Repair (LDAR) Co | ost Analysis |                  |
|                           | Capital Costs (one | Non Recurring    | Annual Costs | Annualized Total |
| Item                      | time)              | (one time)       | (recurring)  | Cost (5 yrs)     |
| FLIR Camera:              | \$122,000          |                  |              |                  |
| Photo Ionization Detector | \$5,000            |                  |              |                  |
| Vehicle                   | \$22,000           |                  |              |                  |
| Inspection Staff:         |                    |                  | \$ 75,000    |                  |
| Supervision (@20%):       |                    |                  | \$ 15,000    |                  |
| Overhead (@10%):          |                    |                  | \$ 7,500     |                  |
| Travel(@15%):             |                    |                  | \$ 11,250    |                  |
| Recordkeeping (@10%):     |                    |                  | \$ 7,500     |                  |
| Reporting (@10%):         |                    |                  | \$ 7,500     |                  |
| Fringe (@30%):            |                    |                  | \$ 22,500.0  |                  |
|                           |                    |                  |              |                  |
| Subtotal Costs:           | \$149,000          | \$0              | \$146,250    |                  |
| Annualized Costs:         | \$39,879.1         | \$0.0            | \$146,250    | \$186,129        |

| Assumptions                 |      |
|-----------------------------|------|
| 52 weeks/yr                 |      |
| 10 holidays                 |      |
| 2 weeks vacation            |      |
| 1 week sick                 |      |
| 40 hour work week           |      |
|                             |      |
| Total annual working hours: | 1880 |
|                             |      |

Hourly Total Cost

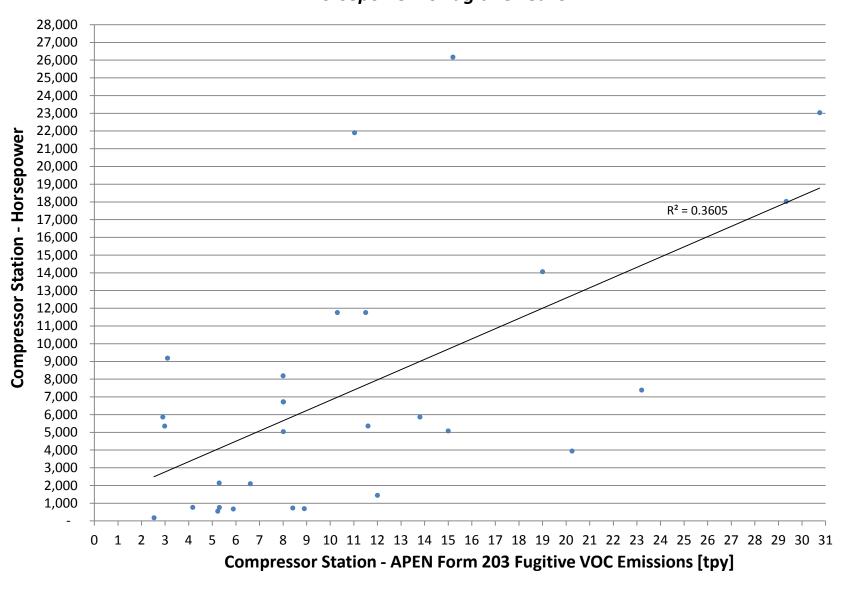
Total Hourly Rate: \$99.00

| <b>Cost Amortization Calc</b> | ulations: Annual | LDAR          |                 |                  |
|-------------------------------|------------------|---------------|-----------------|------------------|
|                               | Equipment Costs  | Non Recurring |                 | Annualized Total |
| Life/YRS                      | (one-time)       | (one time)    | O&M (recurring) | Cost (15 yrs)    |
| 0                             | \$149,000        | \$0           | \$146,250       |                  |
| 1                             | \$157,940        |               |                 |                  |
| 2                             | \$167,416        |               |                 |                  |
| 3                             | \$177,461        |               |                 |                  |
| 4                             | \$188,109        |               |                 |                  |
| 5                             | \$199,396        |               |                 |                  |
| Annualized (5 yr):            | \$39,879         | \$0           | \$146,250       | \$186,129        |

Assumptions: Equipment Life = 5 yrs; Interest Rate\* = 6% \*If the equipment was not purchased, the money could earn 6% per year

# Compressor Station - Fugitive Emissions from Component Leaks

Based on: 30 APCD Form 203 APENs


| DXY USA WTP LP       Mesa CS (permit app.         Antero Resources Pipeline Co.       Dry Hollow CS (new)         DXY USA Inc.       East Plateau CS         Kerr-McGee Gathering LLC       Mitchell CS         Each Com         Bargath LLC       Wheeler Gulch CS         DXY USA Inc.       Alkali Creek CS         Hunter Ridge Energy       Story Gulch CS         ETC Canyon Pipeline, LLC       Holmes Mesa CS         Grand River Gathering LLC       Orchard CS         Ficeance Energy LLC       MVS CS         Bill Barret Corp       Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S 045-0689-006<br>077-0546-008<br>029-0087-003<br>123-0127-013<br>017-0215-004<br>045-2235-004<br>123-1351-006<br>045-0229-006                                                                                                                                         | AIRS ID FL<br>001-1733-002 0<br>003-0248-006 0<br>03-0016-006 0<br>145-0689-006 0<br>177-0546-008 0<br>129-0087-003 0<br>23-0127-013 0 | Uncont.<br>Fugitive<br>VOCs<br>2.5<br>2.9<br>3.0<br>3.1<br>4.2<br>5.2 | Total CS<br>Horsepower<br>180<br>5,865<br>5,354<br>9,185 | VOC [wt %]<br>39.07%<br>5.80%<br>24.11%   | Connectors<br>305<br>870 | Flanges                     | Open-Ended<br>Lines         | Pump Seals                  | Valves                      | Other      | VOC [wt %] | Connectors  | Flanges    | Open-Ended<br>Lines | Pump Seals | Valves      | Other       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|--------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------|------------|-------------|------------|---------------------|------------|-------------|-------------|
| argath LLC       Greasewood CS         ncana Oil & Gas       East Dragon Trail CS         argath LLC       Cottonwood Point C         wia Energy       Taylor CS         ierr-McGee Gathering LLC       Third Creek CS         ierr-McGee Gathering LLC       Aristocrat CS         CP Midstream, LP       West Arapahoe CS         ncana Oil & Gas       Deer Creek CS         ierr-McGee Gathering LLC       Ione CS         argath LLC       Starky Guich CS         CP Midstream, LP       Wells Ranch CS (new         CP Midstream, LP       Godfrey Bottom CS         CP Midstream, LP       Sullivan CS         CP Midstream, LP       Sullivan CS         CP Midstream, LP       Libsak CS         ierr-McGee Gathering LLC       Dragoon CS         natero Resources Pipeline Co.       Hunter Mesa CS (permit app<br>untero Resources Pipeline Co.         DXY USA Inc.       East Plateau CS         ierr-McGee Gathering LLC       Mitchell CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103-0248-006           103-0016-006           S         045-0689-006           077-0546-008           029-0087-003           123-0127-013           017-0215-004           045-2235-004           123-1351-006           045-0229-006           v)         123-950-006 | 03-0248-006<br>03-0016-006<br>45-0689-006<br>177-0546-008<br>129-0087-003<br>23-0127-013                                               | 2.9<br>3.0<br>3.1<br>4.2<br>5.2                                       | 5,865<br>5,354<br>9,185                                  | 5.80%                                     |                          | 141                         |                             |                             |                             |            |            |             |            |                     |            |             | · · · · · · |
| cana Oil & Gas       East Dragon Trail CS         rrgath LLC       Cottonwood Point C         ia Energy       Taylor CS         rr-MCGee Gathering LLC       Third Creek CS         rrr-MCGee Gathering LLC       Aristocrat CS         P Midstream, LP       West Arapahoe CS         cana Oil & Gas       Deer Creek CS         rrr-MCGee Gathering LLC       Starky Gulch CS         pridstream, LP       Wells Ranch CS (new         P Midstream, LP       Godfrey Bottom CS         P Midstream, LP       Sullivan CS         P Midstream, LP       Sullivan CS         P Midstream, LP       Sullivan CS         P Midstream, LP       Libsak CS         rrr-MCGee Gathering LLC       Dragoon CS         tetro Resources Pipeline Co.       Hunter Mesa CS (permit app tetro Resources Pipeline Co.         Vf USA NTP LP       Mesa CS (permit app tetro Resources Pipeline Co.         vf USA Inc.       East Plateau CS         wrr-McGee Gathering LLC       Mitchell CS         vrr-McGee Gathering LLC       Mitchell CS         wrter Resources Pipeline Co.       Bry Hollow CS (new)         wrter Resources Pipeline, LLC       Mitchell CS         wrter McGee Gathering LLC       Mitchell CS         wrter McGee Energy <td< td=""><td>103-0016-006           S         045-0689-006           077-0546-008         029-0087-003           123-0127-013         017-0215-004           045-2235-004         123-1351-006           045-0229-006         v)         123-9950-006</td><td>03-0016-006<br/>145-0689-006<br/>177-0546-008<br/>129-0087-003<br/>23-0127-013</td><td>3.0<br/>3.1<br/>4.2<br/>5.2</td><td>5,354<br/>9,185</td><td></td><td>870</td><td></td><td>2</td><td>-</td><td>75</td><td>-</td><td>99.79%</td><td>101</td><td>14</td><td>-</td><td></td><td>24</td><td>-</td></td<>                                                                                                                   | 103-0016-006           S         045-0689-006           077-0546-008         029-0087-003           123-0127-013         017-0215-004           045-2235-004         123-1351-006           045-0229-006         v)         123-9950-006                               | 03-0016-006<br>145-0689-006<br>177-0546-008<br>129-0087-003<br>23-0127-013                                                             | 3.0<br>3.1<br>4.2<br>5.2                                              | 5,354<br>9,185                                           |                                           | 870                      |                             | 2                           | -                           | 75                          | -          | 99.79%     | 101         | 14         | -                   |            | 24          | -           |
| rgath LLC Cottonwood Point C<br>ia Energy Taylor CS<br>rr-McGee Gathering LLC Third Creek CS<br>rr-McGee Gathering LLC Aristocrat CS<br>P Midstream, LP West Arapahoe CS<br>cana 0il & Gas Deer Creek CS<br>rr-McGee Gathering LLC Ione CS<br>rgath LLC Starky Gulch CS<br>P Midstream, LP Wells Ranch CS (new<br>P Midstream, LP Sullivan CS<br>P Midstream, LP Sullivan CS<br>P Midstream, LP Libsak CS<br>rr-McGee Gathering LLC Radar CS<br>rr-McGee Gathering LLC Bragoon CS<br>tero Resources Pipeline Co. Hunter Mesa CS<br>(Y USA VTP LP Mesa CS (new)<br>Y USA Inc. East Plateau CS<br>rr-McGee Gathering LLC Mitchell CS<br>Each Comp<br>tero Resources Pipeline Co. Dry Hollow CS (new)<br>Y USA Inc. East Plateau CS<br>rr-McGee Gathering LLC Mitchell CS<br>Each Comp<br>rgath LLC Wheeler Gulch CS<br>and River Gathering LLC Holmes Mesa CS<br>and River Gathering LLC Mitchell CS<br>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S         045-0689-006           077-0546-008         029-0087-003           123-0127-013         017-0215-004           045-2235-004         123-1351-006           045-0229-006         v)         123-9950-006                                                      | 45-0689-006<br>177-0546-008<br>129-0087-003<br>23-0127-013                                                                             | 3.1<br>4.2<br>5.2                                                     | 9,185                                                    | 24.11%                                    |                          | 198                         | -                           | -                           | 254                         | 42         | 100.00%    | 138         | 34         | -                   | 4          | 46          | -           |
| ia Energy       Taylor CS         ia Energy       Taylor CS         irr-McGee Gathering LLC       Third Creek CS         prr-McGee Gathering LLC       Aristocrat CS         P Midstream, LP       West Arapahoe CS         irgath LLC       Starky Gulch CS         P Midstream, LP       West Arapahoe CS         pradh LLC       Starky Gulch CS         P Midstream, LP       Wells Ranch CS (new         2P Midstream, LP       Sullivan CS         2P Midstream, LP       Sullivan CS         2P Midstream, LP       Libsak CS         rr-McGee Gathering LLC       Radar CS         rr-McGee Gathering LLC       Dragoon CS         ttero Resources Pipeline Co.       Hyn Hensea CS (permit app: thero Resources Pipeline Co.         VI SA VITP LP       Mesa CS (permit app: thero Resources Pipeline Co.         trer-McGee Gathering LLC       Mitchell CS         rrr-McGee Gathering LLC       Mitchell CS </td <td>077-0546-008<br/>029-0087-003<br/>123-0127-013<br/>017-0215-004<br/>045-2235-004<br/>123-1351-006<br/>045-0229-006<br/>v) 123-9950-006</td> <td>77-0546-008<br/>29-0087-003<br/>23-0127-013</td> <td>4.2<br/>5.2</td> <td>,</td> <td></td> <td>-</td> <td>548</td> <td>-</td> <td>12</td> <td>199</td> <td>20</td> <td></td> <td></td> <td></td> <td></td> <td>ı</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                  | 077-0546-008<br>029-0087-003<br>123-0127-013<br>017-0215-004<br>045-2235-004<br>123-1351-006<br>045-0229-006<br>v) 123-9950-006                                                                                                                                        | 77-0546-008<br>29-0087-003<br>23-0127-013                                                                                              | 4.2<br>5.2                                                            | ,                                                        |                                           | -                        | 548                         | -                           | 12                          | 199                         | 20         |            |             |            |                     | ı          |             |             |
| err-McGee Gathering LLC       Third Creek CS         err-McGee Gathering LLC       Aristocrat CS         CP Midstream, LP       West Arapahoe CS         cana Oil & Gas       Deer Creek CS         err-McGee Gathering LLC       Ione CS         argath LLC       Starky Guich CS         CP Midstream, LP       Wells Ranch CS (new         CP Midstream, LP       Godfrey Bottom CS         CP Midstream, LP       Sullivan CS         CP Midstream, LP       Libsak CS         err-McGee Gathering LLC       Dragoon CS         rtero Resources Pipeline Co.       Hunter Mesa CS (permit app.         KY USA WTP LP       Mesa CS (permit app.         Mero Resources Pipeline Co.       Dry Hollow CS (new)         XY USA Inc.       East Plateau CS         err-McGee Gathering LLC       Mitchell CS         err-McGee Gathering LLC       Kory Gutch CS         crer-McGee Gathering LLC       Mitchell CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 029-0087-003<br>123-0127-013<br>017-0215-004<br>045-2235-004<br>123-1351-006<br>045-0229-006<br>v) 123-9950-006                                                                                                                                                        | 29-0087-003<br>23-0127-013                                                                                                             | 5.2                                                                   |                                                          | 7.20%                                     | 870                      | 198                         | -                           | 24                          | 254                         | 18         | 100.00%    | 138         | 34         | -                   | 4          | 46          | -           |
| err-McGee Gathering LLC Aristocrat CS<br>CP Midstream, LP West Arapahoe CS<br>ncana Oil & Gas Deer Creek CS<br>err-McGee Gathering LLC Ione CS<br>argath LLC Starky Gulch CS<br>CP Midstream, LP Wells Ranch CS (new<br>CP Midstream, LP Godfrey Bottom CS<br>CP Midstream, LP Libsak CS<br>err-McGee Gathering LLC Radar CS<br>err-McGee Gathering LLC Dragoon CS<br>ntero Resources Pipeline Co. Hunter Mesa CS<br>XY USA VTP LP Mesa CS (permit app<br>ntero Resources Pipeline Co. Dry Hollow CS (new)<br>XY USA Inc. East Plateau CS<br>err-McGee Gathering LLC Mitchell CS<br>Each Comp<br>argath LLC Wheeler Gulch CS<br>YU SA Inc. Alkali Creek CS<br>witchell CS<br>TC Canyon Pipeline, LLC Holmes Mesa CS<br>xY USA Inc. Holmes Mesa CS<br>XY USA Inc. Alkali Creek CS<br>inter Ridge Energy Story Gulch CS<br>TC Canyon Pipeline, LLC Holmes Mesa CS<br>incana Oil & Gas Middle Fork CS (perrice<br>iceance Energy LLC MVS CS<br>ill Barret Corp Bailey CS<br>>12 to ≤ 5<br>Each Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 123-0127-013<br>017-0215-004<br>045-2235-004<br>123-1351-006<br>045-0229-006<br>v) 123-9950-006                                                                                                                                                                        | 23-0127-013                                                                                                                            |                                                                       | 766                                                      | 5.89%                                     | 1,320                    | 214                         | 47                          | -                           | 284                         | 28         | 100.00%    | 214         | 88         | 8                   | 2          | 71          | 4           |
| DCP Midstream, LP       West Arapahoe CS         ncana Oil & Gas       Deer Creek CS         ierr-McGee Gathering LLC       Ione CS         iargath LLC       Starky Gulch CS         DCP Midstream, LP       Wells Ranch CS (new         DCP Midstream, LP       Sodfrey Bottom CS         DCP Midstream, LP       Sullivan CS         DCP Midstream, LP       Libsak CS         ierr-McGee Gathering LLC       Radar CS         ierr-McGee Gathering LLC       Dragoon CS         natero Resources Pipeline Co.       Hunter Mesa CS (permit appentero Resources Pipeline Co.         DY USA VITP LP       Mesa CS (permit appentero Resources Pipeline Co.         DY USA Inc.       East Plateau CS         ierr-McGee Gathering LLC       Mitchell CS         iargath LLC       Wheeler Gulch CS         iargath LLC       Viss and conteros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 017-0215-004<br>045-2235-004<br>123-1351-006<br>045-0229-006<br>v) 123-9950-006                                                                                                                                                                                        |                                                                                                                                        |                                                                       | 552                                                      | 33.99%                                    | 125                      | 255                         | 293                         | -                           | -                           | 14         | 99.46%     | 35          | 68         | 34                  | 6          | -           | -           |
| ncana Oil & Gas Deer Creek CS<br>lerr-McGee Gathering LLC Ione CS<br>largath LLC Starky Gulch CS<br>CP Midstream, LP Wells Ranch CS (new<br>CP Midstream, LP Godfrey Bottom CS<br>CP Midstream, LP Sullivan CS<br>CP Midstream, LP Libsak CS<br>lerr-McGee Gathering LLC Radar CS<br>lerr-McGee Gathering LLC Dragoon CS<br>ntero Resources Pipeline Co. Hunter Mesa CS<br>WY USA WTP LP Mesa CS (permit app<br>mtero Resources Pipeline Co. Dry Hollow CS (new)<br>XY USA Inc. East Plateau CS<br>lerr-McGee Gathering LLC Mitchell CS<br><i>Each Comp</i><br>largath LLC Wheeler Gulch CS<br>XY USA Inc. Alkali Creek CS<br>lunter Ridge Energy Story Gulch CS<br>TC Canyon Pipeline, LLC Holmes Mesa CS<br>irand River Gathering LLC Orchard CS<br>mcana Oil & Gas Middle Fork CS (perr<br>iceance Energy LLC MVS CS<br>ill Barret Corp Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 045-2235-004<br>123-1351-006<br>045-0229-006<br>v) 123-9950-006                                                                                                                                                                                                        | 17-0215-004                                                                                                                            | 5.3                                                                   | 2,143                                                    | 29.43%                                    | 896                      | 306                         | 8                           | -                           | 172                         | -          | 99.74%     | 265         | 25         | -                   |            | 89          | -           |
| ferr-McGee Gathering LLC       lone CS         Jargath LLC       Starky Guich CS         DCP Midstream, LP       Godfrey Bottom CS         DCP Midstream, LP       Sullivan CS         DCP Midstream, LP       Sullivan CS         DCP Midstream, LP       Libsak CS         Gerr-McGee Gathering LLC       Radar CS         Gerr-McGee Gathering LLC       Dragoon CS         watero Resources Pipeline Co.       Hunter Mesa CS         DXY USA WTP LP       Mesa CS (permit app)         watero Resources Pipeline Co.       Dry Hollow CS (new)         DXY USA Inc.       East Plateau CS         Gerr-McGee Gathering LLC       Mitchell CS         Wargath LLC       Wheeler Guich CS         XY USA Inc.       Alkali Creek CS         Litz C canyon Pipeline, LLC       Holmes Mesa CS         Sirand River Gathering LLC       Orchard CS         Sirand River Gathering LLC       Orchard CS         Grand River Gathering LLC       Mvel Scs         Sirand River Gathering LLC       Mvel Scs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123-1351-006<br>045-0229-006<br>v) 123-9950-006                                                                                                                                                                                                                        |                                                                                                                                        | 5.3                                                                   | 761                                                      | 33.61%                                    | 599                      | 97                          | 22                          | -                           | 129                         | 13         | 100.00%    | 123         | 51         | 4                   | 2          | 41          | 2           |
| Bargath LLC       Starky Gulch CS         SCP Midstream, LP       Wells Ranch CS (new, DCP Midstream, LP         GOD Midstream, LP       Sullivan CS         DCP Midstream, LP       Libsak CS         Cerr-McGee Gathering LLC       Radar CS         Kerr-McGee Gathering LLC       Dragoon CS         Antero Resources Pipeline Co.       Hunter Mesa CS (permit application CS)         DXY USA WTP LP       Mesa CS (permit application CS)         Natero Resources Pipeline Co.       Dry Hollow CS (new)         DXY USA Inc.       East Plateau CS         Gerr-McGee Gathering LLC       Mitchell CS         DXY USA Inc.       East Plateau CS         Gerr-McGee Gathering LLC       Mitchell CS         DXY USA Inc.       Alkali Creek CS         Lunter Ridge Energy       Story Gulch CS         Story USA Inc.       Alkali Creek CS         Lunter Ridge Energy       Story Gulch CS         Story Outler CS       Story Gulch CS         TC Canyon Pipeline, LLC       Holmes Mesa CS         Grand River Gathering LLC       Orchard CS         Story Gulch CS       Story Gulch CS         Story Cand River Gathering LLC       MVS CS         Sill Barret Corp       Bailey CS         Sill Barret Corp       Bailey CS <td>045-0229-006<br/>v) 123-9950-006</td> <td></td> <td>5.9</td> <td>675</td> <td>10.43%</td> <td>699</td> <td>135</td> <td>20</td> <td>-</td> <td>132</td> <td>21</td> <td>100.00%</td> <td>328</td> <td>37</td> <td>7</td> <td>4</td> <td>65</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                             | 045-0229-006<br>v) 123-9950-006                                                                                                                                                                                                                                        |                                                                                                                                        | 5.9                                                                   | 675                                                      | 10.43%                                    | 699                      | 135                         | 20                          | -                           | 132                         | 21         | 100.00%    | 328         | 37         | 7                   | 4          | 65          | 1           |
| DCP Midstream, LP       Wells Ranch CS (new         DCP Midstream, LP       Godfrey Bottom CS         DCP Midstream, LP       Libsak CS         DCP Midstream, LP       Libsak CS         Cerr-McGee Gathering LLC       Radar CS         Kerr-McGee Gathering LLC       Dragoon CS         Antero Resources Pipeline Co.       Hunter Mesa CS         DXY USA VTP LP       Mesa CS (permit app         Antero Resources Pipeline Co.       Dry Hollow CS (new)         DXY USA Inc.       East Plateau CS         Kerr-McGee Gathering LLC       Mitchell CS         DXY USA Inc.       East Plateau CS         Bargath LLC       Wheeler Gulch CS         DXY USA Inc.       Alkail Creek CS         Hunter Ridge Energy       Story Gulch CS         Story Gulch CS       Story Gulch CS         Erc C Canyon Pipeline, LLC       Orchard CS         Frand River Gathering LLC       Orchard CS         Stand River Gathering LLC       MVS CS         Bill Barret Corp       Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v) 123-9950-006                                                                                                                                                                                                                                                        |                                                                                                                                        | 6.6                                                                   | 2,102                                                    | 25.56%                                    | 795                      | 357                         | 8                           | -                           | 229                         | -          | 99.58%     | 275         | 33         | -                   | -          | 123         | -           |
| DCP Midstream, LP       Godfrey Bottom CS         DCP Midstream, LP       Sullivan CS         DCP Midstream, LP       Libsak CS         Gerr-McGee Gathering LLC       Radar CS         Kerr-McGee Gathering LLC       Dragoon CS         Antero Resources Pipeline Co.       Hunter Mesa CS (permit app<br>Antero Resources Pipeline Co.         DXY USA WTP LP       Mesa CS (permit app<br>Antero Resources Pipeline Co.         DXY USA Inc.       East Plateau CS         Kerr-McGee Gathering LLC       Mitchell CS         DXY USA Inc.       East Plateau CS         Var-McGee Gathering LLC       Mitchell CS         Bargath LLC       Wheeler Gulch CS         DXY USA Inc.       Alkail Creek CS         Hunter Ridge Energy       Story Gulch CS         TC C Canyon Pipeline, LLC       Holmes Mesa CS         Grand River Gathering LLC       Orchard CS         Garand River Gathering LLC       MvS CS         Sill Barret Corp       Bailey CS         Sill Barret Corp       Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                        |                                                                                                                                        | 8.0                                                                   | 8,191                                                    | 9.44%                                     | 1,634                    | 929                         |                             | 29                          | 616                         | 32         | 100.00%    | 679         | 74         | -                   | -          | 121         | -           |
| DCP Midstream, LP       Sullivan CS         DCP Midstream, LP       Libsak CS         Kerr-McGee Gathering LLC       Radar CS         Kerr-McGee Gathering LLC       Dragoon CS         Antero Resources Pipeline Co.       Hunter Mesa CS         DXY USA WTP LP       Mesa CS (permit app<br>Antero Resources Pipeline Co.         DXY USA WTD LP       Mesa CS (permit app<br>Antero Resources Pipeline Co.         DXY USA MTC.       East Plateau CS         Kerr-McGee Gathering LLC       Mitchell CS         Stry USA Inc.       East Plateau CS         Kerr-McGee Gathering LLC       Mitchell CS         Bargath LLC       Wheeler Gulch CS         DXY USA Inc.       Alkali Creek CS         Holmes Mesa CS       Story Gulch CS         Strict C anyon Pipeline, LLC       Holmes Mesa CS         Strand River Gathering LLC       Orchard CS         Piceance Energy LLC       MVS CS         Baill Barret Corp       Bailey CS         Stl Barret Corp       Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123-9010-006                                                                                                                                                                                                                                                           |                                                                                                                                        | 8.0                                                                   | 6,720                                                    | 24.74%                                    | 1,422                    | 213                         | 51                          | -                           | 306                         | 31         | 100.00%    | 217         | 89         | 8                   | 2          | 72          | 4           |
| DCP Midstream, LP       Libsak CS         Gerr-McGee Gathering LLC       Radar CS         Kerr-McGee Gathering LLC       Dragoon CS         Antero Resources Pipeline Co.       Hunter Mesa CS         DXY USA WTP LP       Mesa CS (permit application of the second of the |                                                                                                                                                                                                                                                                        |                                                                                                                                        | 8.0                                                                   | 5,040                                                    | 24.74%                                    | 1,422                    | 231                         | 51                          | -                           | 306                         | 31         | 100.00%    | 217         | 89         | 8                   | 2          | 72          | 4           |
| Kerr-McGee Gathering LLC       Radar CS         Kerr-McGee Gathering LLC       Dragoon CS         Antero Resources Pipeline Co.       Hunter Mesa CS         DXY USA WTP LP       Mesa CS (permit appendix CS)         Antero Resources Pipeline Co.       Dry Hollow CS (new)         DXY USA Inc.       East Plateau CS         Kerr-McGee Gathering LLC       Mitchell CS         Each Comp         Bargath LLC         Wheeler Gulch CS         DXY USA Inc.       Alkail Creek CS         Hunter Ridge Energy       Story Gulch CS         Story Gulch CS       Story Gulch CS         TC C Canyon Pipeline, LLC       Orchard CS         Fracance Energy LLC       MVS CS         Bailey CS       Saill Barret Corp         Bailey CS       Story Gulch CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 123-9009-006                                                                                                                                                                                                                                                           |                                                                                                                                        | 8.0                                                                   | 6,720                                                    | 24.74%                                    | 1,422                    | 231                         | 51                          | -                           | 306                         | 31         | 100.00%    | 217         | 89         | 8                   | 2          | 72          | 4           |
| Kerr-McGee Gathering LLC       Dragoon CS         Antero Resources Pipeline Co.       Hunter Mesa CS (permit app<br>Mesa CS (permit app<br>Mesa CS (permit app<br>Dry Hollow CS (new)         DXY USA Inc.       East Plateau CS         Cerr-McGee Gathering LLC       Mitchell CS         Bargath LLC       Mitchell CS         Bargath LLC       Wheeler Gulch CS         XY USA Inc.       Alkali Creek CS         Bargath LLC       Wheeler Gulch CS         XY USA Inc.       Alkali Creek CS         Hunter Ridge Energy       Story Gulch CS         TC C Canyon Pipeline, LLC       Holmes Mesa CS         Garand River Gathering LLC       Orchard CS         Driceance Energy LLC       MVS CS         Bill Barret Corp       Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123-9008-006                                                                                                                                                                                                                                                           |                                                                                                                                        | 8.0                                                                   | 6,720                                                    | 24.74%                                    | 1,422                    | 231                         | 51                          | -                           | 306                         | 31         | 100.00%    | 217         | 89         | 8                   | 2          | 72          | 4           |
| Antero Resources Pipeline Co. Hunter Mesa CS OXY USA WTP LP Mesa CS (permit app<br>Antero Resources Pipeline Co. Dry Hollow CS (new) OXY USA Inc. East Plateau CS Kerr-McGee Gathering LLC Mitchell CS Each Comp Bargath LLC Wheeler Gulch CS OXY USA Inc. Alkali Creek CS Hunter Ridge Energy Story Gulch CS ETC Canyon Pipeline, LLC Holmes Mesa CS Grand River Gathering LLC Orchard CS Encana OII & Gas Middle Fork CS (perr Piceance Energy LLC MVS CS Bill Barret Corp Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 001-0229-006                                                                                                                                                                                                                                                           |                                                                                                                                        | 8.4                                                                   | 730                                                      | 15.00%                                    | 1,040                    | 193                         | 71                          | -                           | 402                         | 26         | 100.00%    | 474         | 5          | 19                  | 1          | 137         | 1           |
| OXY USA WTP LP       Mesa CS (permit app<br>Antero Resources Pipeline Co.       Dry Hollow CS (new)         OXY USA Inc.       East Plateau CS         Kerr-McGee Gathering LLC       Mitchell CS         Each Com         Bargath LLC         Wheeler Gulch CS         OXY USA Inc.       Alkali Creek CS         Hunter Ridge Energy       Story Gulch CS         ETC Canyon Pipeline, LLC       Holmes Mesa CS         Grand River Gathering LLC       Orchard CS         Encana Oil & Gas       Middle Fork CS (perr         Bill Barret Corp       Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 005-0051-008                                                                                                                                                                                                                                                           |                                                                                                                                        | 8.9                                                                   | 694                                                      |                                           | 1,377                    | 182                         | 94                          | 6                           | 212                         | 100        |            |             |            |                     | ⊢∔         |             |             |
| Antero Resources Pipeline Co. Dry Hollow CS (new) DXY USA Inc. East Plateau CS Kerr-McGee Gathering LLC Mitchell CS  Each Comp Bargath LLC Wheeler Gulch CS MY USA Inc. Alkali Creek CS Hunter Ridge Energy Story Gulch CS ETC Canyon Pipeline, LLC Holmes Mesa CS Grand River Gathering LLC Orchard CS Encana Oil & Gas Middle Fork CS (perr Piceance Energy LLC MVS CS Bill Barret Corp Bailey CS Each Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 045-1647-014                                                                                                                                                                                                                                                           |                                                                                                                                        | 10.3                                                                  | 11,760                                                   | 11.96%                                    | 1,042                    | 364                         | -                           | 32                          | 684                         | 50         | 100.00%    | 219         | 6          | -                   | 8          | 162         | -           |
| OXY USA Inc.       East Plateau CS         Kerr-McGee Gathering LLC       Mitchell CS         Each Comp       Each Comp         Bargath LLC       Wheeler Guich CS         OXY USA Inc.       Alkali Creek CS         Hunter Ridge Energy       Story Guich CS         ETC Canyon Pipeline, LLC       Holmes Mesa CS         Grand River Gathering LLC       Orchard CS         Ficeance Energy LLC       Middle Fork CS (perr         Piceance Energy LLC       MVS CS         Bill Barret Corp       Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                        |                                                                                                                                        | 11.0                                                                  | 21,904                                                   | 3.50%                                     | 2,106                    | 539                         | -                           | -                           | 696                         | 58         | 29.20%     | 3,112       | 481        | -                   | 14         | 941         | 21          |
| Kerr-McGee Gathering LLC       Mitchell CS         Each Comp         Bargath LLC       Wheeler Gulch CS         OXY USA Inc.       Alkali Creek CS         Hunter Ridge Energy       Story Gulch CS         ETC Canyon Pipeline, LLC       Holmes Mesa CS         Grand River Gathering LLC       Orchard CS         Encana Oil & Gas       Middle Fork CS (perr         Piceance Energy LLC       MVS CS         Bill Barret Corp       Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                        |                                                                                                                                        | 11.5                                                                  | 11,760                                                   | 14.12%                                    | 2,224                    | 438                         | -                           | -                           | 555                         | 87         | 100.00%    | 464         | 142        | -                   | 15         | 136         | -           |
| Each Comp         Each Comp         Bargath LLC       Wheeler Gulch CS         OXY USA Inc.       Alkali Creek CS         Hunter Ridge Energy       Story Gulch CS         ETC Canyon Pipeline, LLC       Holmes Mesa CS         Grand River Gathering LLC       Orchard CS         Encana Oil & Gas       Middle Fork CS (perr         Piceance Energy LLC       MVS CS         Bill Barret Corp       Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 077-0414-017<br>005-1113-007                                                                                                                                                                                                                                           |                                                                                                                                        | 11.6<br>12.0                                                          | 5,360<br>1,447                                           | 15.00%                                    | 2,744<br>2,673           | 234<br>367                  | - 4                         | - 6                         | 503<br>294                  | 74<br>24   | 100.00%    | 489         | -          | -                   | 3          | 123         | 12          |
| Bargath LLC Wheeler Gulch CS<br>OXY USA Inc. Alkali Creek CS<br>Hunter Ridge Energy Story Gulch CS<br>ETC Canyon Pipeline, LLC Holmes Mesa CS<br>Grand River Gathering LLC Orchard CS<br>Encana Oil & Gas Middle Fork CS (perr<br>Piceance Energy LLC MVS CS<br>Bill Barret Corp Bailey CS<br>>12 to ≤ 5<br>Each Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <=12 VOC Averag                                                                                                                                                                                                                                                        | 2 VOC Average:<br>ent Category - Ann                                                                                                   | 7.2<br>nual VOC                                                       | 5,210<br>[ Emissions [                                   | 19.2%<br>[tons/year]:                     | 1,228<br>0.45            | 300<br>0.22                 | 35<br>0.13                  | 5<br>0.02                   | 314<br>2.62                 | 33<br>0.54 | 96.2%      | 417<br>0.81 | 76<br>0.08 | 5<br>0.07           | 4<br>0.45  | 127<br>2.95 | 3<br>0.21   |
| Bargath LLC Wheeler Gulch CS<br>DXY USA Inc. Alkali Creek CS<br>Hunter Ridge Energy Story Gulch CS<br>ETC Canyon Pipeline, LLC Holmes Mesa CS<br>Grand River Gathering LLC Orchard CS<br>Encana Oil & Gas Middle Fork CS (perr<br>Piceance Energy LLC MVS CS<br>Bill Barret Corp Bailey CS<br>>12 to ≤ 5<br>Each Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Each Component                                                                                                                                                                                                                                                         | h Component Cate                                                                                                                       | egory - lı                                                            | nspection Til                                            | me [Hours]:                               | 10.2                     | 2.5                         | 0.3                         | 0.0                         | 2.6                         | 0.3        |            | 3.5         | 0.6        | 0.0                 | 0.0        | 1.1         | 0.0         |
| OXY USA Inc.       Alkali Creek CS         Hunter Ridge Energy       Story Gulch CS         ETC Canyon Pipeline, LLC       Holmes Mesa CS         Grand River Gathering LLC       Orchard CS         Encana Oil & Gas       Middle Fork CS (perr         Piceance Energy LLC       MVS CS         Bill Barret Corp       Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onent Category - A                                                                                                                                                                                                                                                     | nt Category - Annue                                                                                                                    | ual C1-C2                                                             | Emissions [                                              | [tons/year]:                              | 1.92                     | 0.91                        | 0.55                        | 0.09                        | 11.04                       | 2.28       |            | 0.03        | 0.00       | 0.00                | 0.02       | 0.12        | 0.01        |
| Hunter Ridge Energy     Story Gulch CS       ETC Canyon Pipeline, LLC     Holmes Mesa CS       Grand River Gathering LLC     Orchard CS       Encana Oil & Gas     Middle Fork CS (perr       Piceance Energy LLC     MVS CS       Bill Barret Corp     Bailey CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 045-1030-009                                                                                                                                                                                                                                                           | 45-1030-009                                                                                                                            | 13.8                                                                  | 5,865                                                    | 13.80%                                    | 1,924                    | 514                         | -                           | -                           | 468                         | 64         | 100.00%    | 1,901       | 123        | -                   | -          | 203         | 8           |
| ETC Canyon Pipeline, LLC Holmes Mesa CS<br>Grand River Gathering LLC Orchard CS<br>Encana Oil & Gas Middle Fork CS (perr<br>Piceance Energy LLC MVS CS<br>Bill Barret Corp Bailey CS<br>>12 to ≤ 5<br>Each Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 077-0447-013                                                                                                                                                                                                                                                           | 77-0447-013                                                                                                                            | 15.0                                                                  | 5,079                                                    | 15.00%                                    | 2,199                    | 210                         | -                           | -                           | 364                         | 41         | 100.00%    | 810         | 72         | -                   | 6          | 262         | 14          |
| Grand River Gathering LLC Orchard CS<br>Encana Oil & Gas Middle Fork CS (perr<br>Piceance Energy LLC MVS CS<br>Bill Barret Corp Bailey CS<br>>12 to ≤ 5<br>Each Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 045-1997-009                                                                                                                                                                                                                                                           | 45-1997-009                                                                                                                            | 15.2                                                                  | 26,172                                                   | 6.28%                                     | 2,240                    | 444                         | 58                          | -                           | 410                         | 69         | 100.00%    | 1,086       | 81         | 24                  | 8          | 207         | 4           |
| Encana Oil & Gas Middle Fork CS (perr<br>Piceance Energy LLC MVS CS<br>Bill Barret Corp Bailey CS<br>>12 to ≤ 5<br><i>Each Com</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 045-1675-006                                                                                                                                                                                                                                                           | 45-1675-006                                                                                                                            | 19.0                                                                  | 14,064                                                   | 8.06%                                     | 3,107                    | 780                         | - 1                         | -                           | 843                         | 61         | 100.00%    | 1,773       | 218        | -                   | 6          | 392         | 12          |
| Piceance Energy LLC MVS CS<br>Bill Barret Corp Bailey CS<br>>12 to < 5<br>Each Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 045-0895-003                                                                                                                                                                                                                                                           | 45-0895-003                                                                                                                            | 20.3                                                                  | 3,945                                                    | 6.68%                                     | 2,366                    | 456                         | 63                          | -                           | 490                         | 67         | 100.00%    | 1,244       | 97         | 27                  | 10         | 258         | 10          |
| Bill Barret Corp Bailey CS<br>>12 to ≤ 5<br>Each Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nits 045-0790-004                                                                                                                                                                                                                                                      | 45-0790-004                                                                                                                            | 23.2                                                                  | 7,385                                                    | 6.82%                                     | 3,137                    | 582                         | 81                          | -                           | 605                         | 99         | 100.00%    | 1,549       | 161        | 28                  | 22         | 311         | 8           |
| >12 to ≤ 5<br>Each Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 077-0452-004                                                                                                                                                                                                                                                           | 77-0452-004                                                                                                                            | 29.3                                                                  | 18,027                                                   | 11.48%                                    | 5,448                    | 1,428                       | 43                          | -                           | 1,096                       | 481        | 99.66%     | 264         | 65         | 3                   | -          | 56          | 17          |
| Each Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 045-1477-007                                                                                                                                                                                                                                                           | 45-1477-007                                                                                                                            | 30.8                                                                  | 23,035                                                   | 20.00%                                    | 7,073                    | 1,232                       | -                           | -                           | 1,200                       | 71         | 100.00%    | 2,311       | 85         | 5                   | 5          | 397         | -           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 tpy VOC Averag                                                                                                                                                                                                                                                       | VOC Average:                                                                                                                           | 20.8                                                                  | 12,947                                                   | 11.0%                                     | 3,437                    | 706                         | 31                          | -                           | 685                         | 119        | 100.0%     | 1,367       | 113        | 11                  | 7          | 261         | 9           |
| Each Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ponent Category                                                                                                                                                                                                                                                        | ent Category - Ann                                                                                                                     | nual VOC                                                              | CEmissions [                                             | tons/year]:                               | 0.73                     | 0.29                        | 0.07                        | -                           | 3.28                        | 1.12       |            | 2.77        | 0.12       | 0.15                | 0.89       | 6.29        | 0.66        |
| Each Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Each Component                                                                                                                                                                                                                                                         | h Component Cate                                                                                                                       | <mark>egory - lı</mark>                                               | nspection Til                                            | me [Hours]:                               | 28.6                     | 5.9                         | 0.3                         | -                           | 5.7                         | 1.0        |            | 11.4        | 0.9        | 0.1                 | 0.1        | 2.2         | 0.1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | onent Category                                                                                                                                                                                                                                                         | <mark>it Category - Annu</mark>                                                                                                        | ual C1-C2                                                             | Emissions [                                              | tons/year]:                               | 5.91                     | 2.37                        | 0.53                        | -                           | 26.47                       | 9.01       |            | 0.00        | 0.00       | 0.00                | 0.00       | 0.00        | 0.00        |
| Compressor Station - Component Fugitive Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                        | PA Emission Fa                                                                                                                         | actors                                                                |                                                          |                                           |                          |                             |                             |                             |                             |            |            |             |            |                     |            |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ак EPA Emissio                                                                                                                                                                                                                                                         | Each Component                                                                                                                         |                                                                       |                                                          | or <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]: |                          | <b>3.90E-04</b><br>0.000062 | <b>2.00E-03</b><br>0.000318 | <b>2.40E-03</b><br>0.000381 | <b>4.50E-03</b><br>0.000714 | 8.80E-03   |            | 2.10E-04    | 1.10E-04   | 1.40E-03            | 1.30E-02   | 2.50E-03    | 7.50E-03    |
| See Table 2-4 "Oil and Gas Production Operations Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        | ission Factors EPA                                                                                                                     |                                                                       |                                                          |                                           |                          |                             |                             |                             | 0.000714                    | 0.001337   |            |             |            |                     |            |             |             |
| Compressor Station - LDAR Inspection Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Each Compo                                                                                                                                                                                                                                                             |                                                                                                                                        |                                                                       |                                                          |                                           |                          |                             |                             |                             |                             |            |            |             |            |                     |            |             |             |

Average Time-On-Leak per component [seconds]: 30

# **Compressor Station - Fugitive Component Leak Emissions** Composite Model based on - 30 APCD Form 203 APENs

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             | Gi                                                                                    | as Service Cou                                                                     | nt                                                                      |                                                                                        |                                                                                                 |                    |                                                                              | Light                                                  | Oil Service C                                                | Count                                                   |                                                  |                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|----------------------------------|
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Source                                                                                                                                                  | AIRS ID                                                                                                                                                                                                                                    | Uncontrolled<br>Fugitive VOCs                                                                                                                                                                                                                                            | Total CS<br>Horsepower                                                                                                                                                                                              | VOC [wt %]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Connectors                                                                                                  | Flanges                                                                               | Open-Ended<br>Lines                                                                | Pump Seals                                                              | Valves                                                                                 | Other                                                                                           | VOC [wt %]         | Connectors                                                                   | Flanges                                                | Open-<br>Ended Lines                                         | Pump Seals                                              | Valves                                           | Other                            |
| L Kerr-McGee Gathering LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Taylor CS                                                                                                                                               | 001-1733-002                                                                                                                                                                                                                               | 2.5                                                                                                                                                                                                                                                                      | 180                                                                                                                                                                                                                 | 39.07%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 305                                                                                                         | 141                                                                                   | 2                                                                                  | -                                                                       | 75                                                                                     | -                                                                                               | 99.79%             | 101                                                                          | 14                                                     | -                                                            | -                                                       | 24                                               | -                                |
| 2 Bargath LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Greasewood CS                                                                                                                                           | 103-0248-006                                                                                                                                                                                                                               | 2.9                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     | 5.80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 870                                                                                                         | 198                                                                                   | -                                                                                  | -                                                                       | 254                                                                                    | 42                                                                                              | 100.00%            | 138                                                                          | 34                                                     | -                                                            | 4                                                       | 46                                               | -                                |
| Encana Oil & Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | East Dragon Trail CS                                                                                                                                    | 103-0016-006                                                                                                                                                                                                                               | 3.0                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     | 24.11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                           | 548                                                                                   | -                                                                                  | 12                                                                      | 199                                                                                    | 20                                                                                              | 400.000/           | 420                                                                          | 34                                                     |                                                              | 4                                                       | 46                                               |                                  |
| 4 Bargath LLC<br>5 Axia Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cottonwood Point CS<br>Taylor CS                                                                                                                        | 045-0689-006<br>077-0546-008                                                                                                                                                                                                               | 3.1 4.2                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     | 7.20%<br>5.89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 870<br>1,320                                                                                                | 198<br>214                                                                            | - 47                                                                               | 24                                                                      | 254<br>284                                                                             | 18<br>28                                                                                        | 100.00%<br>100.00% | 138<br>214                                                                   | 34<br>88                                               | - 8                                                          | 4                                                       | 46                                               |                                  |
| Kerr-McGee Gathering LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Third Creek CS                                                                                                                                          | 029-0087-003                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     | 33.99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,320                                                                                                       | 214                                                                                   | 293                                                                                | -                                                                       | 284                                                                                    | 14                                                                                              | 99.46%             | 35                                                                           | 68                                                     | 34                                                           | 6                                                       | /1                                               |                                  |
| Kerr-McGee Gathering LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aristocrat CS                                                                                                                                           | 123-0127-013                                                                                                                                                                                                                               | 5.3                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     | 29.43%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 896                                                                                                         | 306                                                                                   | 8                                                                                  | -                                                                       | 172                                                                                    | -                                                                                               | 99.74%             | 265                                                                          | 25                                                     | -                                                            | -                                                       | 89                                               |                                  |
| 3 DCP Midstream, LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | West Arapahoe CS                                                                                                                                        | 017-0215-004                                                                                                                                                                                                                               | 5.3                                                                                                                                                                                                                                                                      | 761                                                                                                                                                                                                                 | 33.61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 599                                                                                                         | 97                                                                                    | 22                                                                                 | -                                                                       | 172                                                                                    | 13                                                                                              | 100.00%            | 123                                                                          | 51                                                     | 4                                                            | 2                                                       | 41                                               |                                  |
| Encana Oil & Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Deer Creek CS                                                                                                                                           | 045-2235-004                                                                                                                                                                                                                               | 5.9                                                                                                                                                                                                                                                                      | 675                                                                                                                                                                                                                 | 10.43%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 699                                                                                                         | 135                                                                                   | 20                                                                                 | -                                                                       | 132                                                                                    | 21                                                                                              | 100.00%            | 328                                                                          | 37                                                     | 7                                                            | 4                                                       | 65                                               |                                  |
| ) Kerr-McGee Gathering LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lone CS                                                                                                                                                 | 123-1351-006                                                                                                                                                                                                                               | 6.6                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     | 25.56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 795                                                                                                         | 357                                                                                   | 8                                                                                  | -                                                                       | 229                                                                                    | -                                                                                               | 99.58%             | 275                                                                          | 33                                                     | -                                                            | -                                                       | 123                                              | -                                |
| L Bargath LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Starky Gulch CS                                                                                                                                         | 045-0229-006                                                                                                                                                                                                                               | 8.0                                                                                                                                                                                                                                                                      | 8,191                                                                                                                                                                                                               | 9.44%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,634                                                                                                       | 929                                                                                   | -                                                                                  | 29                                                                      | 616                                                                                    | 32                                                                                              | 100.00%            | 679                                                                          | 74                                                     | -                                                            | -                                                       | 121                                              | -                                |
| 2 DCP Midstream, LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wells Ranch CS (new)                                                                                                                                    | 123-9950-006                                                                                                                                                                                                                               | 8.0                                                                                                                                                                                                                                                                      | 6,720                                                                                                                                                                                                               | 24.74%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,422                                                                                                       | 213                                                                                   | 51                                                                                 | -                                                                       | 306                                                                                    | 31                                                                                              | 100.00%            | 217                                                                          | 89                                                     | 8                                                            | 2                                                       | 72                                               |                                  |
| B DCP Midstream, LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Godfrey Bottom CS                                                                                                                                       | 123-9010-006                                                                                                                                                                                                                               | 8.0                                                                                                                                                                                                                                                                      | 5,040                                                                                                                                                                                                               | 24.74%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,422                                                                                                       | 231                                                                                   | 51                                                                                 | -                                                                       | 306                                                                                    | 31                                                                                              | 100.00%            | 217                                                                          | 89                                                     | 8                                                            | 2                                                       | 72                                               |                                  |
| 1 DCP Midstream, LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sullivan CS                                                                                                                                             | 123-9009-006                                                                                                                                                                                                                               | 8.0                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     | 24.74%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,422                                                                                                       | 231                                                                                   | 51                                                                                 | -                                                                       | 306                                                                                    | 31                                                                                              | 100.00%            | 217                                                                          | 89                                                     | 8                                                            | 2                                                       | 72                                               |                                  |
| DCP Midstream, LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Libsak CS                                                                                                                                               | 123-9008-006                                                                                                                                                                                                                               | 8.0                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     | 24.74%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,422                                                                                                       | 231                                                                                   | 51                                                                                 | -                                                                       | 306                                                                                    | 31                                                                                              | 100.00%            | 217                                                                          | 89                                                     | 8                                                            | 2                                                       | 72                                               |                                  |
| 6 Kerr-McGee Gathering LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Radar CS                                                                                                                                                | 001-0229-006                                                                                                                                                                                                                               | 8.4                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     | 15.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,040                                                                                                       | 193                                                                                   | 71                                                                                 | -                                                                       | 402                                                                                    | 26                                                                                              | 100.00%            | 474                                                                          | 5                                                      | 19                                                           | 1                                                       | 137                                              |                                  |
| 7 Kerr-McGee Gathering LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dragoon CS                                                                                                                                              | 005-0051-008                                                                                                                                                                                                                               | 8.9                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     | 100.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,377                                                                                                       | 182                                                                                   | 94                                                                                 | 6                                                                       | 212                                                                                    | 100                                                                                             |                    |                                                                              |                                                        |                                                              |                                                         |                                                  |                                  |
| Antero Resources Pipeline Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hunter Mesa CS                                                                                                                                          | 045-1647-014                                                                                                                                                                                                                               | 10.3                                                                                                                                                                                                                                                                     | 11,760                                                                                                                                                                                                              | 11.96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,042                                                                                                       | 364                                                                                   | -                                                                                  | 32                                                                      | 684                                                                                    | 50                                                                                              | 100.00%            | 219                                                                          | 6                                                      | -                                                            | 8                                                       | 162                                              | -                                |
| OXY USA WTP LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mesa CS (permit app ca                                                                                                                                  | 045-2148-023                                                                                                                                                                                                                               | 11.0                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     | 3.50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,106                                                                                                       | 539                                                                                   | -                                                                                  | -                                                                       | 696                                                                                    | 58                                                                                              | 29.20%             | 3,112                                                                        | 481                                                    | -                                                            | 14                                                      | 941                                              | 2                                |
| Antero Resources Pipeline Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dry Hollow CS (new)                                                                                                                                     | 045-2201-012                                                                                                                                                                                                                               | 11.5                                                                                                                                                                                                                                                                     | 11,760                                                                                                                                                                                                              | 14.12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,224                                                                                                       | 438                                                                                   | -                                                                                  | -                                                                       | 555                                                                                    | 87                                                                                              | 100.00%            | 464                                                                          | 142                                                    | -                                                            | 15                                                      | 136                                              | -                                |
| L OXY USA Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | East Plateau CS                                                                                                                                         | 077-0414-017                                                                                                                                                                                                                               | 11.6                                                                                                                                                                                                                                                                     | 5,360                                                                                                                                                                                                               | 15.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,744                                                                                                       | 234                                                                                   | -                                                                                  | -                                                                       | 503                                                                                    | 74                                                                                              | 100.00%            | 489                                                                          | -                                                      | -                                                            | 3                                                       | 123                                              | 12                               |
| Kerr-McGee Gathering LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mitchell CS                                                                                                                                             | 005-1113-007                                                                                                                                                                                                                               | 12.0                                                                                                                                                                                                                                                                     | 1,447                                                                                                                                                                                                               | 100.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,673                                                                                                       | 367                                                                                   | 4                                                                                  | 6                                                                       | 294                                                                                    | 24                                                                                              | 100.00-1           | 1.007                                                                        | 100                                                    | ļ                                                            |                                                         | 202                                              |                                  |
| Bargath LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wheeler Gulch CS                                                                                                                                        | 045-1030-009                                                                                                                                                                                                                               | 13.8                                                                                                                                                                                                                                                                     | 5,865                                                                                                                                                                                                               | 13.80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,924                                                                                                       | 514                                                                                   | -                                                                                  | -                                                                       | 468                                                                                    | 64                                                                                              | 100.00%            | 1,901                                                                        | 123                                                    | -                                                            | -                                                       | 203                                              | 8                                |
| OXY USA Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alkali Creek CS                                                                                                                                         | 077-0447-013                                                                                                                                                                                                                               | 15.0                                                                                                                                                                                                                                                                     | 5,079                                                                                                                                                                                                               | 15.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,199                                                                                                       | 210                                                                                   | - 58                                                                               | -                                                                       | 364                                                                                    | 41                                                                                              | 100.00%            | 810                                                                          | 72                                                     | -                                                            | 6                                                       | 262                                              | 14                               |
| 5 Hunter Ridge Energy<br>5 ETC Canyon Pipeline, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Story Gulch CS<br>Holmes Mesa CS                                                                                                                        | 045-1997-009<br>045-1675-006                                                                                                                                                                                                               | 15.2<br>19.0                                                                                                                                                                                                                                                             | 26,172<br>14,064                                                                                                                                                                                                    | 6.28%<br>8.06%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,240<br>3,107                                                                                              | 444<br>780                                                                            | 58                                                                                 | -                                                                       | 410<br>843                                                                             | 69<br>61                                                                                        | 100.00%            | 1,086<br>1,773                                                               | 81<br>218                                              | 24                                                           | 6                                                       | 207<br>392                                       | 1                                |
| Grand River Gathering LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Orchard CS                                                                                                                                              | 045-1675-006                                                                                                                                                                                                                               | 20.3                                                                                                                                                                                                                                                                     | 14,064                                                                                                                                                                                                              | 6.68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,366                                                                                                       | 456                                                                                   | - 63                                                                               | -                                                                       | 843<br>490                                                                             | 61                                                                                              | 100.00%            | 1,773                                                                        | 218                                                    | - 27                                                         | 6<br>10                                                 | 392<br>258                                       | 12                               |
| Encana Oil & Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Middle Fork CS (permit                                                                                                                                  |                                                                                                                                                                                                                                            | 20.3                                                                                                                                                                                                                                                                     | 7,385                                                                                                                                                                                                               | 6.82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,137                                                                                                       | 582                                                                                   | 81                                                                                 | _                                                                       | 605                                                                                    | 99                                                                                              | 100.00%            | 1,549                                                                        | 161                                                    | 27                                                           | 22                                                      | 311                                              | 10                               |
| Piceance Energy LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MVS CS                                                                                                                                                  | 077-0452-004                                                                                                                                                                                                                               | 29.3                                                                                                                                                                                                                                                                     | 18,027                                                                                                                                                                                                              | 11.48%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,448                                                                                                       | 1,428                                                                                 | 43                                                                                 |                                                                         | 1,096                                                                                  | 481                                                                                             | 99.66%             | 264                                                                          | 65                                                     | 28                                                           |                                                         | 56                                               | 17                               |
| ) Bill Barret Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bailey CS                                                                                                                                               | 045-1477-007                                                                                                                                                                                                                               | 30.8                                                                                                                                                                                                                                                                     | 23,035                                                                                                                                                                                                              | 20.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,073                                                                                                       | 1,232                                                                                 |                                                                                    |                                                                         | 1,200                                                                                  | 71                                                                                              | 100.00%            | 2,311                                                                        | 85                                                     | 5                                                            | 5                                                       | 397                                              | -                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             |                                                                                       |                                                                                    |                                                                         |                                                                                        |                                                                                                 |                    |                                                                              |                                                        |                                                              |                                                         |                                                  |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | omposite Model Compres                                                                                                                                  |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                          | 7,273<br>ts [number]:                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,817                                                                                                       | 408                                                                                   | 34<br>Av                                                                           | 4<br>erage Light (                                                      | 413                                                                                    | 56                                                                                              |                    | 699                                                                          | 87                                                     | 7                                                            | 5                                                       | 167                                              |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | omposite Model Compres                                                                                                                                  | ssor Station - Ave                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                          | 7,273<br>ts [number]:                                                                                                                                                                                               | 22.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |                                                                                       | -                                                                                  |                                                                         |                                                                                        | 56                                                                                              | 97.3%              |                                                                              |                                                        |                                                              | 5                                                       | 167                                              | 5                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         | ssor Station - Aver<br>Avera                                                                                                                                                                                                               | rage Component                                                                                                                                                                                                                                                           | 7,273<br>ts [number]:                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             |                                                                                       | -                                                                                  |                                                                         | 413                                                                                    | 56                                                                                              |                    |                                                                              |                                                        |                                                              | 5                                                       | 167                                              |                                  |
| Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         | ssor Station - Aver<br>Avera<br>nissions                                                                                                                                                                                                   | r <mark>age Component</mark><br>ge Gas Service V                                                                                                                                                                                                                         | 7,273<br>ts [number]:<br>'OC percent:                                                                                                                                                                               | 22.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |                                                                                       | -                                                                                  |                                                                         | 413                                                                                    | 56                                                                                              |                    | 699                                                                          | 87                                                     | 7                                                            | 5<br>1.30E-02                                           |                                                  | 7.50E-0                          |
| Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         | ssor Station - Aver<br>Avera<br>nissions                                                                                                                                                                                                   | rage Component<br>ge Gas Service V<br>mponent TOC E                                                                                                                                                                                                                      | 7,273<br>ts [number]:<br>'OC percent:                                                                                                                                                                               | 22.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,817                                                                                                       | 408                                                                                   | Av                                                                                 | erage Light (                                                           | 413<br>Dil Service VO                                                                  | 56<br>OC percent:                                                                               |                    | 699                                                                          | 87                                                     | 7                                                            |                                                         |                                                  | 7.50E-0.                         |
| Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         | ssor Station - Aver<br>Avera<br>nissions<br>Each Co                                                                                                                                                                                        | rage Component<br>ge Gas Service V<br>mponent TOC E                                                                                                                                                                                                                      | 7,273<br>ts [number]:<br>/OC percent:<br>mission Facto<br>6 VOC factors                                                                                                                                             | 22.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,817<br>2.00E-04                                                                                           | 408<br>3.90E-04                                                                       | Av.<br>2.00E-03                                                                    | erage Light (<br>2.40E-03                                               | 413<br>Dil Service VO<br>4.50E-03                                                      | 56<br>OC percent:<br>8.80E-03                                                                   |                    | 699<br>2.10E-04                                                              | 87<br>1.10E-04                                         | 7<br>1.40E-03                                                |                                                         | 2.50E-03                                         | 7.50E-0.<br>7.30E-0.             |
| Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         | <mark>ssor Station - Àver</mark><br>Avera<br><u>nissions</u><br>Each Ca<br>Each C                                                                                                                                                          | rage Component<br>ge Gas Service V<br>omponent TOC E<br>1009<br>Component VOC                                                                                                                                                                                            | 7,273<br>ts [number]:<br>'OC percent:<br>mission Facto<br>6 VOC factors<br>Emission Fac                                                                                                                             | 22.4%<br>pr <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]:<br>tor [kg/hr]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,817<br>2.00E-04<br>0.000032<br>4.47E-05                                                                   | 408<br>3.90E-04<br>0.000062<br>8.73E-05                                               | Ava<br>2.00E-03<br>0.000318<br>4.47E-04                                            | erage Light C<br>2.40E-03<br>0.000381<br>5.37E-04                       | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03                              | 56<br>C percent:<br>8.80E-03<br>0.001397<br>1.97E-03                                            |                    | 699<br>2.10E-04<br>2.04E-04                                                  | 87<br>1.10E-04<br>1.07E-04                             | 7<br>1.40E-03<br>1.36E-03                                    | 1.30E-02<br>1.27E-02                                    | 2.50E-03<br>2.43E-03                             | 7.30E-0                          |
| Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         | <mark>ssor Station - Àver</mark><br>Avera<br><u>nissions</u><br>Each Ca<br>Each C                                                                                                                                                          | rage Component<br>ge Gas Service V<br>omponent TOC En<br>1009                                                                                                                                                                                                            | 7,273<br>ts [number]:<br>'OC percent:<br>mission Facto<br>6 VOC factors<br>Emission Fac                                                                                                                             | 22.4%<br>pr <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]:<br>tor [kg/hr]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1,817</b><br><b>2.00E-04</b><br>0.000032                                                                 | <b>408</b><br><b>3.90E-04</b><br>0.000062                                             | Av<br>2.00E-03<br>0.000318                                                         | erage Light C<br>2.40E-03<br>0.000381                                   | <b>413</b><br>Dil Service VO<br><b>4.50E-03</b><br>0.000714                            | 56<br>C percent:<br>8.80E-03<br>0.001397                                                        |                    | 699<br>2.10E-04                                                              | 87<br>1.10E-04                                         | 7<br>1.40E-03                                                | 1.30E-02                                                | 2.50E-03                                         | 7.30E-0                          |
| Composite Model Compres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ssor Station - VOC En                                                                                                                                   | ssor Station - Aver<br>Avera<br>nissions<br>Each Ca<br>Each C<br>Compa<br>ressor Station -                                                                                                                                                 | rage Component<br>ge Gas Service V<br>mponent TOC E<br>1009<br>Component VOC<br>nent Annual VO<br>Total Annual                                                                                                                                                           | 7,273<br>ts [number]:<br>'OC percent:<br>mission Facto<br>6 VOC factors<br>Emission Fac<br>C Emissions [<br>VOC Emissi                                                                                              | 22.4%<br>pr <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]:<br>tor [kg/hr]:<br>ftons/year]:<br>tions [tpy]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,817<br>2.00E-04<br>0.000032<br>4.47E-05<br>0.79<br>12.8                                                   | 408<br>3.90E-04<br>0.000062<br>8.73E-05<br>0.34                                       | Av<br>2.00E-03<br>0.000318<br>4.47E-04<br>0.15                                     | 2.40E-03<br>0.000381<br>5.37E-04<br>0.02                                | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03                              | 56<br>C percent:<br>8.80E-03<br>0.001397<br>1.97E-03                                            |                    | 699<br>2.10E-04<br>2.04E-04                                                  | 87<br>1.10E-04<br>1.07E-04                             | 7<br>1.40E-03<br>1.36E-03                                    | 1.30E-02<br>1.27E-02                                    | 2.50E-03<br>2.43E-03                             | 7.30E-0                          |
| Composite Model Compres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ssor Station - VOC En                                                                                                                                   | ssor Station - Aver<br>Avera<br>nissions<br>Each Ca<br>Each C<br>Compa<br>ressor Station -                                                                                                                                                 | rage Component<br>ge Gas Service V<br>mponent TOC E<br>1009<br>Component VOC<br>nent Annual VO<br>Total Annual                                                                                                                                                           | 7,273<br>ts [number]:<br>'OC percent:<br>mission Facto<br>6 VOC factors<br>Emission Fac<br>C Emissions [<br>VOC Emissi                                                                                              | 22.4%<br>pr <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]:<br>tor [kg/hr]:<br>ftons/year]:<br>tions [tpy]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,817<br>2.00E-04<br>0.000032<br>4.47E-05<br>0.79<br>12.8                                                   | 408<br>3.90E-04<br>0.000062<br>8.73E-05<br>0.34                                       | Av<br>2.00E-03<br>0.000318<br>4.47E-04<br>0.15                                     | 2.40E-03<br>0.000381<br>5.37E-04<br>0.02                                | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03                              | 56<br>C percent:<br>8.80E-03<br>0.001397<br>1.97E-03                                            |                    | 699<br>2.10E-04<br>2.04E-04                                                  | 87<br>1.10E-04<br>1.07E-04                             | 7<br>1.40E-03<br>1.36E-03                                    | 1.30E-02<br>1.27E-02                                    | 2.50E-03<br>2.43E-03                             | 7.30E-0                          |
| Composite Model Compres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ssor Station - VOC En<br>nposite Model Compr<br>action Operations Average I                                                                             | ssor Station - Äver<br>Avera<br>nissions<br>Each Co<br>Each C<br>Compo<br>ressor Station -<br>Emission Factors" E<br>ne/Ethane Emis                                                                                                        | rage Component<br>ge Gas Service V<br>Imponent TOC El<br>1009<br>Component VOC<br>Inent Annual VO<br>Total Annual<br>IPA Protocol for E<br>Isions                                                                                                                        | 7,273<br>ts [number]:<br>'OC percent:<br>mission Facto<br>& VOC factors I<br>Emission Fac<br>C Emissions [<br>VOC Emissi<br>iquipment Leal                                                                          | 22.4%<br>pr <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]:<br>ttor [kg/hr]:<br>itons/year]:<br>itons [tpy]:<br>k Emission Esti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,817<br>2.00E-04<br>0.000032<br>4.47E-05<br>0.79<br>12.8<br>mates, Noven                                   | 408<br>3.90E-04<br>0.000062<br>8.73E-05<br>0.34<br>nber 1996, EPA                     | Av<br>2.00E-03<br>0.000318<br>4.47E-04<br>0.15<br>-453/R-95-017                    | 2.40E-03<br>0.000381<br>5.37E-04<br>0.02                                | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03<br>4.02                      | 56<br>C percent:<br>8.80E-03<br>0.001397<br>1.97E-03<br>1.07                                    |                    | 699<br>2.10E-04<br>2.04E-04<br>1.38                                          | 87<br>1.10E-04<br>1.07E-04<br>0.09                     | 7<br>1.40E-03<br>1.36E-03<br>0.09                            | 1.30E-02<br>1.27E-02<br>0.58                            | 2.50E-03<br>2.43E-03<br>3.91                     | 7.30E-0<br>0.3                   |
| Composite Model Compres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ssor Station - VOC En<br>nposite Model Compr<br>action Operations Average I                                                                             | ssor Station - Äver<br>Avera<br>nissions<br>Each Co<br>Each C<br>Compo<br>ressor Station -<br>Emission Factors" E<br>ne/Ethane Emis                                                                                                        | rage Component<br>ge Gas Service V<br>mponent TOC El<br>1009<br>Component VOC<br>ment Annual VO<br>Total Annual                                                                                                                                                          | 7,273<br>ts [number]:<br>'OC percent:<br>mission Facto<br>& VOC factors I<br>Emission Fac<br>C Emissions [<br>VOC Emissi<br>iquipment Leal                                                                          | 22.4%<br>pr <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]:<br>ttor [kg/hr]:<br>itons/year]:<br>itons [tpy]:<br>k Emission Esti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,817<br>2.00E-04<br>0.000032<br>4.47E-05<br>0.79<br>12.8                                                   | 408<br>3.90E-04<br>0.000062<br>8.73E-05<br>0.34                                       | Av<br>2.00E-03<br>0.000318<br>4.47E-04<br>0.15                                     | 2.40E-03<br>0.000381<br>5.37E-04<br>0.02                                | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03                              | 56<br>C percent:<br>8.80E-03<br>0.001397<br>1.97E-03                                            |                    | 699<br>2.10E-04<br>2.04E-04<br>1.38                                          | 87<br>1.10E-04<br>1.07E-04<br>0.09                     | 7<br>1.40E-03<br>1.36E-03<br>0.09                            | 1.30E-02<br>1.27E-02                                    | 2.50E-03<br>2.43E-03<br>3.91                     | 7.30E-0<br>0.3                   |
| Composite Model Compres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ssor Station - VOC En<br>nposite Model Compr<br>action Operations Average I                                                                             | ssor Station - Aver<br>Avera<br>hissions<br>Each Ca<br>Each C<br>Compa<br>ressor Station -<br>Emission Factors" E<br>ne/Ethane Emis<br>Each Ca                                                                                             | rage Component<br>ge Gas Service V<br>Imponent TOC El<br>1009<br>Component VOC<br>Inent Annual VO<br>Total Annual<br>IPA Protocol for E<br>Isions                                                                                                                        | 7,273<br>ts [number]:<br>'OC percent:<br>mission Facto<br>6 VOC factors<br>Emission Fac<br>C Emissions [<br>VOC Emissi<br>iquipment Leal<br>Emission Fac                                                            | 22.4%<br>pr <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]:<br>itor [kg/hr]:<br>itons/year]:<br>itons [tpy]:<br>k Emission Estin<br>itor [kg/hr]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,817<br>2.00E-04<br>0.000032<br>4.47E-05<br>0.79<br>12.8<br>mates, Noven                                   | 408<br>3.90E-04<br>0.000062<br>8.73E-05<br>0.34<br>nber 1996, EPA                     | Av<br>2.00E-03<br>0.000318<br>4.47E-04<br>0.15<br>-453/R-95-017                    | 2.40E-03<br>0.000381<br>5.37E-04<br>0.02                                | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03<br>4.02                      | 56<br>C percent:<br>8.80E-03<br>0.001397<br>1.97E-03<br>1.07                                    |                    | 699<br>2.10E-04<br>2.04E-04<br>1.38                                          | 87<br>1.10E-04<br>1.07E-04<br>0.09                     | 7<br>1.40E-03<br>1.36E-03<br>0.09                            | 1.30E-02<br>1.27E-02<br>0.58                            | 2.50E-03<br>2.43E-03<br>3.91                     | 7.30E-0<br>0.3<br>2.02E-0        |
| Composite Model Compres<br>Composite Model Compres<br><sup>1</sup> See Table 2-4 "Oil and Gas Produ<br>Composite Model Compres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ssor Station - VOC En<br>nposite Model Compr<br>action Operations Average I                                                                             | ssor Station - Äver<br>Avera<br>nissions<br>Each Co<br>Compa<br>ressor Station -<br>Emission Factors" E<br>ne/Ethane Emis<br>Each Co<br>Compa                                                                                              | rage Component<br>ge Gas Service V<br>1009<br>Component TOC El<br>Component VOC<br>International VO<br>Total Annual<br>IPA Protocol for E<br>Isions<br>Imponent C1-C2<br>International VO                                                                                | 7,273<br>ts [number]:<br>'OC percent:<br>mission Facto<br>& VOC factors I<br>Emission Fac<br>C Emissions [<br>Emission Fac<br>Emission Fac                                                                          | 22.4%<br>pr <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]:<br>itor [kg/hr]:<br>itons/year]:<br>itors/year]:<br>itons/year]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,817<br>2.00E-04<br>0.000032<br>4.47E-05<br>0.79<br>12.8<br>mates, Noven<br>1.55E-04                       | 408<br>3.90E-04<br>0.000062<br>8.73E-05<br>0.34<br>hber 1996, EPA<br>3.03E-04         | Av<br>2.00E-03<br>0.000318<br>4.47E-04<br>0.15<br>-453/R-95-017                    | 2.40E-03<br>0.000381<br>5.37E-04<br>0.02                                | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03<br>4.02<br>3.49E-03          | 56<br>IC percent:<br>8.80E-03<br>0.001397<br>1.97E-03<br>1.07<br>6.83E-03                       |                    | 699<br>2.10E-04<br>2.04E-04<br>1.38<br>5.64E-06                              | 87<br>1.10E-04<br>1.07E-04<br>0.09<br>2.96E-06         | 7<br>1.40E-03<br>1.36E-03<br>0.09<br>3.76E-05                | 1.30E-02<br>1.27E-02<br>0.58<br>3.49E-04                | 2.50E-03<br>2.43E-03<br>3.91<br>6.72E-05         | 7.30E-0<br>0.3<br>2.02E-0        |
| Composite Model Compression<br>Composite 2-4 "Oil and Gas Produ<br>Composite Model Compression<br>Composite Model Compression<br>Compression<br>Composite Model Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Co | ssor Station - VOC En<br>nposite Model Compr<br>action Operations Average I<br>ssor Station - Methan<br>el Compressor Station                           | ssor Station - Aver<br>Avera<br>nissions<br>Each Ca<br>Each C<br>Compo<br>ressor Station -<br>Emission Factors" E<br>ne/Ethane Emis<br>Each Ca<br>Compo<br>- Total Annual                                                                  | rage Component<br>ge Gas Service V<br>1009<br>Component TOC El<br>Component VOC<br>International VO<br>Total Annual<br>IPA Protocol for E<br>Isions<br>Imponent C1-C2<br>International VO                                                                                | 7,273<br>ts [number]:<br>'OC percent:<br>mission Facto<br>& VOC factors I<br>Emission Fac<br>C Emissions [<br>Emission Fac<br>Emission Fac                                                                          | 22.4%<br>pr <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]:<br>itor [kg/hr]:<br>itons/year]:<br>itors/year]:<br>itons/year]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,817<br>2.00E-04<br>0.000032<br>4.47E-05<br>0.79<br>12.8<br>mates, Noven<br>1.55E-04<br>2.72               | 408<br>3.90E-04<br>0.000062<br>8.73E-05<br>0.34<br>hber 1996, EPA<br>3.03E-04         | Av<br>2.00E-03<br>0.000318<br>4.47E-04<br>0.15<br>-453/R-95-017                    | 2.40E-03<br>0.000381<br>5.37E-04<br>0.02                                | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03<br>4.02<br>3.49E-03          | 56<br>IC percent:<br>8.80E-03<br>0.001397<br>1.97E-03<br>1.07<br>6.83E-03                       |                    | 699<br>2.10E-04<br>2.04E-04<br>1.38<br>5.64E-06                              | 87<br>1.10E-04<br>1.07E-04<br>0.09<br>2.96E-06         | 7<br>1.40E-03<br>1.36E-03<br>0.09<br>3.76E-05                | 1.30E-02<br>1.27E-02<br>0.58<br>3.49E-04                | 2.50E-03<br>2.43E-03<br>3.91<br>6.72E-05         |                                  |
| Composite Model Compres<br>Composite Model Compres<br><sup>1</sup> See Table 2-4 "Oil and Gas Produ<br>Composite Model Compres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ssor Station - VOC En<br>nposite Model Compr<br>action Operations Average I<br>ssor Station - Methan<br>el Compressor Station                           | ssor Station - Aver<br>Avera<br><u>hissions</u><br>Each Ca<br>Each C<br>Compa<br>ressor Station -<br>Emission Factors" E<br>ne/Ethane Emis<br>Each Ca<br>Compa<br>I - Total Annual<br>Ispection Time                                       | rage Component<br>ge Gas Service V<br>noponent TOC Ei<br>1009<br>Component VOC<br>nent Annual VO<br><b>Total Annual</b><br>IPA Protocol for E<br>sisions<br>mponent C1-C2<br>nent Annual VO<br>Methane/Eth                                                               | 7,273<br>ts [number]:<br>'OC percent:<br>mission Facto<br>& VOC factors I<br>Emission Fac<br>C Emissions [<br>Emission Fac<br>Emission Fac                                                                          | 22.4%<br>pr <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]:<br>itor [kg/hr]:<br>itons/year]:<br>itors/year]:<br>itons/year]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,817<br>2.00E-04<br>0.000032<br>4.47E-05<br>0.79<br>12.8<br>mates, Noven<br>1.55E-04<br>2.72               | 408<br>3.90E-04<br>0.000062<br>8.73E-05<br>0.34<br>hber 1996, EPA<br>3.03E-04         | Av<br>2.00E-03<br>0.000318<br>4.47E-04<br>0.15<br>-453/R-95-017                    | 2.40E-03<br>0.000381<br>5.37E-04<br>0.02                                | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03<br>4.02<br>3.49E-03          | 56<br>IC percent:<br>8.80E-03<br>0.001397<br>1.97E-03<br>1.07<br>6.83E-03                       | 97.3%              | 699<br>2.10E-04<br>2.04E-04<br>1.38<br>5.64E-06<br>0.04                      | 87<br>1.10E-04<br>1.07E-04<br>0.09<br>2.96E-06         | 7<br>1.40E-03<br>1.36E-03<br>0.09<br>3.76E-05                | 1.30E-02<br>1.27E-02<br>0.58<br>3.49E-04                | 2.50E-03<br>2.43E-03<br>3.91<br>6.72E-05         | 7.30E-0<br>0.3<br>2.02E-0        |
| Composite Model Compression<br>Composite 2-4 "Oil and Gas Produ<br>Composite Model Compression<br>Composite Model Compression<br>Compression<br>Composite Model Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Co | ssor Station - VOC En<br>nposite Model Compr<br>action Operations Average I<br>ssor Station - Methan<br>el Compressor Station                           | ssor Station - Äver<br>Avera<br>nissions<br>Each Co<br>Each C<br>Compa<br>ressor Station -<br>Emission Factors" E<br>te/Ethane Emis<br>Each Co<br>Compa<br>- Total Annual<br>nspection Time<br>Assume EPA M                                | rage Component<br>ge Gas Service V<br>Imponent TOC El<br>1009<br>Component VOC<br>inent Annual VO<br>Total Annual<br>IPA Protocol for El<br>isions<br>imponent C1-C2<br>inent Annual VO<br>Methane/Eth<br>lethod 21 LDAR                                                 | 7,273<br>ts [number]:<br>'OC percent:<br>mission Facto<br>& VOC factors I<br>Emission Fac<br>C Emissions [<br>Emission Fac<br>Emission Fac                                                                          | 22.4%<br>pr <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]:<br>itor [kg/hr]:<br>itons/year]:<br>itors/year]:<br>itons/year]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,817<br>2.00E-04<br>0.000032<br>4.47E-05<br>0.79<br>12.8<br>mates, Noven<br>1.55E-04<br>2.72               | 408<br>3.90E-04<br>0.000062<br>8.73E-05<br>0.34<br>hber 1996, EPA<br>3.03E-04         | Av<br>2.00E-03<br>0.000318<br>4.47E-04<br>0.15<br>-453/R-95-017                    | 2.40E-03<br>0.000381<br>5.37E-04<br>0.02<br>7                           | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03<br>4.02<br>3.49E-03          | 56<br>C percent:<br>8.80E-03<br>0.001397<br>1.97E-03<br>1.07<br>6.83E-03<br>3.70                | 97.3%              | 699<br>2.10E-04<br>2.04E-04<br>1.38<br>5.64E-06<br>0.04<br>R with FLIR       | 87<br>1.10E-04<br>1.07E-04<br>0.09<br>2.96E-06         | 7<br>1.40E-03<br>1.36E-03<br>0.09<br>3.76E-05                | 1.30E-02<br>1.27E-02<br>0.58<br>3.49E-04                | 2.50E-03<br>2.43E-03<br>3.91<br>6.72E-05         | 7.30E-(<br>0.3<br>2.02E-(        |
| Composite Model Compression<br>Composite 2-4 "Oil and Gas Produ<br>Composite Model Compression<br>Composite Model Compression<br>Compression<br>Composite Model Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Co | ssor Station - VOC En<br>nposite Model Compr<br>uction Operations Average I<br>ssor Station - Methan<br>el Compressor Station<br>ssor Station - LDAR In | ssor Station - Äver<br>Avera<br>hissions<br>Each Ca<br>Each C<br>Compo<br>ressor Station -<br>Emission Factors" E<br>ne/Ethane Emis<br>Each CC<br>Compo<br>- Total Annual<br>hspection Time<br>Assume EPA M<br>i-Leak per compo            | rage Component<br>ge Gas Service V<br>1009<br>Component TOC El<br>Component VOC<br>Inent Annual VO<br>TOtal Annual<br>PA Protocol for E<br>ssions<br>Imponent C1-C2<br>Inent Annual VO<br>Methane/Eth<br>ethod 21 LDAR<br>nent [seconds]:                                | 7,273<br>ts [number]:<br>'OC percent:<br>mission Facto<br>& VOC factors  <br>Emission Fac<br>C Emissions  <br>Emission Fac<br>C Emissions [<br>hane Emission<br>30                                                  | 22.4%<br>pr <sup>1</sup> [kg/hr]:<br>[lb/hr/comp]:<br>itor [kg/hr]:<br>itons/year]:<br>itons/year]:<br>itons/year]:<br>itons/year]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,817<br>2.00E-04<br>0.000032<br>4.47E-05<br>0.79<br>12.8<br>mates, Noven<br>1.55E-04<br>2.72<br>22.3       | 408<br>3.90E-04<br>0.000062<br>8.73E-05<br>0.34<br>hber 1996, EPA<br>3.03E-04<br>1.19 | Av<br>2.00E-03<br>0.000318<br>4.47E-04<br>0.15<br>453/R-95-017<br>1.55E-03<br>0.51 | 2.40E-03<br>0.000381<br>5.37E-04<br>0.02<br>1.86E-03<br>0.07<br>Average | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03<br>4.02<br>3.49E-03<br>13.93 | 56<br>C percent:<br>8.80E-03<br>0.001397<br>1.97E-03<br>1.07<br>6.83E-03<br>3.70<br>me Reductio | 97.3%              | 699<br>2.10E-04<br>2.04E-04<br>1.38<br>5.64E-06<br>0.04<br>R with FLIR<br>%] | 87<br>1.10E-04<br>1.07E-04<br>0.09<br>2.96E-06<br>0.00 | 7<br>1.40E-03<br>1.36E-03<br>0.09<br>3.76E-05<br>0.00<br>80% | 1.30E-02<br>1.27E-02<br>0.58<br>3.49E-04<br>0.02<br>90% | 2.50E-03<br>2.43E-03<br>3.91<br>6.72E-05<br>0.11 | 7.30E-1<br>0.3<br>2.02E-1<br>0.0 |
| Composite Model Compression<br>Composite 2-4 "Oil and Gas Produ<br>Composite Model Compression<br>Composite Model Compression<br>Compression<br>Composite Model Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Co | ssor Station - VOC En<br>nposite Model Compr<br>uction Operations Average I<br>ssor Station - Methan<br>el Compressor Station<br>ssor Station - LDAR In | ssor Station - Äver<br>Avera<br>hissions<br>Each Co<br>Each C<br>Compa<br>ressor Station -<br>Emission Factors" E<br>te/Ethane Emis<br>Each Co<br>Compa<br>- Total Annual<br>hspection Time<br>Assume EPA M<br>black per compo<br>Each com | rage Component<br>ge Gas Service V<br>Imponent TOC El<br>1009<br>Component VOC<br>inent Annual VO<br><b>Total Annual</b><br>IPA Protocol for El<br>isions<br>imponent C1-C2<br>inent Annual VO<br>I Methane/Eth<br>lethod 21 LDAR<br>nent [seconds]:<br>Imponent categor | 7,273<br>ts [number]:<br>IOC percent:<br>mission Factor<br>6 VOC factors  <br>Emission Fac<br>C Emissions [<br>VOC Emissi<br>cquipment Leal<br>Emission Fac<br>C Emissions [<br>hane Emissi<br>30<br>y - Total Time | 22.4% pr <sup>1</sup> [kg/hr]: [lb/hr/comp]: tor [kg/hr]: ftons/year]: tors [tpy]: tor [kg/hr]: ftons/year]: ftons/year]: ftons [tpy]: ftons [tpy | 1,817<br>2.00E-04<br>0.00032<br>4.47E-05<br>0.79<br>12.8<br>mates, Noven<br>1.55E-04<br>2.72<br>22.3<br>908 | 408<br>3.90E-04<br>0.000062<br>8.73E-05<br>0.34<br>hber 1996, EPA<br>3.03E-04         | Av<br>2.00E-03<br>0.000318<br>4.47E-04<br>0.15<br>-453/R-95-017                    | 2.40E-03<br>0.000381<br>5.37E-04<br>0.02<br>7                           | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03<br>4.02<br>3.49E-03<br>13.93 | 56<br>C percent:<br>8.80E-03<br>0.001397<br>1.97E-03<br>1.07<br>6.83E-03<br>3.70                | 97.3%              | 699<br>2.10E-04<br>2.04E-04<br>1.38<br>5.64E-06<br>0.04<br>R with FLIR       | 87<br>1.10E-04<br>1.07E-04<br>0.09<br>2.96E-06<br>0.00 | 7<br>1.40E-03<br>1.36E-03<br>0.09<br>3.76E-05<br>0.00        | 1.30E-02<br>1.27E-02<br>0.58<br>3.49E-04<br>0.02        | 2.50E-03<br>2.43E-03<br>3.91<br>6.72E-05         | 7.30E-1<br>0.3<br>2.02E-1<br>0.0 |
| Composite Model Compress<br>Composite Model Compress<br><sup>1</sup> See Table 2-4 "Oil and Gas Produ<br>Composite Model Compress<br>Composite Model Compress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ssor Station - VOC En<br>nposite Model Compr<br>uction Operations Average I<br>ssor Station - Methan<br>el Compressor Station<br>ssor Station - LDAR In | ssor Station - Äver<br>Avera<br>hissions<br>Each Co<br>Each C<br>Compa<br>ressor Station -<br>Emission Factors" E<br>te/Ethane Emis<br>Each Co<br>Compa<br>- Total Annual<br>hspection Time<br>Assume EPA M<br>black per compo<br>Each com | rage Component<br>ge Gas Service V<br>1009<br>Component TOC El<br>Component VOC<br>Inent Annual VO<br>TOtal Annual<br>PA Protocol for E<br>ssions<br>Imponent C1-C2<br>Inent Annual VO<br>Methane/Eth<br>ethod 21 LDAR<br>nent [seconds]:                                | 7,273<br>ts [number]:<br>IOC percent:<br>mission Factor<br>6 VOC factors  <br>Emission Fac<br>C Emissions [<br>VOC Emissi<br>cquipment Leal<br>Emission Fac<br>C Emissions [<br>hane Emissi<br>30<br>y - Total Time | 22.4% pr <sup>1</sup> [kg/hr]: [lb/hr/comp]: tor [kg/hr]: ftons/year]: tors [tpy]: tor [kg/hr]: ftons/year]: ftons/year]: ftons [tpy]: ftons [tpy | 1,817<br>2.00E-04<br>0.000032<br>4.47E-05<br>0.79<br>12.8<br>mates, Noven<br>1.55E-04<br>2.72<br>22.3       | 408<br>3.90E-04<br>0.000062<br>8.73E-05<br>0.34<br>hber 1996, EPA<br>3.03E-04<br>1.19 | Av<br>2.00E-03<br>0.000318<br>4.47E-04<br>0.15<br>453/R-95-017<br>1.55E-03<br>0.51 | 2.40E-03<br>0.000381<br>5.37E-04<br>0.02<br>1.86E-03<br>0.07<br>Average | 413<br>Dil Service VO<br>4.50E-03<br>0.000714<br>1.01E-03<br>4.02<br>3.49E-03<br>13.93 | 56<br>C percent:<br>8.80E-03<br>0.001397<br>1.97E-03<br>1.07<br>6.83E-03<br>3.70<br>me Reductio | 97.3%              | 699<br>2.10E-04<br>2.04E-04<br>1.38<br>5.64E-06<br>0.04<br>R with FLIR<br>%] | 87<br>1.10E-04<br>1.07E-04<br>0.09<br>2.96E-06<br>0.00 | 7<br>1.40E-03<br>1.36E-03<br>0.09<br>3.76E-05<br>0.00<br>80% | 1.30E-02<br>1.27E-02<br>0.58<br>3.49E-04<br>0.02<br>90% | 2.50E-03<br>2.43E-03<br>3.91<br>6.72E-05<br>0.11 | 7.30E-(<br>0.3<br>2.02E-(        |

# **Compressor Station** *Horsepower vs Fugitive Leaks*



# EDF-WZI-APPENDIX XII

# WHOMMER TAL PROTECTION



# Installing Plunger Lift Systems In Gas Wells

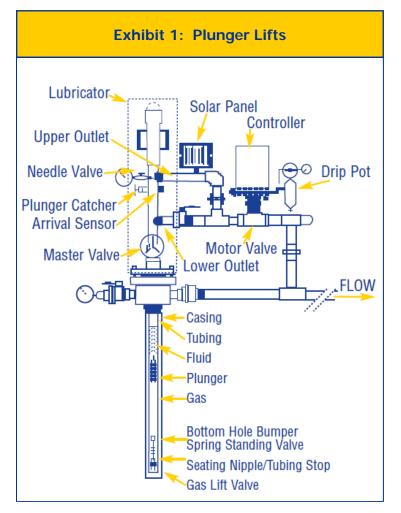


# **Executive Summary**

In mature gas wells, the accumulation of fluids in the well can impede and sometimes halt gas production. Gas flow is maintained by removing accumulated fluids through the use of a beam pump or remedial treatments, such as swabbing, soaping, or venting the well to atmospheric pressure (referred to as "blowing down" the well). Fluid removal operations, particularly well blowdowns, may result in substantial methane emissions to the atmosphere.

Installing a plunger lift system is a cost-effective alternative for removing liquids. Plunger lift systems have the additional benefit of increasing production, as well as significantly reducing methane emissions associated with blowdown operations. A plunger lift uses gas pressure buildup in a well to lift a column of accumulated fluid out of the well. The plunger lift system helps to maintain gas production and may reduce the need for other remedial operations.

Natural Gas STAR Partners report significant economic benefits and methane emission reductions from installing plunger lift systems in gas wells. Companies have reported annual gas savings averaging 600 thousand cubic feet (Mcf) per well by avoiding blowdowns. In addition, increased gas production following plunger lift installation has yielded total gas benefits of up to 18,250 Mcf per well, worth an estimated \$127,750. Benefits from both increased gas production and emissions savings are welland reservoir-specific and will vary considerably.


# **Technology Background**

Liquid loading of the wellbore is often a serious problem in aging production wells. Operators commonly use beam lift pumps or remedial techniques, such as venting or "blowing down" the well to atmospheric pressure, to remove liquid buildup and restore well productivity. These techniques, however, result in gas losses. In the case of blowing down a well, the process must be repeated over time as fluids reaccumulate, resulting in additional methane emissions.

Plunger lift systems are a cost-effective alternative to both beam lifts and well blowdowns and can significantly reduce gas losses, eliminate or reduce the frequency of future well treatments, and improve well productivity. A plunger lift system is a form of intermittent gas lift that uses gas pressure buildup in the casing-tubing annulus to push a steel plunger, and the column of fluid ahead of it, up the well tubing to the surface. The plunger serves as a piston between the liquid and the gas, which minimizes liquid fallback, and as a scale and paraffin scraper. Exhibit 1 depicts a typical plunger lift system.

The operation of a plunger lift system relies on the natural buildup of pressure in a gas well during the time that the well is shut-in (not producing). The well shut-in pressure must be sufficiently higher than the sales-line pressure to lift the plunger and liquid load to the surface. A valve mechanism, controlled by a microprocessor, regulates gas input to the casing and automates the process. The controller is normally powered by a solar recharged battery and can be a simple timer-cycle or have solid state

|                                     | E                                                | conomic a                          | and Enviro                         | nmental                             | Benefits                                |                |                |                |
|-------------------------------------|--------------------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-----------------------------------------|----------------|----------------|----------------|
| Method for<br>Reducing              | Potential Gas Savings<br>from Increased Gas      | Value of Na                        | tural Gas Pro<br>Savings (\$)      | duction and                         | Implementation                          | Pay            | /back (Mont    | hs)            |
| Natural Gas<br>Losses               | Production and Avoided<br>Emissions (Mcf)        | \$3 per<br>Mcf                     | \$5 per<br>Mcf                     | \$7 per<br>Mcf                      | Cost (\$)                               | \$3 per<br>Mcf | \$5 per<br>Mcf | \$7 per<br>Mcf |
| Install a<br>Plunger Lift<br>System | 4,700 - 18,250 <sup>a</sup> per year<br>per well | \$14,100 -<br>\$54,750<br>per year | \$23,500 -<br>\$91,250<br>per year | \$32,900 -<br>\$127,750<br>per year | \$2,591 - \$10,363<br>per year per well | 1 - 9          | 1 - 6          | 1 - 4          |



memory and programmable functions based on process sensors.

Operation of a typical plunger lift system involves the following steps:

- 1. The plunger rests on the bottom hole bumper spring located at the base of the well. As gas is produced to the sales line, liquids accumulate in the well-bore, creating a gradual increase in backpressure that slows gas production.
- 2. To reverse the decline in gas production, the well is shut-in at the surface by an automatic controller. This causes well pressure to increase as a large volume of high pressure gas accumulates in the annulus between the casing and tubing. Once a sufficient volume of gas and pressure is obtained, the plunger and liquid load are pushed to the surface.

- 3. As the plunger is lifted to the surface, gas and accumulated liquids above the plunger flow through the upper and lower outlets.
- 4. The plunger arrives and is captured in the lubricator, situated across the upper lubricator outlet.
- 5. The gas that has lifted the plunger flows through the lower outlet to the sales line.
- 6. Once gas flow is stabilized, the automatic controller releases the plunger, dropping it back down the tubing.
- 7. The cycle repeats.

New information technology systems have streamlined plunger lift monitoring and control. For example, technologies such as smart automation, online data management and satellite communications allow operators to control plunger lift systems remotely, without regular field visits. Operators visit only the wells that need attention, which increases efficiency and reduces cost. For more information regarding this technology and other artificial lift systems, see the Lessons Learned document titled "Options for Removing Accumulated Fluid and Improving Flow in Gas Wells".

# **Economic and Environmental Benefits**

The installation of a plunger lift system serves as a costeffective alternative to beam lifts and well blowdown and yields significant economic and environmental benefits. The extent and nature of these benefits depend on the liquid removal system that the plunger lift is replacing.

- ★ Lower capital cost versus installing beam lift equipment. The costs of installing and maintaining a plunger lift are generally lower than the cost to install and maintain beam lift equipment.
- ★ Lower well maintenance and fewer remedial treatments. Overall well maintenance costs are reduced because periodic remedial treatments such as swabbing or well blowdowns are reduced or no longer needed with plunger lift systems.
- ★ Continuous production improves gas production rates and increases efficiency. Plunger lift systems can conserve the well's lifting energy and increase gas production. Regular fluid

removal allows the well to produce gas continuously and prevent fluid loading that periodically halts gas production or "kills" the well. Often, the continuous removal of fluids results in daily gas production rates that are higher than the production rates prior to the plunger lift installation.

- ★ Reduced paraffin and scale buildup. In wells where paraffin or scale buildup is a problem, the mechanical action of the plunger running up and down the tubing may prevent particulate buildup inside the tubing. Thus, the need for chemical or swabbing treatments may be reduced or eliminated. Many different types of plungers are manufactured with "wobble-washers" to improve their "scraping" performance.
- ★ Lower methane emissions. Eliminating repetitive remedial treatments and well workovers also reduces methane emissions. Natural Gas STAR Partners have reported annual gas savings averaging 600 Mcf per well by avoiding blowdown and an average of 30 Mcf per year by eliminating workovers.
- ★ Other economic benefits. In calculating the economic benefits of plunger lifts, the savings from avoided emissions are only one of many factors to consider in the analysis. Additional savings may result from the salvage value of surplus production equipment and the associated reduction in electricity and work over costs. Moreover, wells that move water continuously out of the well bore have the potential to produce more condensate and oil.

# **Decision Process**

Operators should evaluate plunger lifts as an alternative to well blowdown and beam lift equipment. The decision to install a plunger lift system must be made on a case-bycase basis. Partners can use the following decision process as a guide to evaluate the applicability and costeffectiveness of plunger lift systems for their gas production wells.

# Step 1: Determine the technical feasibility of a plunger lift installation.

Plunger lifts are applicable in gas wells that experience liquid loading and have sufficient gas volume and excess shut-in pressure to lift the liquids from the reservoir to the surface. Exhibit 2 lists four common well characteristics that are good indicators of plunger lift applicability. Vendors often will supply written materials designed to

#### Four Steps for Evaluating Plunger Lift Systems:

- 1. Determine the technical feasibility of a plunger lift installation;
- 2. Determine the cost of a plunger lift system;
- 3. Estimate the savings of a plunger lift; and
- 4. Evaluate the plunger lift's economics.

help operators ascertain whether a particular well would benefit from the installation of a plunger lift system. As an example, a well that is 3,000 feet deep, producing to a sales line at 100 psig, has a shut-in pressure of 150 psig and must be vented to the atmosphere daily to expel and average of three barrels per day of water accumulation. This well has sufficient excess shut-in pressure and would have to produce 3,600 scf per day (400 scf/bbl/1000 feet of depth times 3000 feet of depth, times 3 barrels of water per day) to justify use of a plunger lift.

# Exhibit 2: Common Requirements for Plunger Lift Applications

- ★ Well blowdowns and other fluid removal techniques are necessary to maintain production.
- ★ Wells must produce at least 400 scf of gas per barrel of fluid per 1,000 feet of depth.
- ★ Wells with shut-in wellhead pressure that is 1.5 times the sales line pressure.
- $\star$  Wells with scale or paraffin buildup.

#### Step 2: Determine the cost of a plunger lift system.

Costs associated with plunger lifts include capital, start-up and labor expenditures to purchase and install the equipment, as well as ongoing costs to operate and maintain the system. These costs include:

**\*** Capital, installation, and start-up costs. The basic plunger lift installation costs approximately \$1,900 to \$7,800. In contrast, installation of surface pumping equipment, such as a beam lift, costs between \$26,000 and \$52,000. Plunger lift installation costs include installing the piping, valves, controller and power supply on the wellhead and setting the down-hole plunger bumper assembly assuming the well tubing is open and clear. The largest variable in the installation cost is running a wire-line to gauge the tubing (check for internal blockages) and test run a plunger from top to bottom (broaching) to assure that the plunger will move freely up and down the tubing string. Other start-up costs can include a well depth survey, swabbing to

# **Nelson Price Indexes**

In order to account for inflation in equipment and operating & maintenance costs, Nelson-Farrar Quarterly Cost Indexes (available in the first issue of each quarter in the *Oil and Gas Journal*) are used to update costs in the Lessons Learned documents.

The "Refinery Operation Index" is used to revise operating costs while the "Machinery: Oilfield Itemized Refining Cost Index" is used to update equipment costs.

To use these indexes in the future, simply look up the most current Nelson-Farrar index number, divide by the February 2006 Nelson-Farrar index number, and, finally multiply by the appropriate costs in the Lessons Learned.

remove well bore fluids, acidizing to remove mineral scale and clean out perforations, fishing-out debris in the well, and other miscellaneous well clean out operations. These additional start-up costs can range from \$700 to more than \$2,600.

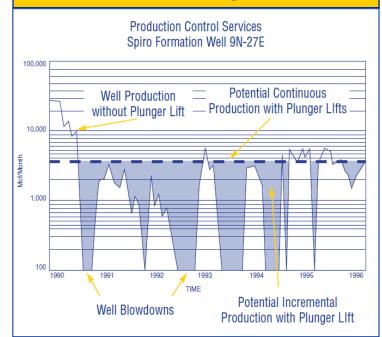
Operators considering a plunger lift installation should note that the system requires continuous tubing string with a constant internal diameter in good condition. The replacement of the tubing string, if required, can add several thousands of dollars more to the cost of installation, depending upon the depth of the well.

★ Operating costs. Plunger lift maintenance requires routine inspection of the lubricator and plunger. Typically, these items need to be replaced every 6 to 12 months, at an approximate cost of \$700 to \$1,300 per year. Other system components are inspected annually.

# Step 3: Estimate the savings of a plunger lift.

The savings associated with a plunger lift include:

- ★ Revenue from increased production;
- ★ Revenue from avoided emissions;
- ★ Additional avoided costs—well treatment costs, reduced electricity costs, workover costs; and
- ★ Salvage value.


#### **Revenue from Increased Production**

The most significant benefit of plunger lift installations is the resulting increase in gas production. During the decision process, the increase in production cannot be measured directly and must be estimated. The methodology for estimating this expected incremental production varies depending on the state of the well. The methodology for continuous or non-declining wells is relatively straightforward. In contrast, the methodology for estimating the incremental production for wells in decline is more complex.

★ Estimating incremental gas production for nondeclining wells. The incremental gas production from a plunger lift installation may be estimated by assuming that the average peak production rate achieved after blowdown is near the potential peak production rate for the well with fluid removed. A well log, like that illustrated in Exhibit 3, can be used to estimate the potential production increase.

In this exhibit, the solid line shows well production rate gradually, then steeply declining as liquids accumulate in the tubing. Production is restored by venting the well to the atmosphere, but then declines again with reaccumulation of liquids. Note that the production rate scale, in thousands of cubic feet per month, is a log scale. The dashed line shows the

# Exhibit 3: Incremental Production for Non-Declining Wells



average peak production rate after liquids unloading. This is assumed to be equal to the potential peak production rate that could be achieved with a plunger lift system, typically at least 80 percent of the peak production rate after blowdown. The shaded area between the potential production (dashed-line) and the actual well production (solidline) represents the estimate of incremental increase in gas production that can be achieved with a plunger lift system.

Estimating incremental production for ★ declining wells or for situations in which the maximum production level after blowdown is not known. Wells that are in decline or operated without periodic blowdowns require more detailed methods for estimating incremental production under plunger lift systems. Plunger lift installations on declining wells, for example, will require generating an improved declining curve resulting from decreased pressure at perforations. Operators should seek the assistance of a reservoir engineer to aid in these determinations (see Appendix).

Once incremental production from a plunger lift installation is estimated, operators can calculate the value of incremental gas and estimate the economics of the plunger lift installation. Exhibit 4 presents an example of potential financial returns at different levels of increase in gas production. It is important to recognize that local costs and conditions may vary. Note also that the example in Exhibit 4 does not take

# Exhibit 4: Example of Estimated Financial Returns for Various Levels of Incremental Gas Production from a Plunger Installation

| Incremental Gas<br>Production (Mcfd)                                                                                                                                                                                           | Payout Time<br>(months) | Internal Rate of<br>Return (%) |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|--|--|--|--|--|
| 3                                                                                                                                                                                                                              | 14                      | 71                             |  |  |  |  |  |
| 5                                                                                                                                                                                                                              | 8                       | 141                            |  |  |  |  |  |
| 10                                                                                                                                                                                                                             | 4                       | 309                            |  |  |  |  |  |
| 15                                                                                                                                                                                                                             | 3                       | 475                            |  |  |  |  |  |
| 20                                                                                                                                                                                                                             | 2                       | 640                            |  |  |  |  |  |
| 25                                                                                                                                                                                                                             | 2                       | 804                            |  |  |  |  |  |
| 30                                                                                                                                                                                                                             | 2                       | 969                            |  |  |  |  |  |
| Assumptions:<br>Value of gas = \$7.00/Mcf.<br>Plunger system cost of \$7,772 including start-up cost.<br>Lease operating expense of \$790/year.<br>Production decline of 6%/year.<br>Source: Production Control Services, Inc. |                         |                                |  |  |  |  |  |

into account other financial benefits of a plunger lift installation project, such as avoided emissions and decreased electricity and chemical treatment costs, which are described later in this Lessons Learned. Consideration of these additional benefits may improve the already excellent financial returns of a plunger lift installation.

## **Revenue from Avoided Emissions**

The amount of natural gas emissions reduced following plunger lift installation will vary greatly from well to well, based on the individual well and reservoir characteristics such as sales line pressure, well shut-in pressure, liquids accumulation rate, and well dimensions (depth, casing diameter, tubing diameter). The most important variable, however, is the normal operating practice of venting wells. Some operators put wells on automatic vent timers, while others manually vent the wells with the operator standing by monitoring the vent, and still others open the well vent and leave, returning in hours or up to days, depending on how long it typically takes the well to clear liquids. Thus, the economic benefits from avoided emissions will also vary considerably. Such wide variability means that some projects will have much shorter payback periods than others. While most plunger lift installations will be justified by increased gas production rates alone, methane emissions reductions can provide an additional revenue stream.

★ Avoided emissions when replacing blowdowns. In wells where plunger lift systems are installed, emissions from blowing down the well can be reduced. Blowdown emissions vary widely in both their frequency and flow rates and are entirely well and reservoir specific. Emissions attributable to blowdown activities have been reported from 1 Mcf per year to thousands of Mcf per year per well. Therefore, the savings attributable to avoided emissions will vary greatly based on the data for the particular well being rehauled.

Revenue from avoided emissions can be calculated by multiplying the market value of the gas by the volume of avoided emissions. If the emissions per well per blowdown have not been measured, they must be estimated. In the example below, the amount of gas that is vented from a low pressure gas well at each blowdown is estimated as 0.5625 times the sustained flow gas rate. This emission factor assumes that the integrated average flow over the blowdown period is 56.25 percent of full well flow. Using this assumption, Exhibit 5 demonstrates that for an unloaded well producing 100 Mcf per day, the gas vented to the atmosphere can be estimated at 2 Mcf per hour of blowdown.

|                                                     | e—Estimate Avoided<br>om Blowdowns                         |
|-----------------------------------------------------|------------------------------------------------------------|
| Avoided Emissions per Hour of Blowdown <sup>a</sup> | = (0.56251 x Sustained Daily Flow<br>Rate) / 24 hrs/day    |
| Avoided Emissions <sup>b</sup>                      | = (0.5625 x 100 Mcfd) / 24<br>= 2 Mcf per hour of blowdown |
| Annual Value of Avoided<br>Emissions <sup>c</sup>   | = 2 Mcf x 12 x \$7.00/Mcf<br>= \$168 per year              |

 <sup>a</sup> Recommended methane emission factor reported in the joint GRI/EPA study, Methane Emissions From the Natural Gas Industry, Volume 7: Blow and Purge Activities (June 1995). The study estimated that at the beginning of a blowdown event, gas flow is restricted by fluids in the well to 25 percent of full flow. By the end of the blowdown event, gas flow is returned to 100 percent. The integrated average flow over the blowdown period is 56.25 percent of full well flow.
 <sup>b</sup> Assuming a sustained daily production rate of 100 Mcfd.

<sup>c</sup> Assuming a sustained daily production rate of 100 micro.
<sup>c</sup> Assuming 1 blowdown per month lasting 1 hour.

This method is simple to use, but anecdotal evidence suggests that it produces estimates of methane emissions avoided that are unrealistically low. For an alternate method for estimating avoided emissions from blowdowns, see the Appendix.

Given the high degree of variability in emissions based on well and reservoir specific characteristics, measurement is the preferred method for determining avoided emissions. Field measurements can provide the data necessary to accurately determine the savings attributable to avoided emissions.

★ Avoided emissions when replacing beam lifts. In cases where plunger lifts replace beam lifts rather than blowdowns, emissions will be avoided due to reduced workovers for mechanical repairs, to remove debris and cleanout perforations, to remove mineral scale and paraffin deposits from the sucker rods. The average emissions associated with workovers have been reported as approximately 2 Mcf per workover; the frequency of workovers has been reported to range from 1 to 15 per year. Due to well-specific characteristics such as flow during workover, duration of workover, and frequency of workover, avoided emissions can vary greatly.

# **Avoided Costs and Additional Benefits**

Avoided costs depend on the type of liquid removal systems currently in place, but can include avoided well treatment, reduced electricity costs, and reduced workover costs. Avoided well treatment costs are applicable when plunger lifts replace beam lifts or other remedial techniques such as blowdown, swabbing, or soaping. Reduced electricity costs, reduced workovers, and recovered salvage value are only applicable if plunger lifts replace beam lifts.

- Avoided well treatment costs. Well treatment include costs chemical treatments, microbial cleanups, and removal of rods and scraping the borehole. Information from shallow 1,500-foot wells show well remediation costs including rod removal and tubing rehabilitation at more than \$14,500 per well. Chemical treatment costs (inhibitors, solvents, dispersants, hot fluids, crystal modifiers, and surfactants) are reported in the literature at a minimum of \$13,200 per well per year. Microbial costs to reduce paraffin have been shown to be \$6,600 per well per year (note that microbial treatments do not address the fluids influx problem). Each of these treatment costs increases as the severity of the scale or paraffin increases, and as the depth of the well increases.
- ★ Reduced electricity costs compared to beam lifts. Reduced electric operating costs further increase the economic return of plunger lifts. No electrical costs are associated with plunger lifts, because most controllers are solar-powered with battery backup. Exhibit 6 presents a range of avoided electricity costs reported by operators who have installed plunger lifts. Assuming 365 days of operation, avoided electricity costs range from \$1,000 to \$7,300 per year.
- ★ Reduced workover costs compared to beam lifts. Workover costs associated with beam lifts have been reported as \$1,300 per day. While typical

Exhibit 6: Electricity Costs<sup>a</sup> Avoided by Using a

Plunger Lift in Place of a Beam Lift Motor Size (BHP) **Operation Cost (\$/day)** 10 3 20 7 30 10 40 13 50 17 20 60 a Electricity cost assumes 50 percent of full load, running 50 percent of the time, with cost of 7.5 cents/ kWh

workovers may take one day, wells more than 8,000 feet deep will require more than one day of workover time. Depending on the well, from 1 to 15 workovers can be required per year. These costs are avoided by using a plunger lift.

★ Recovered salvage value when replacing a beam lift. If the plunger being installed is replacing a beam lift, extra income and a better economic return are realized from the salvage value of the old production hardware. Exhibit 7 shows the salvage value that may be obtained by selling the surplus pumping units. In some cases, salvage sales alone may pay for the installation of plunger lifts.

# Exhibit 7: Salvage Value<sup>a</sup> of Legacy Equipment When Converting from Beam Lift to Plunger Lift Operations

| Capital Savings from Salvaging Equipment                           |                                           |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|
| Size of Pumping Unit (inch-lbs<br>torque)                          | Equipment Salvage Value (\$)              |  |  |  |  |  |  |  |
| 114,000                                                            | 12,300                                    |  |  |  |  |  |  |  |
| 160,000                                                            | 16,800                                    |  |  |  |  |  |  |  |
| 228,000                                                            | 21,300                                    |  |  |  |  |  |  |  |
| 320,000                                                            | 27,200                                    |  |  |  |  |  |  |  |
| 456,000                                                            | 34,300                                    |  |  |  |  |  |  |  |
| 640,000 41,500                                                     |                                           |  |  |  |  |  |  |  |
| <sup>a</sup> Salvage costs include low estimate sale value of pump | ing unit, electric motor, and rod string. |  |  |  |  |  |  |  |

# Step 4: Evaluate the plunger lift's economics.

A basic cash flow analysis can be used to compare the costs and benefits of a plunger lift with other liquid removal options. Exhibit 8 shows a summary of the costs associated with each option.

★ Economics of Replacing a Beam Lift with a Plunger Lift. In Exhibit 9 the data from Exhibit 8 is used to model a hypothetical 100 Mcfd well and to evaluate the economics of plunger lift installation. The increase in production is 20 Mcf per day, yielding an annual increase in production of 7,300 Mcf. Assuming one workover per year prior to installation, the switch to a plunger lift also provides 2 Mcf of avoided emissions per year. The project profits

# Methane Content of Natural Gas

The average methane content of natural gas varies by natural gas industry sector. The Natural Gas STAR Program assumes the following methane content of natural gas when estimating methane savings for Partner Reported Opportunities.

| Production                    | 79 % |
|-------------------------------|------|
| Processing                    | 87 % |
| Transmission and Distribution | 94 % |

greatly from the salvage value of the surplus beam lift equipment, yielding an immediate payback. Even if the salvage value is not recovered, the project may yield payback after only a few months depending on the well's productivity.

★ Economics of Avoiding Blowdown with a Plunger Lift. Exhibit 10 uses data from Exhibit 8 to evaluate the economics of a hypothetical 100 Mcfd well at which a plunger lift is installed to replace blowdown as the method for removing liquid from the well. Assuming the increased production is 20 Mcf per day, the annual increase in production is 7,300 Mcf. In addition, there will be savings from avoided emissions during blowdown. Assuming 12 one-hour blowdowns per year, the avoided emissions are 24 Mcf per year.

| Plun                         | Plunger Lift vs. Other Options |                          |                                    |  |  |  |  |
|------------------------------|--------------------------------|--------------------------|------------------------------------|--|--|--|--|
| Cost Category                | Plunger Lift                   | Traditional<br>Beam Lift | Remedial<br>Treatment <sup>a</sup> |  |  |  |  |
| Capital and<br>Startup Costs | \$1,943 -<br>\$7,772           | \$25,907 -<br>\$51,813   | \$0                                |  |  |  |  |
| Implementation<br>Costs:     |                                |                          |                                    |  |  |  |  |
| Maintenance <sup>b</sup>     | \$1,300/yr                     | \$1,300 -<br>\$19,500/yr | \$0                                |  |  |  |  |
| Well Treatment <sup>c</sup>  | \$0                            | \$13,200+                | \$13,200+                          |  |  |  |  |
| Electrical <sup>d</sup>      | \$0                            | \$1,000 -<br>\$7,300/yr  | \$0                                |  |  |  |  |
| Salvage                      | \$0                            | (\$12,000 -<br>\$41,500) | \$0                                |  |  |  |  |

Exhibit 8: Cost Comparison of

a Includes soaping, swabbing, and blowing down.
 b For traditional beam lift, maintenance costs include workovers and assume 1 to 15 workovers per

year at \$1,300 per workover.

c Costs may vary depending on the nature of the liquid.

<sup>d</sup> Electricity costs for plunger lift: assume the lift is solar and well powered.

|                                                                                 | Year 0    | Year 1    | Year 2    | Year 3     | Year 4                        | Year 5    |
|---------------------------------------------------------------------------------|-----------|-----------|-----------|------------|-------------------------------|-----------|
| Value of Gas from Increased<br>Production and Avoided<br>Emissions <sup>a</sup> |           | \$51,114  | \$51,114  | \$51,114   | \$51,114                      | \$51,114  |
| Plunger Lift Equipment and<br>Setup Cost                                        | (\$7,772) |           |           |            |                               |           |
| Plunger Lift Maintenance                                                        |           | (\$1,300) | (\$1,300) | (\$1,300)  | (\$1,300)                     | (\$1,300) |
| Electric Cost per Year                                                          | \$0       | \$0       | \$0       | \$0        | \$0                           | \$0       |
| Salvage Value Beam Lift<br>Equipment                                            | \$21,300  |           |           |            |                               |           |
| Avoided Beam Lift<br>Maintenance (1 workover/yr)                                |           | \$1,300   | \$1,300   | \$1,300    | \$1,300                       | \$1,300   |
| Avoided Beam Lift Electricity<br>Costs (10HP motor)                             |           | \$1,000   | \$1,000   | \$1,000    | \$1,000                       | \$1,000   |
| Avoided Chemical Treatments                                                     |           | \$13,200  | \$13,200  | \$13,200   | \$13,200                      | \$13,200  |
| Net Cash Inflow                                                                 | \$13,528  | \$65,314  | \$65,314  | \$65,314   | \$65,314                      | \$65,314  |
| 1                                                                               |           | 1         | 11        | NPV (Net I | Present Value) <sup>b</sup> = | \$261,119 |
|                                                                                 |           |           |           |            | Payback Period =              | Immediate |

| Exh                                                                             | ibit 10: Econo | omic Analysis | of Plunger Lif | t Replacing Bl | owdown                       |           |
|---------------------------------------------------------------------------------|----------------|---------------|----------------|----------------|------------------------------|-----------|
|                                                                                 | Year 0         | Year 1        | Year 2         | Year 3         | Year 4                       | Year 5    |
| Value of Gas from Increased<br>Production and Avoided<br>Emissions <sup>a</sup> |                | \$51,268      | \$51,268       | \$51,268       | \$51,268                     | \$51,268  |
| Plunger Lift Equipment and<br>Setup Cost                                        | \$(7,772)      |               |                |                |                              |           |
| Plunger Lift Maintenance                                                        |                | (\$1,300)     | (\$1,300)      | (\$1,300)      | (\$1,300)                    | (\$1,300) |
| Electric Cost per Year                                                          | \$0            | \$0           | \$0            | \$0            | \$0                          | \$0       |
| Avoided Chemical Treatments                                                     |                | \$13,200      | \$13,200       | \$13,200       | \$13,200                     | \$13,200  |
| Net Cash Inflow                                                                 | (\$7,772)      | \$63,168      | \$63,168       | \$63,168       | \$63,168                     | \$63,168  |
|                                                                                 |                |               |                | NPV (Net P     | resent Value) <sup>b</sup> = | \$231,684 |
|                                                                                 |                |               |                | F              | Payback Period =             | 2 months  |

<sup>a</sup> Gas valued at \$7.00 per Mcf for 7,300 Mcf due to increased production and 24 Mcf from avoided emissions per event (based on 12 blowdowns per year and 2 Mcf per blowdown). <sup>b</sup> Net present value based on 10 percent discount rate over 5 years. When assessing options for installing plunger lift systems on gas wells, natural gas price may influence the decision making process. Exhibit 11 shows an economic analysis of installing a plunger lift system rather than blowing down a well to the atmosphere to lift accumulated fluid at different natural gas prices.

| Exhibit 11: Gas Price Impact on<br>Economic Analysis |           |           |           |           |              |  |
|------------------------------------------------------|-----------|-----------|-----------|-----------|--------------|--|
|                                                      | \$3/Mcf   | \$5/Mcf   | \$7/Mcf   | \$8/Mcf   | \$10/<br>Mcf |  |
| Value of<br>Gas Saved                                | \$21,972  | \$36,620  | \$51,268  | \$58,592  | \$73,240     |  |
| Payback<br>Period<br>(months)                        | 3         | 2         | 2         | 2         | 2            |  |
| Internal<br>Rate of<br>Return<br>(IRR)               | 436%      | 624%      | 813%      | 907%      | 1095%        |  |
| Net<br>Present<br>Value<br>( <i>i</i> =10%)          | \$120,630 | \$176,157 | \$231,684 | \$259,448 | \$314,976    |  |

# **Case Studies**

# BP (formerly Amoco) Midland Farm Field

Amoco Corporation, a Natural Gas STAR charter Partner (now merged with BP), documented its success in replacing beam lift, rod pump well production equipment with plunger lifts at its Midland Farm field. Prior to installing plunger lift systems, Amoco used beam lift installations with fiberglass rod strings. The lift equipment was primarily 640 inch-lb pumping units powered by 60 HP motors. Operations personnel noted that wells at the field were having problems with paraffin plating the well bore and sucker rods, which blocked fluid flow and interfered with fiberglass sucker rod movement. Plunger lifts were seen as a possible solution to inhibit the accumulation of paraffin downhole.

Amoco began its plunger lift replacement program with a single-well pilot project. Based on the success of this initial effort, Amoco then expanded the replacement process to the entire field. As a result of the success in the Midland Farm field, Amoco installed 190 plunger lift units at its Denver City and Sundown, Texas locations, replacing other beam lift applications.

## **Costs and Benefits**

Amoco estimated that plunger lift system installation costs -including plunger equipment and tubing conversion costsaveraged \$13,000 per well (initial pilot costs were higher than average during the learning phase, and the cost of tubing conversion is included).

Amoco then calculated savings resulting from avoided costs in three areas—electricity, workover, and chemical treatment. Overall, Amoco estimated that the avoided costs of electricity, workover, and paraffin control averaged \$24,000 per well per year.

- ★ Electricity. Cost savings were estimated based on 50 percent run times. Using the costs from Exhibit 6, the estimated electrical cost savings were estimated to be \$20 per day.
- ★ Workover. On average, Amoco had one workover per year per well to fix rod parts. With the old beam lift systems, the cost of this operation was \$4,000, averaging about \$11 per day.
- ★ Chemical treatment. The biggest savings were realized from avoided chemical treatment. Amoco was able to save the approximately \$13,000 per well per year for paraffin control because the plunger operation removed paraffin accumulation in the tubing.

# Increased Gas Production and Revenue

For the initial plunger lift installation, Amoco realized an increase in gas production of more than 400 Mcf per day. Upon expansion of the plunger lift installation to the entire field, the company realized notable success in many wells-although some showed little or no production increase during the 30 day evaluation period. Total production increase (including both incremental production and non-emitted gas) across all wells where plunger lifts were installed was 1,348 Mcf per day. The average annual gas savings, which assumes a 6 percent production decline, was 11,274 Mcf per well or approximately \$78,918 per well at 2006 prices. Exhibit 12 and Exhibit 13 summarize the initial results and first year economics of Amoco's Midland Farm plunger lift installation. In addition to the gas savings and cost savings from the plunger lift installations, Amoco realized a one-time gain from the sale of surplus pumping units

| <sup>a</sup> Well # | Produc     | tion Before Plun | ger Lift    | Production 30 Days After Installation |           |             |
|---------------------|------------|------------------|-------------|---------------------------------------|-----------|-------------|
| wen #               | Gas (Mcfd) | Oil (Bpd)        | Water (Bpd) | Gas (Mcfd)                            | Oil (Bpd) | Water (Bpd) |
| 1                   | 233        | 6                | 1           | 676                                   | 5         | 1           |
| 2                   | 280        | 15               | 1           | 345                                   | 15        | 1           |
| 3                   | 240        | 13               | 2           | 531                                   | 33        | 11          |
| 4                   | 180        | 12               | 2           | 180                                   | 16        | 3           |
| 5                   | 250        | 5                | 2           | 500                                   | 5         | 2           |
| 6                   | 95         | 8                | 2           | 75                                    | 12        | 0           |
| 7                   | 125        | 13               | 1           | 125                                   | 14        | 0           |
| 8                   | 55         | 6                | 1           | 55                                    | 13        | 2           |
| 9                   | 120        | 45               | 6           | 175                                   | 40        | 0           |
| 10                  | 160        | 16               | 3           | 334                                   | 17        | 3           |
| 11                  | 180        | 7                | 12          | 80                                    | 6         | 6           |
| 12                  | 215        | 15               | 4           | 388                                   | 21        | 2           |
| 13                  | 122        | 8                | 8           | 124                                   | 12        | 7           |
| 14                  | 88         | 5                | 10          | 23                                    | 9         | 1           |
| Avg.                | 167        | 12               | 4           | 258                                   | 16        | 3           |

Source: World Oil, November, 1995.

| Average<br>Annual Gas<br>Savings <sup>a</sup><br>(Mcf/year) | Value of Gas<br>Saved per<br>Year <sup>b</sup>                                                                                                                                                             | It 13: BP Eco<br>Plunger Lift<br>Installation<br>Cost per Well | Avoided Rod<br>Workover<br>Cost per Well<br>per Year | Avoided<br>Chemical<br>Treatment<br>per Well per<br>Year | Avoided<br>Electrical<br>Costs per<br>Well per Day | Average<br>Savings per<br>Well <sup>c</sup> | Additional<br>Salvage<br>Value of<br>Beam Lift<br>per Well |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|---------------------------------------------|------------------------------------------------------------|
| 11,274                                                      | \$78,918                                                                                                                                                                                                   | \$13,000                                                       | \$4,000                                              | \$13,000                                                 | \$20                                               | \$90,200                                    | \$41,500                                                   |
| <sup>b</sup> Gas valued at \$7                              | <sup>a</sup> Average initial gas production = 1,348 Mcfd. Assumes 6 percent annual production decline.<br><sup>c</sup> Gas valued at \$7.00 per Mcf.<br><sup>c</sup> Value saved is averaged over 14 wells |                                                                |                                                      |                                                          |                                                    |                                             |                                                            |

<sup>c</sup> Value saved is averaged over 14 wells.

and motors, resulting in additional revenue of \$41,500 per installation.

# Analysis

A summary of the costs and benefits associated with Amoco's plunger lift installation program is provided below in Exhibit 13. For the first year of operation, the company realized an average annual savings of approximately \$90,200 per well at 2006 prices. In addition the company realized approximately \$41,500 per well from salvage of the beam lift equipment at 2006 costs.

# ExxonMobil Big Piney Field

At Big Piney Field in Wyoming, Natural Gas STAR charter Partner Mobil Oil Corporation (now merged with Exxon) has installed plunger lift systems at 19 wells. The first two plunger lifts were installed in 1995, and the remaining wells were equipped in 1997. As a result of these installations, Mobil reduced overall blowdown gas emissions by 12,164 Mcf per year. In addition to the methane emission reduction, the plunger lift system reduced the venting of ethane (6 percent by volume), C3 hydrocarbons + VOCs (5 percent), and inerts (2 percent). Exhibit 14 shows the emission reductions for each well after plunger lift installation.

# **Installation Tips**

The following suggestions can help ensure trouble-free installation of a plunger lift system:

- ★ Do not use a completion packer, because it limits the amount of gas production per plunger trip. Without a completion packer, the entire annular void space is available to create a large compressed gas supply. The greater the volume of gas, the larger the volume of water that can be lifted.
- ★ Check for tubing obstructions with a gauge ring before installation. Tubing obstructions hinder plunger movement and may require replacement of production tubing.
- ★ Capture the plunger after the first trip. Inspection of the plunger for the presence of any damage, sand, or scale will help prevent any subsequent plunger lift operational difficulties, permitting immediate operational repair while the crew and installation equipment are mobilized.

# **Lessons Learned**

Plunger lift systems offer several advantages over other remedial treatments for removing reservoir fluids from wells: increased gas sales, increased well life, decreased well maintenance, and decreased methane emissions. The following should be considered when installing a plunger lift system:

- ★ Plunger lift installations can offer quick paybacks and high return on investments whether replacing a beam lift or blowdowns.
- ★ Plunger lift installations can greatly reduce the amount of remedial work needed throughout the

| E      | Exhibit 14: Plunger Lift Program<br>at Big Piney, Wyoming |                                                     |                                          |  |  |  |
|--------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------|--|--|--|
| Well # | Pre-Plunger<br>Emission<br>Volume<br>(Mcf/yr/well)        | Post-Plunger<br>Emission<br>Volume<br>(Mcf/yr/well) | Annualized<br>Reduction<br>(Mcf/yr/well) |  |  |  |
| 1      | 1,456                                                     | 0                                                   | 1,456                                    |  |  |  |
| 2      | 581                                                       | 0                                                   | 581                                      |  |  |  |
| 3      | 1,959                                                     | 318                                                 | 1,641                                    |  |  |  |
| 4      | 924                                                       | 0                                                   | 924                                      |  |  |  |
| 5      | 105                                                       | 24                                                  | 81                                       |  |  |  |
| 6      | 263                                                       | 95                                                  | 168                                      |  |  |  |
| 7      | 713                                                       | 80                                                  | 633                                      |  |  |  |
| 8      | 753                                                       | 0                                                   | 753                                      |  |  |  |
| 9      | 333                                                       | 0                                                   | 333                                      |  |  |  |
| 10     | 765                                                       | 217                                                 | 548                                      |  |  |  |
| 11     | 1,442                                                     | 129                                                 | 1,313                                    |  |  |  |
| 12     | 1,175                                                     | 991                                                 | 184                                      |  |  |  |
| 13     | 694                                                       | 215                                                 | 479                                      |  |  |  |
| 14     | 1,416                                                     | 1,259                                               | 157                                      |  |  |  |
| 15     | 1,132                                                     | 708                                                 | 424                                      |  |  |  |
| 16     | 1,940                                                     | 561                                                 | 1,379                                    |  |  |  |
| 17     | 731                                                       | 461                                                 | 270                                      |  |  |  |
| 18     | 246                                                       | 0                                                   | 246                                      |  |  |  |
| 19     | 594                                                       | 0                                                   | 594                                      |  |  |  |
| Totals | 17,222                                                    | 5,058                                               | 12,164                                   |  |  |  |

lifetime of the well and the amount of methane vented to the atmosphere.

- ★ An economic analysis of plunger lift installation should include the incremental boost in productivity as well as the associated extension in well life.
- ★ Even when the well pressure declines below that necessary to lift the plunger and liquids against sales line back pressure, a plunger is more efficient in removing liquids with the well vented to the atmosphere than simply blowing the well without a plunger lift.
- ★ Include methane emission reductions from installing plunger lift systems in annual reports submitted as part of the Natural Gas STAR Program.

# References

- Abercrombie, B. "Plunger Lift" in *The Technology of Artificial Lift Methods*, Vol. 2b, by K.E. Brown. PennWell Publishing Co., 1980 (pp. 483-518).
- Beauregard, E., and P.L. Ferguson. *Introduction to Plunger Lift: Applications, Advantages and Limitations.* SPE Paper 21290 presented at the Rocky Mountain Regional Meeting of the Society of Petroleum Engineers, Billings, MT, May 1982.
- Beeson, C.M., D.G. Knox, and J.H. Stoddard. *Plunger Lift Correlation Equations and Nomographs.* Paper 501-G presented at AIME Petroleum Branch Meeting, New Orleans, LA, October 1995.
- Bracy. C.L., and S.J. Morrow. An Economic Assessment of Artificial Lift in Low Pressure, Tight Gas Sands in Ochiltree County, Texas. SPE Paper 27932 presented at the SPE Mid-Continent Gas Symposium, Amarillo, TX, May 1994.
- Christian, J., Lea, J.F., and Bishop, B. *Plunger Lift Comes of Age.* World Oil, November 1995.
- EVI Weatherford, personal contact.
- Ferguson, Paul L., and Beauregard, E. *Will Plunger Lift Work in My Well.* Southwestern Petroleum Short Course, (pp. 301-310), 1988.
- Fishback II, J. William, Exxon-Mobil, personal contact.
- Foss, D.L., and R.B. Gaul. *Plunger-Lift Performance Criteria with Operating Experience—Ventura Avenue Field*. Drilling and Production Practice. American Petroleum Institute, 1965 (pp. 124-140).

Gregg, David, Multi Products Company, personal contact.

- GRI—EPA, Research and Development, *Methane Emissions from the Natural Gas Industry, Volume 2: Technical Report.* Prepared for the Energy Information Administration, GRI 94/0257.1, June 1996.
- GRI—EPA, Research and Development, *Methane Emissions from the Natural Gas Industry, Volume 7: Blow and Purge Activities.* Prepared for the Energy Information Administration, GRI 94/0257.24, June 1996.
- Lea, J.F. *Dynamic Analysis of Plunger Lift Operations*. SPE Paper 10253 presented at the 56th Annual Fall Technical Conference and Exhibition, San Antonio, TX, October 1981.
- McAllister, E.W. *Pipe Line Rules of Thumb Handbook*, Fourth Edition. Gulf Publishing Company, 1998 (pp. 282-284).
- O'Connell T., P. Sinner, and W.R. Guice. *Flexible Plungers Resolve CT, Slim Hole Problems*. American Oil and Gas Reporter, Vol. 40 No. 1 (pp 82-85).
- Paugh, Len, Lomak Petroleum, personal contact.
- Phillips, Dan and Listik, Scott. *How to Optimize Production from Plunger Lift Systems*. World Oil, May 1998.

Plunger Lift Systems, Inc., personal contact.

Schneider, T., S., and Mackey, V. *Plunger Lift Benefits Bottom Line for a Southeast New Mexico Operator*. SPE Paper 59705 presented at the Permian Basin Oil land Gas Recovery Conference, Midland, TX, March 2000.

Smith, Reid, BP, personal contact.

Tingley, Kevin, U.S. EPA Natural Gas STAR Program, personal contact.

Walls, Brad, Resource Production Company, personal contact.

Well Master Corporation, personal contact.

Wellco Service Corporation, personal contact.

# Appendix

#### Estimating incremental production for declining wells.

From Dake's *Fundamentals of Reservoir Engineering* (1982) we can use the following equation to calculate the increase in downhole flow for reduced pressure that may be seen when using a plunger lift. A semi-steady state inflow equation can be expressed as:

m(pavg) - m(pwf) = [(1422 × Q × T)/(k × h)] × [ln(r<sub>e</sub>/r<sub>w</sub>)-3/4+S)] × (8.15)

Where,

 $m(p_{avg})$  = real gas pseudo pressure average

 $m(p_{wf})$  = real gas pseudo pressure well flowing

- Q = gas production rate
- T = absolute temperature
- k = permeability
- h = formation height
- r<sub>e</sub> = external boundary radius
- $r_w$  = wellbore radius
- S = mechanical skin factor

After the reservoir parameters are gathered, this equation can be solved for Q for the retarded flow with fluids in the hole (current conditions and current decline curve), and Q for no fluids in the hole (plunger lift active and improved decline curve). This is a guideline, and operators are reminded to use a reservoir engineer to aid in this determination.

# Alternate technique for calculating avoided emissions when replacing blowdowns.

A conservative estimate of well venting volumes can be made using the following equation:

Annual Vent Volume, Mscf/yr =  $(0.37 \times 10^{-6}) \times (Casing Diameter)^2 \times Well Depth \times Shut-in Pressure \times Annual Vents$ 

Where casing diameter is in inches, well depth is in feet

and shut-in pressure is in psig. Exhibit A1 shows an example calculation.

| Exhibit A1: Example—Estimate Avoided<br>Emissions from Blowdowns                                          |                     |  |  |
|-----------------------------------------------------------------------------------------------------------|---------------------|--|--|
| Casing Diameter                                                                                           | 8 inches            |  |  |
| Well Depth                                                                                                | 10,000 feet         |  |  |
| Shut-in Pressure                                                                                          | 214.7 psig          |  |  |
| Annual Vents                                                                                              | 52 (weekly venting) |  |  |
| Annual Vent Volume = (0.37 x 10 <sup>-6</sup> ) x 8 <sup>2</sup> x 10,000 x 214.7 x 52 = 2,644<br>Mscf/yr |                     |  |  |

This is the minimum volume of gas that would be vented to atmospheric pressure from a well that has stopped flowing to the sales line because a head of liquid has accumulated in the tubing equal to the pressure difference between the sales line pressure and well shut-in pressure. If the well shut-in pressure is more than 1.5 times the sales line pressure, as required for a plunger lift installation in Exhibit 2, then the volume of gas in the well casing at shut-in pressure should be minimally sufficient to push the liquid in the tubing to the surface in slug-flow when back-pressure is reduced to zero psig. Partners can estimate the minimum time to vent the well by using this volume and the Weymouth gas-flow formula (worked out for common pipe diameters, lengths and pressure drops in Tables 3, 4 and 5 in Pipeline Rules of Thumb Handbook, Fourth Edition, pages 283 and 284). If the Partner's practice and experience is to vent the wells a longer time than calculated by these methods, the conservative Annual Vent Volume can be increased by a simple ratio of the actual vent times and the minimum vent time calculated using the Weymouth equation.



United States Environmental Protection Agency Air and Radiation (6202J) 1200 Pennsylvania Ave., NW Washington, DC 20460

October 2006

EPA provides the suggested methane emissions estimating methods contained in this document as a tool to develop basic methane emissions estimates only. As regulatory reporting demands a higher-level of accuracy, the methane emission estimating methods and terminology contained in this document may not conform to the Greenhouse Gas Reporting Rule, 40 CFR Part 98, Subpart W methods or those in other EPA regulations.

# EDF-WZI-APPENDIX XIII



## Connect Casing to Vapor Recovery Unit

#### Technology/Practice Overview

#### Description

Crude oil and natural gas wells that produce through tubing may collect methane and other gases in the annular space between the casing and tubing. This gas, referred to as casinghead gas, is often vented directly to the atmosphere. One way to reduce methane emissions is to connect the casinghead vent to an existing vapor recovery unit (VRU).

VRUs are finding wider application at production sites with multiple oil or condensate storage tanks that have significant vapor emissions. This practice takes advantage of the similarities in gas pressure, composition, and rates between tank emissions and casinghead gas.

#### **Operating Requirements**

Pressure regulators would be necessary if low pressure casinghead gas is combined with higher pressure sources (e.g., dehydrator flash tank separator) at a VRU suction. Only small diameter piping is required to join a casinghead vent to the VRU suction.

#### Applicability

This option is applicable at wells producing through tubing with packerless completions.

#### **Methane Emissions**

Casinghead gas vents vary widely in quantity and methane content. One Partner reported an annual average casinghead gas methane recovery of 7,300 Mcf per year over a five-year period.

| Compressors/Engines                  |
|--------------------------------------|
| Dehydrators                          |
| Directed Inspection &<br>Maintenance |
| Pipelines                            |
| Pneumatics/Controls                  |
| Tanks                                |
| Valves                               |
| Wells                                |
| Other                                |
|                                      |

#### Applicable Sector(s)

- ProductionProcessingTransmission
- Distribution

#### **Other Related PROs:**

Installing Vapor Recovery Units on Storage Tanks, Lessons Learned

Install Compressors to Capture Casinghead Gas, PRO No. 702

| Methane Savings                                                 |                              |                                    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |  |  |  |  |
|-----------------------------------------------------------------|------------------------------|------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|--|--|
| Estimated annual methane emission reductions 7,300 Mcf per well |                              |                                    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |  |  |  |  |
| Economic Evaluation                                             |                              |                                    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |  |  |  |  |
| Estimated<br>Gas Price                                          | Annual<br>Methane<br>Savings | Value of<br>Annual<br>Gas Savings* | Estimated<br>Implementation<br>Cost | Incremental<br>Operating Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Payback<br>(months) |  |  |  |  |  |  |
| \$7.00/Mcf                                                      | 7,300 Mcf                    | \$54,400                           | \$4,300                             | \$3,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 Months            |  |  |  |  |  |  |
| \$5.00/Mcf                                                      | 7,300 Mcf                    | \$38,800                           | \$4,300                             | \$3,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 Months            |  |  |  |  |  |  |
| \$3.00/Mcf                                                      | 7,300 Mcf                    | \$23,300                           | \$4,300                             | \$3,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 Months            |  |  |  |  |  |  |
| * 14/1 1                                                        |                              | 1 - 1 t                            |                                     | and the sector of the sector o |                     |  |  |  |  |  |  |

Economic and Environmental Benefits

\* Whole gas savings are calculated using a conversion factor of 94% methane in pipeline quality natural gas.

#### **Additional Benefits**

- Recovery of valuable product
- Fewer hydrocarbon emissions

## Connect Casing to Vapor Recovery Unit (Cont'd)

#### **Economic Analysis**

#### Basis for Costs and Emissions Savings

Methane emission reductions of 7,300 Mcf per year are the Partner savings from connecting one well to an existing VRU.

The costs (operating and implementation) are based on Partner experiences. At  $7.5\phi$  per kWh, the Partner reported gas recovery would increase electricity costs by \$3,400 per year. Another Partner reported implementation costs of \$4,300.

#### Discussion

This technology can pay back quickly. Revenue from gas recovery will pay back the piping cost and the incremental electrical power required by the VRU to inject the gas into a 100 psig system.

#### Methane Content of Natural Gas

The average methane content of natural gas varies by natural gas industry sector. The Natural Gas STAR Program assumes the following methane content of natural gas when estimating methane savings for Partner Reported Opportunities.

| Production                    | 79 % |
|-------------------------------|------|
| Processing                    | 87 % |
| Transmission and Distribution | 94 % |

## EDF-WZI-APPENDIX XIV

In recent years, the natural gas industry has developed

more technologically challenging unconventional gas

reserves such as tight sands, shale and coalbed methane. Completion of new wells and re-working (workover) of

existing wells in these tight formations typically involve

hydraulic fracturing of the reservoir to increase well

productivity. Industry reports that hydraulic fracturing is beginning to be performed in some conventional gas

reservoirs as well. Removing the water and excess

proppant (generally sand) during completion and well

clean-up may result in significant releases of natural gas

and therefore methane emissions to the atmosphere. The U.S. Inventory of Greenhouse Gas Emissions and Sinks

1990 - 2009 estimates that 68 billion cubic feet (Bcf) of

methane are vented or flared annually from

Reduced emissions completions (RECs) - also known as reduced flaring completions or green completions - is a

term used to describe an alternate practice that captures

gas produced during well completions and well workovers

brought on site to separate the gas from the solids and

unconventional completions and workovers.

following hydraulic fracturing.

**Executive Summary** 

## **Reduced Emissions Completions for Hydraulically Fractured Natural Gas Wells**

Portable equipment is

### liquids produced during the high-rate flowback, and produce gas that can be delivered into the sales pipeline. RECs help to reduce methane, VOC, and HAP emissions during well cleanup and can eliminate or significantly reduce the need for flaring.

4L PROTE

RECs have become a popular practice among Natural Gas STAR production partners. A total of thirteen different partners have reported performing reduced emissions completions in their operations. RECs have become a major source of methane emission reductions since 2000. Between 2000 and 2009 emissions reductions from RECs (as reported to Natural Gas STAR) have increased from 200 MMcf (million cubic feet) to over 218,000 MMcf. Capturing an additional 218,000 MMcf represents additional revenue from natural gas sales of over \$1.5 billion from 2000 to 2009 (assuming \$7/Mcf gas prices).

### **Technology Background**

High demand and higher prices for natural gas in the U.S. have resulted in increased drilling of new wells in more more technologically challenging expensive and unconventional gas reservoirs, including those in low porosity (tight) formations. These same high demands and

|                                     |                                                        | Economic                                                                                                                              | and Envi                                                                                                                                                                            | ronmenta                                                                                                                                                                                                                                                                                                                                                          | l Benefits                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume of<br>Natural Gas            | Value of N                                             | latural Gas Sa                                                                                                                        | avings (\$)                                                                                                                                                                         | Additional<br>Savings                                                                                                                                                                                                                                                                                                                                             | Implemen-<br>tation Cost<br>(\$)                                                                                                                                                                                                                                                                                                                                                                             | Other                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 | ayback (Months)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Natural Gas Savings<br>Losses (Mcf) | \$3 per Mcf                                            | \$5 per Mcf                                                                                                                           | \$7 per Mcf                                                                                                                                                                         | (\$)                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                              | Costs (\$)                                                                                                                                                                                                                                                                                                                                                                                   | \$3 per<br>Mcf                                                                                                                                                                                                                                                                                                                                                                                  | \$5 per<br>Mcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$7 per<br>Mcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 270,000 per<br>year                 | \$810,000<br>per year                                  | \$1,350,000<br>per year                                                                                                               | \$1,890,000<br>per year                                                                                                                                                             | \$175,000<br>per year                                                                                                                                                                                                                                                                                                                                             | \$500,000                                                                                                                                                                                                                                                                                                                                                                                                    | \$121,250<br>per year                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10,800 per completion               | \$32,400 per completion                                | \$54,000 per completion                                                                                                               | \$75,600 per completion                                                                                                                                                             | \$6,930 per completion                                                                                                                                                                                                                                                                                                                                            | \$32,400                                                                                                                                                                                                                                                                                                                                                                                                     | \$600 per<br>completion                                                                                                                                                                                                                                                                                                                                                                      | Imme-<br>diate                                                                                                                                                                                                                                                                                                                                                                                  | Imme-<br>diate                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Imme-<br>diate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                     | Natural Gas<br>Savings<br>(Mcf)<br>270,000 per<br>year | Natural Gas<br>Savings<br>(Mcf)Value of r270,000 per<br>year\$3 per Mcf270,000 per<br>year\$810,000<br>per year10,800 per\$32,400 per | Volume of<br>Natural Gas<br>Savings<br>(Mcf)Value of Natural Gas Sa<br>\$3 per Mcf270,000 per<br>year\$810,000<br>per year\$1,350,000<br>per year10,800 per\$32,400 per\$54,000 per | Volume of<br>Natural Gas<br>Savings<br>(Mcf)         Value of Value al Savings (\$)           \$3 per Mcf         \$5 per Mcf         \$7 per Mcf           270,000 per<br>year         \$810,000<br>per year         \$1,350,000<br>per year         \$1,890,000<br>per year           10,800 per         \$32,400 per         \$54,000 per         \$75,600 per | Volume of<br>Natural Gas<br>Savings<br>(Mcf)         Value of Natural Gas Savings (\$)<br>\$3 per Mcf         Additional<br>Savings<br>(\$)           270,000 per<br>year         \$3 per Mcf         \$5 per Mcf         \$7 per Mcf         \$1,890,000<br>per year         \$1,75,000<br>per year           10,800 per         \$32,400 per         \$54,000 per         \$75,600 per         \$6,930 per | Natural Gas<br>Savings<br>(Mcf)Value of Natural Gas Savings (\$)Additional<br>Savings<br>(\$)Implemen-<br>tation Cost<br>(\$)270,000 per<br>year\$810,000<br>per year\$1,350,000<br>per year\$1,890,000<br>per year\$175,000<br>per year\$1500,000<br>\$500,00010,800 per\$32,400 per<br>\$32,400 per\$54,000 per<br>\$54,000 per\$75,600 per<br>\$75,600 per\$6,930 per<br>\$32,400\$32,400 | Volume of<br>Natural Gas<br>Savings<br>(Mcf)Value of Natural Gas Savings (\$)<br>\$3 per McfAdditional<br>\$7 per McfImplemen-<br>tation Cost (\$)Other<br>Costs (\$)270,000 per<br>year\$810,000<br>per year\$1,350,000<br>per year\$1,890,000<br>per year\$175,000<br>per year\$121,250<br>per year10,800 per\$32,400 per\$54,000 per<br>\$54,000 per\$75,600 per\$6,930 per\$32,400\$600 per | Volume of<br>Natural Gas<br>Savings<br>(Mcf)Value of Natural Gas Savings (\$)<br>\$3 per McfAdditional<br>\$7 per McfImplemen-<br>tation Cost<br>(\$)Other<br>Costs (\$)Pay<br>\$3 per<br>Mcf270,000 per<br>year\$810,000<br>per year\$1,350,000<br>per year\$1,890,000<br>per year\$175,000<br>per year\$10,000<br>per year\$1,21,250<br>per year\$600 per610,800 per\$32,400 per\$54,000 per<br>\$54,000 per\$75,600 per<br>\$75,600 per\$6,930 per<br>\$6,930 per\$32,400\$600 perImme- | Volume of<br>Natural Gas<br>Savings<br>(Mcf)Value of Natural Gas Savings (\$)<br>$$3 per Mcf$ Additional<br>$$5 per Mcf$ Implemen-<br>tation Cost<br>(\$)Other<br>Costs (\$)Payback (Mor<br>$$3 per Mcf$ 270,000 per<br>year\$810,000<br>per year\$1,350,000<br>per year\$1,890,000<br>per year\$175,000<br>per year\$10,800 per\$1,350,000<br>per year\$1,890,000<br>per year\$175,000<br>per year\$121,250<br>per year6410,800 per\$32,400 per\$54,000 per<br>\$54,000 per\$75,600 per<br>\$75,600 per\$6,930 per<br>\$6,930 per\$32,400<br>\$600 perImme-<br>Imme- |

suming 9 days per completion, 1,200 Mcf gas

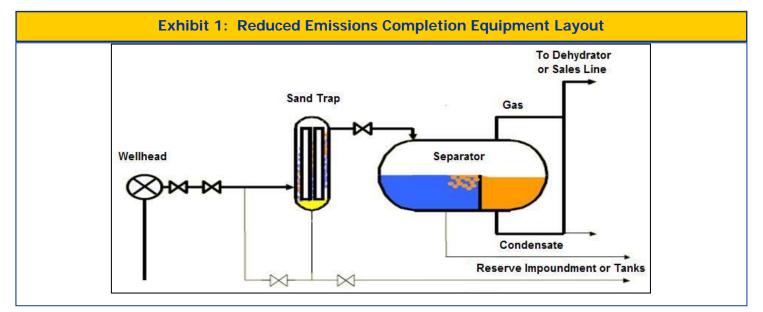
Assuming \$70 per barrel of condensate.

<sup>c</sup> Based on an annual REC program of 25 completions per year

1






prices also justify extra efforts to stimulate production from existing wells in tight reservoirs where the down-hole pressure and gas production rates have declined, a process known as well workovers or well-reworking. In both cases, completions of new wells in tight formations and workovers of existing wells, one technique for improving gas production is to fracture the reservoir rock with very high pressure water containing a proppant (generally sand) that keeps the fractures "propped open" after water pressure is reduced. Depending on the depth of the well, this process is carried out in several stages, usually completing one 200- to 250-foot zone per stage.

These new and "workover" wells are completed by producing the fluids at a high rate to lift the excess sand to the surface and clear the well bore and formation to increase gas flow. Typically, the gas/liquid separator installed for normal well flow is not designed for these high liquid flow rates and three-phase (gas, liquid and sand) flow. Therefore, a common practice for this initial well completion step has been to produce the well to a pit or tanks where water, hydrocarbon liquids and sand are captured and slugs of gas vented to the atmosphere or flared. Completions can take anywhere from one day to several weeks during which time a substantial amount of gas may be released to the atmosphere or flared. Testing of production levels occurs during the well completion process, and it may be necessary to repeat the fracture process to achieve desired production levels from a particular well.

Natural gas lost during well completion and testing can be as much as 25 million cubic feet (MMcf) per well depending on well production rates, the number of zones completed, and the amount of time it takes to complete each zone. This gas is generally unprocessed and may contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) along with methane. Flaring gas may eliminate most methane, VOC and HAP emissions, but open flaring is not always a preferred option when the well is located near residential areas or where there is a high risk of grass or forest fires. Moreover, flaring may release additional carbon dioxide and other criteria pollutants (SOx, NOx, PM and CO) to the atmosphere.

Natural Gas STAR partners have reported performing RECs that recover much of the gas that is normally vented or flared during the completion process. This involves installing portable equipment that is specially designed and sized for the initial high rate of water, sand, and gas flowback during well completion. The objective is to capture and deliver gas to the sales line rather than venting or flaring this gas.

Sand traps are used to remove the finer solids present in the production stream. Plug catchers are used to remove any large solids such as drill cuttings that could damage the other separation equipment. The piping configuration to the sand traps is critical as the abrasion from high velocity water and sand can erode a hole in steel pipe elbows, creating a "washout" with water, sand,



Adapted from BP.

hydrocarbon liquids and gas in an uncontrolled flow to the pad. Depending on the gas gathering system, it may be necessary to dehydrate (remove water from) the produced gas before it enters the sales pipeline. The gas may be routed to the permanent glycol unit for dehydration or a portable desiccant/glycol dehydrator used for dehydration during the completion process.

Free water and condensate are removed from the gas in a three phase separator. Condensate (liquid hydrocarbons) collected during the completion process may be sold for additional revenue. Temporary piping may be used to connect the well to the REC skid and gathering system if the permanent piping is not yet in place. Exhibit 1 shows a typical layout of temporary REC portable equipment, and

#### **Exhibit 2: Alternate Completion Procedures**

#### **Energized Fracturing**

Based on Natural Gas STAR partner experiences, RECs can also be performed in combination with energized fracturing, wherein inert gas such as  $CO_2$  or nitrogen is mixed with the frac water under high pressure to aid in the process of fracturing the formation. The process is generally the same with the additional consideration of the composition of the flowback gas. The percent of inert gases in the flowback gas is, at first, unsuitable for delivery into the sales line. As the fraction of inerts decreases, the gas can be recovered economically. A portable membrane acid gas separation unit can further increase the amount of methane recovered for sales after a  $CO_2$  energized fracture.

#### Compression

Two compressor applications during an REC have been identified or explored by Natural Gas STAR partners.

1) Gas Lift. In low pressure (i.e. low energy) reservoirs RECs are often carried out with the aid of compressors for gas lift. Gas lift is accomplished by withdrawing gas from the sales line, boosting its pressure, and routing it down the well casing to push the frac fluids up the tubing. The increased pressure facilitates flow into the separator and then the sales line where the lift gas becomes part of the normal flowback that can be recovered during an REC.

2) Boost to Sales Line. When the gas recovered in the REC separator is lower pressure than the sales line, some companies are experimenting with a compressor to boost flowback gas into the sales line. This technique is experimental because of the difficulty operating a compressor on widely fluctuating flowback rate. Coal bed methane well completion is an example where additional compression might be required.

Exhibit 2 explains some alternate, emerging, and/or experimental procedures for a well completion and REC.

The equipment used during RECs is only necessary for the time it takes to complete the well; therefore, it is essential that all the equipment can be readily transported from site to site to be used in a number of well completions. A truck mounted skid, as shown in Exhibit 3, is ideal for transporting the equipment between sites. In a large basin that has a high level of drilling activity it may be economic for a gas producer to build its own REC skid. Most producers may prefer contracting a third party service to perform completions.

When using a third party to perform RECs, it is most cost effective to integrate the scheduling of completions with the annual drilling program. Well completion time is another factor to consider for scheduling a contractor for RECs. Some well completions, such as coal bed methane, may take less than a day. On the other hand, completing wells which fracture various zones, such as shale gas wells, may take several weeks to complete. For most wells, it takes about 3 to 10 days to perform a well completion following a hydraulic fracture, based on partner experiences.

#### Exhibit 3: Truck Mounted Reduced Emissions Completion Equipment



Source: Weatherford

#### **Economic and Environmental Benefits**

- $\star$  Gas recovered for sales
- $\star$  Condensate recovered for sales
- ★ Reduced methane emissions

- ★ Reduced loss of a valuable hydrocarbon resource
- $\star$  Reduced emissions of criteria and hazardous air pollutants

Emissions from well completions can contribute to a number of environmental problems. Direct venting of VOCs can contribute to local air pollution, HAPs are deemed harmful to human health, and methane is a powerful greenhouse gas that contributes to climate change. Where it is safe, flaring is preferred to direct venting because methane, VOCs, and HAPs are combusted, lowering pollution levels and reducing global warming potential (GWP) of the emissions as CO<sub>2</sub> from combustion has a lower GWP than methane. RECs allow for recovery of gas rather than venting or flaring and therefore reduce the environmental impact of well completion and workover activities.

RECs bring economic benefits as well as environmental benefits. The incremental costs associated with the rental of third party equipment for performing RECs can be offset by the additional revenue from the sale of gas and condensate. As this technology is being perfected and equipment becomes commonplace, the revenues in gas and condensate sales often exceed the incremental costs.

#### **Decision Process**

#### Step 1: Evaluate candidate wells for Reduced Emissions Completions.

When setting up an annual RECs program it is important to examine the characteristics of the wells that are going to be brought online in the coming year. Wells in conventional reservoirs that do not require a reservoir fracture (frac job) and will produce readily without stimulation can be cleared of drilling fluids and connected to a production line in a relatively short period of time

with minimal gas venting or flaring, and therefore usually do not economically justify REC equipment. Wells that undergo energized fracture using inert gases require special considerations because the initial produced gas

| Decision Process                 |
|----------------------------------|
| Step 1: Evaluate candidate wells |
| Step 2: Determine costs          |
| Step 3: Estimate savings         |
| Step 4: Evaluate economics       |
|                                  |

captured by the REC equipment would not meet pipeline specifications due to the inert gas content. However, as the amount of inerts decreases, the quality of the gas will likely meet pipeline specifications. In the case of  $CO_2$ energized fracks, the use of portable acid gas removal membrane separators will improve gas quality and make it possible to direct gas to the pipeline (see Partner Experiences section for more information).

#### State and Local Regulations

The States of Wyoming and Colorado have regulations requiring the implementation of "flareless completions". Operators of new wells in this region are required to complete wells without flaring or venting. These completions have reduced flaring by 70 to 90 percent.

For more information, visit: http://deq.state.wy.us http://www.cdphe.state.co.us

Exploratory and delineation wells in areas that do not yet have sales pipelines in close proximity to the wells are not candidates for RECs as the infrastructure is not in place to receive the recovered gas. In depleted or low pressure fields with low energy reservoirs, implementing a RECs program would most likely require the addition of compression to overcome the sales line pressures—an approach that is still under development and may add significant cost to implementation.

Wells that require hydraulic fracturing to stimulate or enhance gas production may need a lengthy completion, and therefore are good candidates for RECs. Lengthy completions mean that a significant amount of gas may be

Savings

 $\star$ 

Selecting a Basis for Costs and

Estimate the number of

producing gas wells that will

be drilled in the next year

Evaluate well depth and

reservoir characteristics

additional equipment is

Estimate time needed for

necessary to bring recovered

Determine whether

gas up to pipeline

specifications

each completion

vented or flared that could potentially be recovered and sold for additional revenue to justify the additional cost of a REC. If newly drilled wells are in close proximity, they could share the REC equipment to minimize transport, set and equipment -up, rental costs.

## *Step 2: Determine the costs of a REC program.*

Most Natural Gas STAR partners report using third party contractors to perform RECs on wells within their producing fields. It should be noted that third party contractors are also often used to perform traditional well completions. Therefore, the economics presented deal with incremental costs to carry out RECs versus traditional completions.

Generally, the third party contractor will charge a commissioning fee for transporting and setting up the equipment for each well completion within the operator's producing field. Some RECs vendors have their equipment mounted on a single trailer while others lay down individual skids that must be connected with temporary piping at each site. The incremental cost associated with transportation between well sites in the operator's field and connection of the REC equipment within the normal flowback piping from the wellhead to an impoundment or tank is generally around \$600/completion.

In addition to the commissioning fee, there is a daily cost for equipment rental and labor to perform each REC. As mentioned above, when evaluating the costs of well completions, it is important to consider the incremental cost of a REC over a traditional completion rather than focusing on the total cost. REC vendors and Natural Gas STAR partners have reported the incremental cost of equipment rental and labor to recover natural gas during completion ranging from \$700 to \$6,500/day over a traditional completion. Equipment costs associated with RECs will vary from well to well. High production rates may require larger equipment to perform the REC and will increase costs. If permanent equipment such as a glycol dehydrator is already installed at the well site, REC costs may be reduced as this equipment can be used rather than bringing a portable dehydrator on-site, assuming the flowback rate does not exceed the capacity of the equipment. Some operators report installing permanent equipment that can be used in the RECs as part of normal well completion operations, such as oversized three-phase separators, further reducing incremental REC costs. Well completions usually take between 1 to 30 days to clean out the well bore, complete well testing, and tie into the permanent sales line. Wells requiring multiple fractures of a tight formation to stimulate gas flow may require additional completion time. Exhibit 4 shows the typical costs associated with undertaking a REC at a single well.

| Exhibit 4:                                                    | Typical Costs for F                                    | RECs                  |
|---------------------------------------------------------------|--------------------------------------------------------|-----------------------|
| One-time<br>Transportation and<br>Incremental Set-up<br>Costs | Incremental REC<br>Equipment Rental and<br>Labor Costs | Well Clean-up<br>Time |
| \$600 per well                                                | \$700 to \$6,500 per day                               | 3 to 10 days          |

For low energy reservoirs, gas from the sales line may be routed down the well casing to create artificial gas lift, as mentioned in Exhibit 2. Depending on the depth of the well, a different quantity of gas will be required to lift the fluids and clean out the well. Using average reservoir depths for major U.S. basins and engineering calculations, Exhibit 5 shows various estimates of the volume of gas required to lift fluids for different well depths.

A REC annual program may consist of completing 25 wells/year within a producer's operating region. Exhibit 6 shows a hypothetical example of REC program costs based on information provided by partner companies.

| Exhibit 5: Sizing and Fuel Consumption for Booster Compressor |                                            |                                                   |                                              |                                             |  |  |  |  |
|---------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|----------------------------------------------|---------------------------------------------|--|--|--|--|
| Well Depth (ft)                                               | Pressure Required to Lift Fluids<br>(psig) | Gas Required to<br>Lift Fluids (Mcf) <sup>a</sup> | Compressor Size<br>(horsepower) <sup>a</sup> | Compressor Fuel<br>Consumption<br>(Mcf/hr)ª |  |  |  |  |
| 3,000                                                         | 1,319 + Sales line pressure                | 195 to 310                                        | 195 to 780                                   | 2 to 7                                      |  |  |  |  |
| 5,000                                                         | 2,323 + Sales line pressure                | 315 to 430                                        | 400 to 1,500                                 | 3 to 13                                     |  |  |  |  |
| 8,000                                                         | 3,716 + Sales line pressure                | 495 to 610                                        | 765 to 2,800                                 | 7 to 24                                     |  |  |  |  |
| 10,000                                                        | 4,645 + Sales line pressure                | 615 to 730                                        | 1,040 to 3,900                               | 9 to 33                                     |  |  |  |  |
| <sup>a</sup> Based on sales line pressures                    | between 100 to 1,000 psig.                 |                                                   |                                              |                                             |  |  |  |  |

# Reduced Emissions Completions (Cont'd)

#### Exhibit 6: Hypothetical Example Cost Calculation of a 25 Well Annual REC Program

#### Given

- W = Number of completions per year
- D = Well depth in feet (ft)
- $P_s$  = Sales line pressure in pounds per square inch gauge (psig)
- $T_s$  = Time required for transportation and set-up (days/well)
- $T_c$  = Time required for well clean-up (days/well)
- O = Operating time for compressor to lift fluids (hr/well)
- F = Compressor fuel consumption rate (Mcf/hr)
- G = Gas from pipeline routed to casing to lift fluids (Mcf/well), typically used on low energy reservoirs
- $C_s$  = Transportation and set-up cost (\$/well)
- $C_e = Equipment and labor cost (\$/day)$
- $P_g$  = Sales line gas price (\$/Mcf)

W = 25 wells/yr

- D = 8000 ft
- $P_s = 100 \text{ psig}$
- $T_s = 1 \text{ day/well}$
- $T_c = 9 \text{ days/well}$
- O = 24 hr/well
- F = 10 Mcf/hr
- G = 500 Mcf/well (See Exhibit 5)
- $C_s =$  \$600/well
- $C_e =$  \$2,000/day
- $P_g = \frac{7}{Mcf}$

#### Calculate Total Transportation and Set-up Cost, C<sub>TS</sub>

$$C_{TS} = W * C_s$$

$$\begin{split} C_{TS} &= 25 \text{ wells/yr * }\$600 \text{/well} \\ C_{TS} &= \$15,000 \text{/yr} \end{split}$$

#### Calculate Total Equipment Rental and Labor Cost, C<sub>EL</sub>

 $C_{EL} = W * (T_s + T_c) * C_e$ 

$$\label{eq:CEL} \begin{split} C_{EL} &= 25 \mbox{ wells/yr * (1 day/well + 9 days/well) * $2,000/day} \\ C_{EL} &= $500,000/yr \end{split}$$

#### Calculate Other Costs, Co

 $C_{O} = W * [(O * F) + G] * P_{g}$ 

 $C_{\rm O}$  = 25 wells/yr \* [( 24 hr/well \* 10 Mcf/hr) + 500 Mcf/well] \* \$7/Mcf  $C_{\rm O}$  = \$129,500/yr

#### Total Annual REC Program Cost, C<sub>T</sub>

 $\begin{array}{l} C_{T} = C_{TS} + C_{EL} + C_{O} \\ C_{T} = \$15,000/yr + \$500,000/yr + \$129,500/yr \\ C_{T} = \$644,500/yr \end{array}$ 

#### Step 3: Estimate Savings from RECs.

Gas recovered from RECs can vary widely because the amount of gas recovered depends on a number of variables such as reservoir pressure, production rate, amount of fluids lifted, and total completion time. Exhibit 7 shows the range of recovered gas and condensate reported by Natural Gas STAR partners. Partners also have reported that not all the gas that is produced during well completions may be captured for sales. Fluids from high pressure wells are often routed directly to the frac tank in the initial stages of completion as the fluids are often being produced at a rate that is too high for the REC equipment. Where inert gas is used to energize the frac, the initial gas production may have to be flared until the gas meets pipeline specifications. Alternatively, a portable acid gas membrane separator may be used to recover methane rich gas from  $CO_2$ . As the flow rate of fluids drops and gas is encountered, backflow is then switched over to the REC equipment so that the gas may be captured. Gas compressed from the sales line to lift fluids (by artificial gas lift) will also be recovered in addition to the gas produced from the reservoir. The volume of gas needed to lift fluids can be estimated based on the well depth and sales line pressure. Gas saved during RECs can be translated directly into methane emissions reductions based on the methane content of the produced gas.

In addition to gas savings, valuable condensate may also be recovered from the REC three-phase separator. The amount of condensate that can be recovered during a REC is dependent on the reservoir conditions and fluid

#### **Nelson Price Indexes**

In order to account for inflation in equipment and operating & maintenance costs, Nelson-Farrar Quarterly Cost Indexes (available in the first issue of each quarter in the *Oil and Gas Journal*) are used to update costs in the Lessons Learned documents.

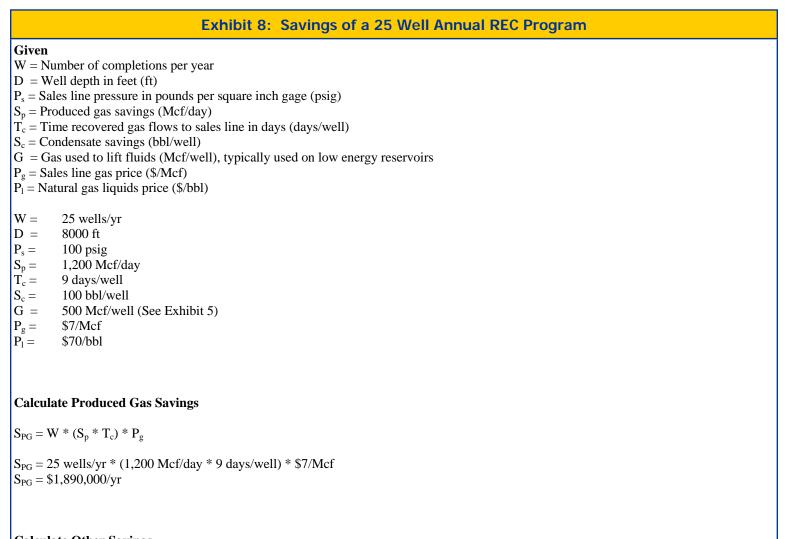
The "Refinery Operation Index" is used to revise operating costs while the "Machinery: Oilfield Itemized Refining Cost Index" is used to update equipment costs.

To use these indexes in the future, simply look up the most current Nelson-Farrar index number, divide by the February 2006 Nelson-Farrar index number, and, finally multiply by the appropriate costs in the Lessons Learned.

| Exhibit 7: Ranges of Gas and Condensate Savings |                                |                                         |  |  |  |  |
|-------------------------------------------------|--------------------------------|-----------------------------------------|--|--|--|--|
| Produced Gas<br>Savings<br>(Mcf/day/well)       | Gas-Lift Savings<br>(Mcf/well) | Condensate<br>Savings<br>(bbl/day/well) |  |  |  |  |
| 500 to 2,000                                    | See Exhibit 5                  | Zero to several<br>hundred              |  |  |  |  |

compositions. Condensate may also be lost if fluids are produced directly to the frac tank before switching to the REC equipment.

Exhibit 8 shows typical values of gas and condensate savings during the REC process.


#### Step 4: Evaluate REC economics.

The example application of an REC program to 25 wells within a producing field can yield a total theoretical revenue of \$2,152,500 based on the assumptions listed above from the sale of natural gas and condensate. Equipment rental, labor, and other costs associated with implementing this program are estimated to be \$644,500 (see Exhibit 6) resulting in an annual theoretical profit of \$1,508,000. To maintain a profitable REC program, it is important to move efficiently from well to well within a producing field so that there is little down time when paying for equipment rental and labor. Other factors that affect the profitability of an REC program include the amount of condensate recovery and sales price, the need for additional compressors, the amount of gas recovered, and gas sales price.

Exhibit 9 shows a five year cash flow projection for carrying out a 25 well per year REC program. In this example, the equipment necessary to perform RECs has been purchased by the operator rather than using a third party contractor to perform the service. The capital cost of a simple REC set-up without a portable compressor has been reported by British Petroleum (BP) to be \$500,000.

Producers with high levels of localized drilling and workover activity may benefit from constructing and operating their own REC equipment. As illustrated above, even though large capital outlay is required to construct a REC skid, a high rate of return can be achieved if the equipment is in continuous use. If the operator is unable to keep the equipment busy on their own wells, they may

# Reduced Emissions Completions (Cont'd)



Calculate Other Savings

 $S_{O} = W * [(G * P_{g}) + (S_{c} * P_{l})]$ 

$$\begin{split} S_{O} &= 25 \ \text{wells/yr} * \left[ (500 \ \text{Mcf/well} * \$7/\text{Mcf}) + (100 \ \text{bbl/well} * \$70/\text{bbl}) \right] \\ S_{O} &= \$262{,}500/\text{yr} \end{split}$$

#### Total Savings, S<sub>T</sub>

$$\begin{split} S_T &= S_{PG} + S_O \\ S_T &= \$1,\!890,\!000/yr + \$262,\!500/yr \\ S_T &= \$2,\!152,\!500/yr \end{split}$$

contract it out to other operators to maximize usage of the equipment.

When assessing REC economics, the gas price may influence the decision making process; therefore, it is important to examine the economics of undertaking a REC program as natural gas prices change. Exhibit 10 shows an economic analysis of performing the 25 well per year REC program in Exhibit 8 at different gas prices.

#### Exhibit 9: Economics for Hypothetical 25 Well Annual REC Program with Purchased Equipment

|                                                                                      | Year 0    | Year 1    | Year 2    | Year 3    | Year 4    | Year 5    |
|--------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Volume of Natural Gas Savings<br>(Mcf/yr) <sup>a</sup>                               |           | 270,000   | 270,000   | 270,000   | 270,000   | 270,000   |
| Value of Natural Gas Savings<br>(\$/year) <sup>a</sup>                               |           | 1,890,000 | 1,890,000 | 1,890,000 | 1,890,000 | 1,890,000 |
| Additional Savings (\$/yr) <sup>a</sup>                                              |           | 175,000   | 175,000   | 175,000   | 175,000   | 175,000   |
| Set-up Costs (\$/yr) <sup>b</sup>                                                    |           | (15,000)  | (15,000)  | (15,000)  | (15,000)  | (15,000)  |
| Equipment Costs (\$) <sup>b</sup>                                                    | (500,000) |           |           |           |           |           |
| Labor Costs (\$/yr) <sup>c</sup>                                                     |           | (106,250) | (106,250) | (106,250) | (106,250) | (106,250) |
| Net Annual Cash Flow (\$)                                                            | (500,000) | 1,943,750 | 1,943,750 | 1,943,750 | 1,943,750 | 1,943,750 |
| Internal Rate of Return = 389%<br>NPV (Net Present Value) <sup>d</sup> = \$6,243,947 |           |           |           |           |           |           |

Payback Period = 3 months

<sup>a</sup> See Exhibit 8. <sup>b</sup> See Exhibit 6.

<sup>c</sup> Labor costs for purchased REC equipment estimated as 50% of Equipment Rental and Labor costs in Exhibit 3.

<sup>d</sup> Net present value based on 10% discount rate over five years.

#### Exhibit 10: Gas Price Impact on Economic Analysis of Hypothetical 25 Well Annual REC Program with Purchased Equipment

| Gas Price                                |             |             |             |             |             |  |  |  |  |
|------------------------------------------|-------------|-------------|-------------|-------------|-------------|--|--|--|--|
| \$3/Mcf \$5/Mcf \$7/Mcf \$8/Mcf \$10/Mcf |             |             |             |             |             |  |  |  |  |
| Total Savings                            | \$985,000   | \$1,525,000 | \$2,065,000 | \$2,335,000 | \$2,875,000 |  |  |  |  |
| Payback (months)                         | 7           | 5           | 4           | 3           | 3           |  |  |  |  |
| IRR                                      | 172%        | 280%        | 389%        | 443%        | 551%        |  |  |  |  |
| NPV<br>(i = 10%)                         | \$2,522,084 | \$4,383,015 | \$6,243,947 | \$7,174,413 | \$9,035,345 |  |  |  |  |

#### Partner Experience

This section highlights specific experiences reported by Natural Gas STAR partners.

#### **BP Experience in Green River Basin**

- ★ Implemented RECs in the Green River Basin of Wyoming
- ★ RECs performed on 106 wells, which consisted of high and low pressure wells
- ★ Average 3,300 Mcf of natural gas sold versus vented per well
  - Well pressure will vary from reservoir to reservoir
  - Reductions will vary for each particular region
  - Conservative net value of gas saved is \$20,000 per well
- ★ Natural gas emission reductions of 350,000 Mcf in 2002
- ★ Total of 6,700 barrels of condensate recovered per year total for 106 wells
- ★ Through the end of 2005, this partner reports a total of 4.17 Bcf of gas and more than 53,000 barrels of condensate recovered and sold rather than flared. This is a combination of activities in the Wamsutter and Jonah/Pinedale fields.

#### Noble Experience in Ellis County, Oklahoma

- ★ Implemented RECs on 10 wells using energized fracturing.
- ★ Employed membrane separation in which the permeate was a  $CO_2$  rich stream that was vented and the residue was primarily hydrocarbons which were recovered.
- ★ Total cost of 325,000.
- ★ Total gas savings of approximately 175 MMcf.
- ★ Estimated net profits to be \$340,000
- ★ For more information, see the Partner Profile Article in the Spring 2011 Natural Gas STAR Partner Update available at: http://epa.gov/gasstar/newsroom/partnerupdatespring2011.html

#### Partner Company A

- ★ Implemented RECs in the Fort Worth Basin of Texas
- ★ RECs performed on 30 wells, with an incremental cost of \$8,700 per well
- ★ Average 11,900 Mcf of natural gas sold versus vented per well
  - Natural gas flow and sales occur 9 days out of 2 to 3 weeks of well completion
  - Low pressure gas sent to gas plant
  - Conservative net value of gas saved is \$50,000 per well
- Expects total emission reduction of 1.5 to 2 Bcf in 2005 for 30 wells

#### Lessons Learned

- ★ Incremental costs of recovering natural gas and condensate during well completions following hydraulic fracturing result from the use of additional equipment such as sand traps, separators, portable compressors, membrane acid gas removal units and desiccant dehydrators that are designed for high rate flowback.
- ★ During the hydraulic fracture completion process, sands, liquids, and gases produced from the well are separated and collected individually. Natural gas and gas liquids captured during the completion may be sold for additional revenue.
- ★ Implementing a REC program will reduce flaring which may be a particular advantage where open flaring is undesirable (populated areas) or unsafe (risk of fire).
- ★ Wells that do not require hydraulic fracturing are not good candidates for reduced emissions completions. Methane emissions reductions achieved through performing RECs may be reported to the Natural Gas STAR Program unless RECs are required by law (as in the Jonah-Pinedale area in WY).

#### References

Alberts, Jerry. Williams Company. Personal contact.

- American Petroleum Institute. Basic Petroleum Data Book, Volume XXV, Number 1. February 2005.
- Bylin, Carey. U.S. EPA. Gas STAR Program Manager
- Department of Energy. GASIS, Gas Information System. Release 2 June 1999.
- Fernandez, Roger. U.S. EPA. Gas STAR Program Manager
- McAllister, E.W., Pipeline Rules of Thumb Handbook, 4th Edition, 1998.
- Middleman, Stanley. An Introduction to Fluid Dynamics, Principles of Analysis and Design. 1998.
- Perry, Robert H., Don W. Green. Perry's Chemical Engineers Handbook, 7th Edition. 1997.

Pontiff, Mike. Newfield Exploration Company. Personal contact.

Process Associates of America. "Reciprocating Compressor Sizing." Available on the web at: http://www.processassociates.com/process/ rotating/recip\_s.htm.

Smith, Reid. BP PLC. Personal contact.

Smuin, Bobby. BRECO, Incorporated. Personal contact.

- U.S. EPA. "The Natural Gas STAR Partner Update Spring 2004." Available on the web at: <u>http://www.epa.gov/gasstar/pdf/</u> <u>partnerupdate.pdf</u>
- Wadas, Janelle. Noble Energy Inc. 2010 Annual Implementation Workshop Presentation titled "Reducing Vented Flowback Emissions from CO2 Fractured Gas Wells Using Membrane Technology". Available on the web at: <u>http://epa.gov/gasstar/documents/workshops/2010-annualconf/01wadas.pdf</u>

Waltzer, Suzanne. U.S. EPA. Gas STAR Program Manager



United States Environmental Protection Agency Air and Radiation (6202J) 1200 Pennsylvania Ave., NW Washington, DC 20460

2011

EPA provides the suggested methane emissions estimating methods contained in this document as a tool to develop basic methane emissions estimates only. As regulatory reporting demands a higher-level of accuracy, the methane emission estimating methods and terminology contained in this document may not conform to the Greenhouse Gas Reporting Rule, 40 CFR Part 98, Subpart W methods or those in other EPA regulations.

## EDF-WZI-APPENDIX XV

## Appendix XV

## **Control Efficiencies (CE) of the Proposed Regulation 7 Program**

The Colorado Department of Public Health and Environment (CDPHE) uses the following control effectiveness thresholds for instrument based leak detection and repair (LDAR) inspections: 40% for one-time and annual inspections, 60% for quarterly inspections and 80% for monthly inspections. This Appendix evaluates whether the CE applied by CDPHE are appropriate and consistent with available data. WZI reviewed the historic studies establishing control effectiveness for various related programs and incorporated our own experiences and those of others to assess the control efficiencies used for the Regulation 7 based strategies against certain monitoring cycles (i.e., the time between surveys).<sup>1</sup> Applying the EPA four factor analysis yields CE values consistent with (and in fact slightly higher than) the CE established for LDAR for similar control schemes and results. This analysis in fact suggests that the CE values applied by CDPHE are conservative (e.g. understate the anticipated CE).

By definition the Control Effectiveness (CE) measures the performance of a proposed regulatory scheme in the context of the uncontrolled condition. In this case, the reduction in the air inventory relative to the uncontrolled inventory of emissions (from the proposed regulated body of equipment operating prior to implementation) extrapolated to account for the current population of regulated equipment.

## **1** More frequent inspections result in greater reductions in emissions.

Industry and EPA reviews of maintenance programs such as those related to Planned Maintenance, LDAR and Directed have consistently shown what one would expect: from an engineering perspective, the shorter the interval between events for monitoring for failure, scheduled maintenance or repair, the better the Control Efficiency. As one would expect, the shorter the time between surveys the better the overall Control Efficiency. As one moves to frequencies more frequent than monthly (such as weekly or daily surveys), one approaches a point of diminishing returns (such as weekly surveys which can only increase benefit from 80% to something less than 100%).

Studies of fugitive emissions show that "leakage was more prevalent in gas line components [due to the fact that crude leaks were always more noticeable and self-sealing]...and only 4% of the valves and

<sup>&</sup>lt;sup>1</sup> These field studies have been performed since the late 1970's:

API/Rockwell: Eaton, W, et al., "Fugitive Hydrocarbon Emissions from Petroleum Production Operations", American Petroleum Institute, March 1980

Taback, H, et al, "Emissions Characteristics of Crude Oil Production Operations in California", KVB, Jan 1983, Censullo, A.C., "Final Report on Development of Species for Selected Organic Emissions Sources, Volume 1: Oil Field Fugitive Emissions". California Air Resources Board, Apr 1991.

fittings tested leaked. [Of these leaks] [o]nly one in ten of those were found to be large leakers. However, the large leakers accounted for 80% of the emissions from these sources."<sup>3</sup>

Separately, the lowering of thresholds to determine pass/fail for a leak may capture some additional components whose leakage is less. Additional studies have shown that the differential due to lowering the threshold results by roughly 10 to 20% for a 20 fold lowering of the threshold.<sup>4</sup> For simplicity, programs typically do not differentiate between the severity of the leak (based on the leak threshold) except in some instances (such as South Coast Air Quality Management District) which uses a sliding scale where the time allowed from time of detection to repair is greater for components having low leak levels but the emissions factor remains the same.

## 2 Examples of Related Control Effectiveness Values

A generalized engineering review of available and accepted data for Control Effectiveness shows current typical results such as those shown in the Hazardous Organic NESHAP (HON) related analysis: EPA, Leak Detection and Repair, "A Best Practices Guide", (Exhibit 1, below).

<sup>&</sup>lt;sup>3</sup> Sonnichsen, T. et al, "Hydrocarbon Emissions from Petroleum Operations in California's South Coast Air Basin", p 4, 1978.

<sup>&</sup>lt;sup>4</sup> EPA, Leak Detection and Repair: A Best Practices Guide, No date given

|                                            |                                                      | Control Effectiveness (% Reduction)                 |                                         |
|--------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|
| Equipment Type and Service                 | Monthly Monitoring<br>10,000 ppmv<br>Leak Definition | Quarterly Monitoring<br>10,000 ppmv Leak Definition | 500 ppm<br>Leak Definition <sup>a</sup> |
| Chemical Process Unit                      |                                                      |                                                     |                                         |
| Valves - Gas Service <sup>b</sup>          | 87                                                   | 67                                                  | 92                                      |
| Valves – Light Liquid Service <sup>c</sup> | 84                                                   | 61                                                  | 88                                      |
| Pumps – Light Liquid Service <sup>c</sup>  | 69                                                   | 45                                                  | 75                                      |
| Connectors – All Services                  |                                                      |                                                     | 93                                      |
| Refinery                                   |                                                      |                                                     |                                         |
| Valves – Gas Service <sup>b</sup>          | 88                                                   | 70                                                  | 96                                      |
| Valves – Light Liquid Service <sup>c</sup> | 76                                                   | 61                                                  | 95                                      |
| Pumps – Light Liquid Service <sup>c</sup>  | 68                                                   | 45                                                  | 88                                      |
| Connectors – All Services                  |                                                      |                                                     | 81                                      |

Source: Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, Nov 1995.

Control effectiveness attributable to the HON-negotiated equipment leak regulation (40 CFR 63, Subpart H) is estimated based on equipment-specific leak definitions and performance levels. However, pumps subject to the HON at existing process units have a 1,000 to 5,000 ppm leak definition, depending on the type of process.

<sup>b</sup> Gas (vapor) service means the material in contact with the equipment component is in a gaseous state at the process operating conditions.
 <sup>c</sup> Light liquid service means the material in contact with the equipment component is in a liquid state in which the sum of the concentration of individual constituents with a vapor pressure above 0.3 kilopascals (kPa) at 20°C is greater than or equal to 20% by weight.

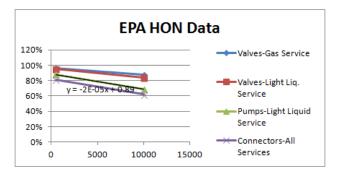
#### 7

#### Exhibit 1

TABLE 5-2. CONTROL EFFECTIVENESS FOR AN LDAR PROGRAM AT A SOCMI PROCESS UNIT

| Equipment type and service | Monthly monitoring<br>10,000 ppmv leak<br>definition | Quarterly monitoring<br>10,000 ppmv leak<br>definition | HON reg neg <sup>a</sup> |
|----------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------|
| Valves - gas               | 87                                                   | 67                                                     | 92                       |
| Valves - light liquid      | 84                                                   | 61                                                     | 88                       |
| Pumps - light liquid       | 69                                                   | 45                                                     | 75                       |
| Connectors - all           | b                                                    | b                                                      | 93                       |

<sup>a</sup> Control effectiveness attributable to the requirements of the proposed hazardous organic NESHAP equipment leak negotiated regulation are estimated based on equipment-specific leak definitions and performance levels. 


#### Exhibit 2

These values above in Table 5-2 (Exhibit 2, above) are for hydrocarbon emissions from Synthetic Organic Chemical Manufacturing Industry (SOCMI) facilities and refineries, but it is reasonable to expect the same in exploration and production allowing for some physical design and process differences (these are similar pieces of equipment and component parts). These values reflect the degree to which leaking components can be identified as leaking, repaired to a non-leaking condition and the degree to which the leaking component does not return to a leaking condition.

The values derived from the SOCMI/Refinery as well as the original sector EIR results show general component weighted averages of the component-specific Control Effectiveness for the two programs using the 10,000 ppm leak definition for monthly and quarterly testing shows approximately 80% reduction for monthly monitoring and 60% for quarterly, as shown in Table 4-1 (Exhibit 1, above).

In the HON study flanges/connectors were treated by EPA as having no affected emissions at thresholds above 1,000 ppm. It is reasonable to expect hydrocarbon emissions, therefore, the relationships established in this HON study were used to extend the four factor formula to allow the connectors to have a Control Effectiveness for Connectors-All Services. WZI used the relationships established in the EPA HON study to adjust the factor assignment for flanges/connectors for monthly and quarterly by first using the HON proposed 500 ppm value for monthly surveys to create a 10,000 ppm monthly value of 62% for connectors and then using the pump-based curve data from to extrapolate flanges and connector Control Effectiveness from monthly (62%) to quarterly (39%). This approach more accurately represents the expected performance of LDAR for these subject components.

| Table 1: EPA Refinery Control Effectiveness Data from Proposed HON    |            |               |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------|------------|---------------|--|--|--|--|--|--|--|
|                                                                       |            | HON           |  |  |  |  |  |  |  |
|                                                                       |            | (as proposed) |  |  |  |  |  |  |  |
|                                                                       | Monthly-   | Monthly-      |  |  |  |  |  |  |  |
|                                                                       | 10,000ppm  | 500 ppm       |  |  |  |  |  |  |  |
| Threshold                                                             | 10,000 ppm | 500 ppm       |  |  |  |  |  |  |  |
| Valves-Gas Service                                                    | 88%        | 96%           |  |  |  |  |  |  |  |
| Valves-Light Liq. Service                                             | 84%        | 95%           |  |  |  |  |  |  |  |
| Pumps-Light Liquid Service                                            | 69%        | 88%           |  |  |  |  |  |  |  |
| Connectors-All Services                                               | 62%*       | 81%           |  |  |  |  |  |  |  |
| *Adjusted based on pump line to intercept connectors, see graph below |            |               |  |  |  |  |  |  |  |





Source: EPA NESHAP except for connectors at 10,000 ppm.

## 2.1 EPA Four Factor Formula

To evaluate the CE for the Colorado LDAR program, WZI used the EPA four factor formula to develop a single adjustment factor to be applied to the uncontrolled emissions. The four EPA factors were based on statistical treatment of field observations, WZI extended the application to Connectors-All Services as discussed above.

The four factor criteria used for EPA defined factors to calculate Reduction Efficiency:

Reduction Efficiency =  $A \times B \times C \times D$ 

Where:

- (A) Theoretical Maximum Control Efficiency-Fraction of the total mass emissions from sources with VOC emissions Greater than the VOC limit.
- (B) Leak Occurrence and Reoccurrence Correction Factor-Correction factor to account for source which start to leak between inspections (occurrences), for sources which are found to be leaking, are repaired and start to leak again before the next inspection (reoccurrence), and for known leaks that cannot be repaired.
- (C) Non-Instantaneous Repair Correction Factor-Correction factor to account for emissions which occur between detection of a leak and a subsequent repair since the repair is not instantaneous.
- (D) Imperfect Repair Correction Factor-Correction factor to account for the fact that some sources which are repaired are not reduced to zero. For computational purposes this factor assumes that all repairs are made to reduce the emission level equivalent to a concentration of 1,000 ppm.

As part of this study the impact of the findings by EPA Enforcement Division were included to reflect the higher population of leakers found when a rigorous adherence to protocol was employed. Table 4-3 below shows the factors used by EPA in their EIR for the VOC Fugitive Emissions in Petroleum Refining Industry, 450/3-81-015a. WZI used these basic factors to derive Control Effectiveness values to compare to CDPHE values used in the state of Colorado.

|                                                         |        | k Occurrence<br>rrence Correc<br>Factor <sup>b</sup> |         | Repair         | nstantan<br>r Correc<br>Factor <sup>C</sup> | tion  | ut.            | Corre      | t Repair<br>ection<br>tor <sup>d</sup> |      |
|---------------------------------------------------------|--------|------------------------------------------------------|---------|----------------|---------------------------------------------|-------|----------------|------------|----------------------------------------|------|
|                                                         | Inspe  | ction Interva                                        |         |                | wable Re<br>ime (Day                        |       | Lea            | k Definiti | ion (nemv)                             |      |
| Source                                                  | Yearly | Quarterly                                            | Monthly | 15             | 5                                           | 1     | 100,000        | 50,000     | 10,000                                 | 1,00 |
| Pump Seals<br>Light Liquid <sup>e</sup>                 | 0.800  | 0,900                                                | 0.950   | 0.979          | 0.993                                       | 0.999 | 0.974          | 0.972      | 0.941                                  | 0.88 |
| Valves<br>Gas <sup>f</sup><br>Light Liquid <sup>e</sup> | 0,800  | 0.900                                                | 0.950   | 0.979<br>0.979 | 0.993<br>0.993                              | 0.999 | 0.998<br>0.988 | 0.998      | 0.996<br>0.958                         | 0.9  |
| Safety/Relief Valves <sup>9</sup>                       | 0.800  | 0,900                                                | 0,950   | 0,979          | 0.993                                       | 0.999 | 0.995          | 0.993      | 0.985                                  | 0.96 |
| Compressor Seals                                        | 0.800  | 0,900                                                | 0,950   | 0.979          | 0.993                                       | 0.999 | 0.994          | 0.992      | 0.984                                  | 0.97 |

## Table 4-3. EMISSION CORRECTION FACTORS FOR VARIOUS INSPECTION

tion <sup>b</sup>Values are assumed and account for sources that start to leak between inspections (occurrence), for sources that are found to be leaking, are repaired, and start to leak again before the next inspection (recurrence), and for leaking sources that could not be repaired.

not be repaired. Accounts for ministons that occur between detection of a leak and subsequent repair. Accounts for the fact that some sources that are repaired are not reduced to zero. The average repair factors at 1,000 pyeu are assume).

are essumed. \*Light liquid is defined as a petroleum liquid with a vapor pressure greater than that of kerosene. \*Values in gas service carry process fluids in the gaseous state. #Gas service only.

#### Exhibit 4

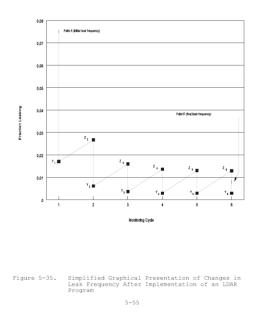
### 2.2 Theoretical Maximum Control Efficiency

4-13

These factors were presented in Table 4-2 (Exhibit 5, below )and not shown in the Table 4-3 (Exhibit 4, above). This value is simply based on the percentage of emissions that are possibly controllable. Some equipment cannot achieve 100% non-leakage.

| Percent of Mass Emissions Affected at This<br>Leak Definition <sup>a</sup>                                                                                                                                   |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|--|--|--|
|                                                                                                                                                                                                              | 100,000 ppmv                                                                                                        | and the second se | 10,000 ppmv                                                       | 1,000 ppm                                    |  |  |  |
| Pump Seals                                                                                                                                                                                                   |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                              |  |  |  |
| Light Liquid <sup>b</sup><br>Heavy Liquid <sup>c</sup>                                                                                                                                                       | 62<br>0                                                                                                             | 73<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92<br>37                                                          | 98<br>85                                     |  |  |  |
| Valves                                                                                                                                                                                                       |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                              |  |  |  |
| Gasd                                                                                                                                                                                                         | 89                                                                                                                  | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 98                                                                | 99                                           |  |  |  |
| Light Liquid <sup>D</sup><br>Heavy Liquid <sup>C</sup>                                                                                                                                                       | 53<br>0                                                                                                             | 65<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86<br>0                                                           | 98<br>35                                     |  |  |  |
| Safety/Relief Valves<br>(Gas)d                                                                                                                                                                               | 30                                                                                                                  | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74                                                                | 95                                           |  |  |  |
| Compressor Seals                                                                                                                                                                                             | 48                                                                                                                  | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91                                                                | 98                                           |  |  |  |
| Flanges                                                                                                                                                                                                      | 0                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                 | 57                                           |  |  |  |
| aThese figures relate<br>emissions that can b<br>source greater than<br>taneously repaired t<br>emissions could be e<br>efficiency.<br>Light liquid is defi<br>greater than the vap<br>Fleavy liquid is defi | e expected from<br>the leak definit<br>o a zero leak ra<br>xpected to be re<br>ned as a petrole<br>or pressure of b | sources with of<br>tion. If these<br>ate and no new<br>duced by this<br>eum liquid with<br>erosene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sources were<br>leaks occurred<br>maximum theore<br>a vapor press | at the<br>instan-<br>I, then<br>tical<br>ure |  |  |  |

dEquipment in gas service contain process fluid in the gaseous state.


Exhibit 5

### 2.3 Leak Occurrence and Reoccurrence Correction Factor

One of the aspects that adversely affects the expected or desired outcome (CE) is the problem of recidivism, often defined in the context of time between component failures. Components that are prone to frequently fail (i.e., hold a leak-proof seal) will be caught by more frequent inspections and it will be returned to a condition where the leak does not exceed the set threshold. EPA addressed this concept in their guidance for fugitive leak estimates. Exhibit 6, below, is from the EPA guidance and graphically represents the pattern of leak frequency and inspection intervals and the impact of the surveys on a final percentage of leakage.<sup>6</sup> This trend follows the common premise of requiring operators to check for leaks on a regular schedule and planned maintenance schedules that call for regularly planned inspections.

The annual value is considered similar for all components, and due to the duration of the annual interval is also similar to the affect of a one-time inspection where the leaking components that are big leakers may be found by attentive operators adopting safety related practices and seeking to capture lost product.

<sup>6</sup> EPA, "Protocol for Equipment Leak Emission Estimates", EPA-453/R-95-017, 1995





## 2.4 Non-Instantaneous Repair Correction Factor

These values were derived by statistical analysis. The reader is directed to the EPA treatment in the guidance document.<sup>7</sup>

This factor is correlated to interval to repair, not to survey interval.

### 2.5 Imperfect Repair Correction Factor

#### 2.5.1 General Discussion of Factor

These values were derived by statistical analysis. The reader is directed to the EPA treatment in the guidance document.<sup>8</sup>

This factor is correlated to threshold and indicates, as one would expect, that lower thresholds will result in lower area-wide emissions. While pump seals show a greater improvement from 100,000 ppm to 1000 ppm (0.974 to 0.886), the general population of components shows a diminishing return as the threshold is lowered (I.E., Valves in Gas Service go from 0.998 to 0.992).

<sup>8</sup> Ibid.

<sup>&</sup>lt;sup>7</sup> EPA, "EIS : VOC Fugitive Emissions in Petroleum Refining Industry", 450/3-81-015a, Appendix C.

#### 2.5.2 EPA Enforcement Alert Factor

More importantly EPA enforcement staff visited several refineries to test the overall compliance with the LDAR program in place.<sup>9</sup> They found a higher percentage of leaking components than had been reported in the population studied by the reporting facilities. EPA staff took a more targeted approach to identifying potential leakers and studied a smaller population than the original refinery staff.

EPA's interpretation of the statistics relied only on their targeted body of data and did not consider all otherwise random data gathered at these locations. When one includes all data one can also include a human factor to account for poor implementation of the method itself. The purpose of this factor is to account for the problem associated with maintaining the skill to consistently apply the correct methodology for the survey. The monthly frequency would create a need for dedicated persons who would consistently survey sites on a full time basis. The quarterly frequency would have survey personnel only partially assigned to surveys or infrequent visits by contractors. While they may retain some familiarity, the data show that they cannot maintain a consistent application, selecting the correct probe position, maintain the correct probe distance, adequate time on station for the detector, etc. Annual monitoring is assumed to be largely ad hoc. The annual pre-survey equipment checkout and training program is adequate but does not provide the same degree of consistency. Our analysis used both sets of data which WZI reduced to a factor to incorporate a correction accounting for the human factor of not necessarily adhering to a rigorous protocol for the summary table, "Adjusted Emissions Factors for Various Inspection Intervals for EPA Four factor Formula and Enforcement Adjuster." While FLIR technology will help alleviate some of this inconsistence, the factor should still be included until further test data shows no need for a human adjustment factor.

<sup>9</sup> EPA, Office of Enforcement and Compliance Enforcement Alert Volume 2, Number 9, October 1999, Ref: 300-N-99-014

| Table 2: Calculation of Enforcement Alert Results: Human Factor Adjuster for Four Factor |                                                                                            |                      |                                |           |  |  |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------|--------------------------------|-----------|--|--|--|--|--|
| Formula                                                                                  |                                                                                            |                      |                                |           |  |  |  |  |  |
|                                                                                          |                                                                                            | Percentage of        |                                |           |  |  |  |  |  |
|                                                                                          |                                                                                            | Leakers Found        |                                |           |  |  |  |  |  |
|                                                                                          |                                                                                            | during routine or    |                                |           |  |  |  |  |  |
|                                                                                          |                                                                                            | enforcement          |                                |           |  |  |  |  |  |
|                                                                                          | Surveys                                                                                    | survey               |                                |           |  |  |  |  |  |
| Industry                                                                                 | 170,717                                                                                    | 1.30%                | 2219.321                       |           |  |  |  |  |  |
| EPA Enforcement                                                                          | 47,526                                                                                     | 5.00%                | 2376.3                         |           |  |  |  |  |  |
| Total                                                                                    | 218,243                                                                                    |                      | 4595.621                       | 2.11%     |  |  |  |  |  |
| Leakage Adjustment Ra                                                                    | tio (To adjust                                                                             | for human factor) (2 | .11-1.3/1.3=0.619797)          | •         |  |  |  |  |  |
| Leakage Adjustment Fa                                                                    | Leakage Adjustment Factor ( To account for the increment in leakage) (1+0.619797=1.619797) |                      |                                |           |  |  |  |  |  |
| Effectiveness is Inversely Proportional to Leakage (1/1.619=0.62)                        |                                                                                            |                      |                                |           |  |  |  |  |  |
| 62%                                                                                      | 62% Adjustment to A' Factor for Four Factor (Annual)                                       |                      |                                |           |  |  |  |  |  |
|                                                                                          | Assume                                                                                     | d to be Monthly Adju | uster to EPA Enforcement Fin   | dings     |  |  |  |  |  |
|                                                                                          | (assuming                                                                                  | leakage was found d  | lue to small count of annual i | ntervals  |  |  |  |  |  |
| 100%                                                                                     | from EPA se                                                                                | e 1995 Fugitive Guid | elines. P5-50 to 5-61 , figure | on p 5-55 |  |  |  |  |  |
| 80%                                                                                      | Estimated Quarterly Adjuster Between Annual and Monthly values                             |                      |                                |           |  |  |  |  |  |

## 2.6 Adjusted Interval Control Effectiveness

The table below summarizes the outcome of the application of the EPA four factor analysis and the adjustment related to the enforcement finding. The net result of the control effectiveness is: 49% Annual, 69% quarterly, 84% monthly.

# Table 3: Adjusted Emissions Factors for Various Inspection Intervals for EPAFour factor Formula and Enforcement Adjuster

Ref EPA Table 7-1

|                                                 |            | Period | Uncontrolled<br><u>EF</u> | <u>Enforcement</u><br><u>Adjust</u> | A    | В    | С    | D    | Control<br>Effectiveness |
|-------------------------------------------------|------------|--------|---------------------------|-------------------------------------|------|------|------|------|--------------------------|
|                                                 |            |        | kg/day/comp               |                                     |      |      |      |      |                          |
|                                                 | Gas/Vapor  | Ann    | 0.64                      | 0.7                                 | 0.98 | 0.8  | 0.98 | 1    | 54%                      |
| 10                                              | Gas/Vapor  | Qrtly  | 0.64                      | 0.85                                | 0.98 | 0.9  | 0.98 | 1    | 73%                      |
| Valves                                          | Gas/Vapor  | Мо     | 0.64                      | 1                                   | 0.98 | 0.95 | 0.98 | 1    | 91%                      |
| Va                                              | Lt Liq.    | Ann    | 0.26                      | 0.7                                 | 0.86 | 0.8  | 0.98 | 0.96 | 45%                      |
|                                                 | Lt Liq.    | Qrtly  | 0.26                      | 0.85                                | 0.86 | 0.9  | 0.98 | 0.96 | 62%                      |
|                                                 | Lt Liq.    | Мо     | 0.26                      | 1                                   | 0.86 | 0.95 | 0.98 | 0.96 | 77%                      |
| Pump<br>Seals                                   | Lt Liq.    | Ann    | 2.7                       | 0.7                                 | 0.92 | 0.8  | 0.98 | 0.94 | 47%                      |
|                                                 | Lt Liq.    | Qrtly  | 2.7                       | 0.85                                | 0.92 | 0.9  | 0.98 | 0.94 | 65%                      |
| 5 D                                             | Lt Liq.    | Мо     | 2.7                       | 1                                   | 0.92 | 0.95 | 0.98 | 0.94 | 81%                      |
|                                                 | Gas/Vapor  | Ann    | 3.9                       | 0.7                                 | 0.74 | 0.9  | 0.98 | 0.98 | 45%                      |
| PSV                                             | Gas/Vapor  | Qrtly  | 3.9                       | 0.85                                | 0.74 | 0.9  | 0.98 | 0.98 | 54%                      |
| _                                               | Gas/Vapor  | Мо     | 3.9                       | 1                                   | 0.74 | 0.9  | 0.98 | 0.98 | 64%                      |
| ġ_                                              |            | Ann    | 15                        | 0.7                                 | 0.91 | 0.9  | 0.98 | 0.98 | 55%                      |
| Comp.<br>Seal                                   |            | Qrtly  | 15                        | 0.85                                | 0.91 | 0.9  | 0.98 | 0.98 | 67%                      |
| 3 %                                             |            | Мо     | 15                        | 1                                   | 0.91 | 0.9  | 0.98 | 0.98 | 79%                      |
| nd ect                                          | Average    | Ann    | 1.70E-02                  | 0.7                                 | 0.57 | 0.9  | 1    | 1    | 36%                      |
| Connect<br>ors and<br>OEL                       | From Table | Qrtly  | 1.70E-02                  | 0.85                                | 0.57 | 0.9  | 1    | 1    | 44%                      |
| S 2                                             | 2-4        | Мо     | 1.70E-02                  | 1                                   | 0.57 | 0.95 | 1    | 1    | 54%                      |
| al<br>ed<br>ness                                |            | Ann    |                           |                                     |      |      |      |      | 49%                      |
| General<br>Weighted<br>Average<br>Effectiveness |            | Qrtly  |                           |                                     |      |      |      |      | 68%                      |
| G<br>A<br>Effe                                  |            | Мо     |                           |                                     |      |      |      |      | 84%                      |

The CEs calculated for the LDAR programs have been used for numerous years to report inventory impacts.<sup>10</sup> In fact, CDPHE Form 203 reflects these values for facilities currently performing LDAR in Colorado pursuant to Subpart KKK, Exhibit 7 below.

<sup>10</sup> South Coast Air Quality Management District, Santa Barbara County Air Pollution Control District, San Joaquin Valley Air Pollution Control District, Ventura County Air Pollution Control District and Colorado Air Pollution Control Division use similar values.

#### AIR POLLUTANT EMISSION NOTICE (APEN) & Application for Construction Permit - Fugitive Component Leak Emissions

Permit Number:

Section 06 - Location Information (Provide Datum and either Lat/Long or UTM)

#### 1 Section 07 -Leak Detection & Repair (LDAR) & Control Information

1

| Horizontal Datum | UTM        | UTM Easting or      | UTM Northing or     | Method of Collection for      |
|------------------|------------|---------------------|---------------------|-------------------------------|
| (NAD27, NAD83,   | Zone       | Longitude           | Latitude            | Location Data (e.g. map, GPS, |
| WGS84)           | (12 or 13) | (meters or degrees) | (meters or degrees) | GoogleEarth)                  |
|                  |            |                     |                     |                               |

Section 08 - Emission Factor Information

Exhibit 7

Check appropriate boxes to identify LDAR program conducted at this site: LDAR per NSPS KKK No LDAR program Other:

If LDAR per NSPS KKK with 10,000 ppmv leak definition:

Emission Source AIRS ID:

Monthly monitoring. Control: 88% gas valve, 76% lt. liq. valve, 68% lt. liq. pump
 Quarterly monitoring. Control: 70% gas valve, 61% lt. liq. valve, 45% lt. liq. pump