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Abstract 

This paper simulates the effect of more advanced residential electricity tariffs on household 

adoption of distributed energy resources (DERs). We employ an end-user DER investment and 

operational engineering optimization model, and adapt it to include an economic utility 

function, calibrated to the observed hourly residential electricity consumption data from 2016 in 

the Commonwealth Edison service territory in Chicago, in order to represent household-level 

preferences for electricity consumption. We simulate the effect of a spectrum of electricity 

tariffs, from the status quo flat volumetric tariffs to more sophisticated tariffs that are reflective 

of electricity generation and distribution system costs. We find that tariffs that are more time 

variant lead to greater reductions in coincident peak demands than flat volumetric tariffs, both 

from load shifting as well as from adoption of DERs. Regarding the effect of electricity tariff 

design on DER investments, we find that at current DER purchase costs investments in rooftop 

photovoltaic (PV), batteries and natural gas distributed generators are not privately optimal 

under any of our tariff design scenarios based on current cost levels for electricity and gas in the 

Chicago study area. However, with continued reductions in PV technology costs, rooftop PV may 

see a greater adoption rate under some of the more cost-reflective tariffs. We also demonstrate a 

greater incentive to invest in electrification of household space heating in the form of heat 

pumps under cost-reflective tariffs. These findings provide insights on electricity tariff design 

and the role of DERs in the future decarbonized electricity system, and highlight the need to 

consider region-specific costs and conditions when analyzing the effects of electric tariff reform. 
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1. Introduction 

A major shift is taking place in the electricity industry, where electricity customers are beginning 

to adopt distributed energy resources (DERs) such as rooftop photovoltaic (PV) systems, smart 

appliances and other technologies that allow them to interact with the grid in a different way. 

With these DERs, customers can achieve cost savings on their electricity bills and increase 

flexibility in their consumption patterns, while also helping to drive reductions in carbon 

emissions and other pollutants. Among the most important but sometimes overlooked drivers of 

residential DER adoption are the underlying electricity prices and pricing structure (i.e., 

residential electricity tariff design), because these are the fundamental determinants of the 

electricity cost the customer avoids paying by investing in a DER. Given the decarbonization 

goals of many US states , achieving adoption of DERs can help them meet their climate policy 

goals. Thus, the effect of electricity tariffs on energy consumption and environmental outcomes 

is relevant to the ongoing energy transition toward a decarbonized energy system.  

Electricity tariffs will define the private savings from DER investments and operation for 

consumers, but in turn DERs can also affect aggregate distribution system costs, leading to 

societal benefits. For example, when a rooftop PV system is adopted in a place with high 

network congestion, the local electricity generation can help alleviate the congestion and lower 

distribution system costs by reducing the need to upgrade distribution capacity. On the other 

hand, when rooftop PV systems are concentrated and present at high levels in areas with little 

congestion, the result may be that investments are required to ensure that the network is 

capable of accepting electricity exports. Ensuring that there is investment in DERs, and that they 

are operated in places and at times that maximize social benefits, is important for achieving 

decarbonization goals at lower cost. 

One of the ways in which policymakers can help ensure low-cost decarbonization is to identify 

and implement electricity tariffs that send cost-reflective price signals and thereby align 

customer incentives with system benefits (for further discussions on this issue, see, e.g., Joskow 

and Wolfram 2012, and Revesz and Unel 2020).1 In order to align private incentives with system 

benefits, the prices and tariffs customers face need to reflect the costs for all parts of the 

electricity system. Real-time pricing of electricity supply has long been noted as a potential 

 

1 In this setting, cost-reflective implies that the prices customers face reflect the costs they place on the system. 

Theoretically, the most cost-reflective tariffs would reflect all social and system costs, including the marginal cost of 

electricity generation, social damages from pollution, energy losses, congestion on the grid that may drive new 

capacity investment, and so on. 
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source of efficiency gains by providing private incentives to adjust consumption in a way that 

will increase net system benefits (Borenstein 2005; Borenstein and Holland 2005; Alcott 2011). 

Previous research also shows that it is possible to approximate some of those benefits through 

implementing less granular pricing policies, such as peak-time pricing (Faruqui and Sergici 

2010; Blonz 2016; Mays and Klabjan 2017).2 However, in contrast to time-variant pricing 

reflective of electricity generation costs, there has been less focus on how retail pricing for 

electricity delivery service can be structured to reflect distribution system costs (see Perez-

Arriaga and Bharatkumar 2014 for a detailed description of distribution system costs and how 

tariffs can be structured to reflect these). Therefore, whether previous research and results still 

apply when distribution system costs are also reflected in time-variant pricing structures is an 

open question. Furthermore, much of this research is based on short-term behavioral responses 

to changes in electricity prices and does not reflect more medium- to long-term responses such 

as investment in smart energy technologies and DERs, which provide new opportunities for 

automating the response of electricity load to changes in price. 

Although the effect of electricity price structures on electricity consumption has been studied 

quite extensively, there are few research studies on the effect of tariff design on DER 

deployment and operation. Darghouth et al. (2016) and Boampong and Brown (2018) find that 

retail tariff design is an important factor in the adoption of distributed PV systems, and, 

according to Brown and Sappington (2016a, 2016b, 2017) and Simshauser (2016), can 

theoretically lead to efficient distributed generation deployment. One of the remaining questions 

is whether and to what extent tariff design can lead to more efficient adoption of a portfolio of 

DERs.  

Furthermore, not only can cost-reflective tariffs align customer incentives with system costs, 

they can also help to reduce unintended cross-subsidies between customers who own DERs and 

those who do not (Boampong and Brown 2018). If underlying rates are inefficient and don’t 

accurately reflect costs, the tariff design can lead to DER owners being overcompensated for 

their generation (Eid et al. 2014; Simshauser 2016; Schittekatte et al. 2018). And, because many 

DER owners have higher incomes, lower-income individuals without DERs may be 

disproportionately negatively affected by inefficient tariff structures, which could shift costs 

 

2 It is a central assumption to our analysis that consumers have the proper information to make an economically 

optimal decision, and that they would respond optimally to this information. Some empirical research has provided 

evidence to suggest that electricity consumers respond to average prices rather than marginal or non-linear prices, 

especially in the context of tiered rates, making alternative tariffs less efficient than intended (Ito 2014) and the 

consumers’ behavior suboptimal. However, these non-financial-induced actions are outside the scope of our paper. 
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toward the non-DER-owning customer class (Hledik and Greenstein 2016; Burger et al. 2020). 

Thus, tariff design affects DER adoption and deployment in a way that can have significant 

effects on electricity system costs, as well as distributional implications across different groups 

of electricity users.3  

This paper adds to the literature by analyzing the effect of electricity tariffs — both existing 

inefficient ones and more efficient, cost-reflective options — on DER adoption and use.  

Our main findings demonstrate that, at current electricity prices and levels of costs for DERs, 

many of these technologies are not privately optimal investments.4 For rooftop PV and electric 

heat pumps, we find that the underlying tariff does indeed matter in terms of the incentives it 

creates to invest in these technologies. Although we find that, given the current capital costs of 

PV and current electricity price levels in the Commonwealth Edison (ComEd) service territory, 

rooftop PV is not a profitable investment, when PV costs begin to lower the tariff will strongly 

affect the customer’s incentive to invest, as well as their choice of PV system size. With respect to 

heat pumps, we find that there is an incentive to invest only under the tariff scenario with the 

lowest volumetric rate. We also find that batteries and natural gas distributed generators are not 

profitable to any household in our sample under any of our tariff design scenarios. However, we 

do not model all the benefits these technologies provide (including black start capabilities and 

reliability benefits), and thus are likely underestimating the private incentives to invest in these 

technologies.  

We also find important results related to effects on long-run distribution costs. Our findings 

indicate that all time-variant rates will produce benefits to the distribution system in terms of 

avoided long-run costs by reducing coincident peak maximum demands across households 

(relative to a flat tariff), simply due to changes in consumption patterns. Investment in rooftop 

PV also has the potential to produce large gains in long-run distribution cost reductions, 

although these gains do not vary widely by tariff.  

 

3 Certain cross-subsidies imposed by the utilities are applied consciously in an effort to reduce electricity cost burden 

on low-income customers by shifting the costs towards non-low-income groups, e.g., the CARE program provided by 

Californian utilities, which reduces bills for low-income customers by 20–35%, depending on the utility (see 

https://www.cpuc.ca.gov/care). These types of cross-subsidies are not considered in this discussion; instead, the 

more relevant cross-subsidies we are concerned with are the inadvertent shifting of costs from DER owners to non-

DER owners, especially if the DER owners tend to be richer.  
4 Non-financial incentives likely lead customers toward adopting DERs, such as concern for the environmental 

impacts of consumption and desire for clean local power, among others. However, without more granular data on 

customer demographics, we are unable to capture these sorts of non-financial incentives in our model. 
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The results of this research can help inform electricity market regulators of advantages and 

disadvantages of different electricity tariff designs, and the effects on customers, DER adoption 

and system costs of requiring the utility (i.e., the distribution system operator) to offer one tariff 

design over another. In a separate paper, we analyze the effects of different tariff designs on 

emissions of carbon dioxide, sulfur dioxide and nitrogen oxides (see Unel et al. 2020).  

 

2. Methods and data 

Our methodology allows us to test the effect of electricity prices on DER adoption, 

environmental outcomes, distributional impacts, and network costs, and integrates a simulation 

model of household electricity demand and investment in energy technologies/DERs, a 

reference network model, and an economic dispatch model.  

2.1 Demand Response and Distributed Resources Economics Model (DR-DRE) 

2.0 

The Demand Response and Distributed Resources Economics Model (DR-DRE) 2.0, developed 

at the Massachusetts Institute of Technology Energy Initiative, simulates the effect of different 

electricity tariffs on investment in and operation of DERs, and the resulting hourly loads of each 

end user for the full year. The DER investment options allowed for in DR-DRE 2.0 are rooftop 

solar PV, electric battery storage (non-electric vehicle), electric heat pumps and natural gas-fired 

distributed generation (DG). Tariff values and structures are inputted into DR-DRE 2.0, and 

outputs include DER investment decisions, synthetic hourly load shapes, fuel consumption, 

emissions, and thermal demands from heating, ventilation and air conditioning (HVAC). The 

customer’s new, synthetic load shapes are determined through a cost-minimization algorithm, 

whereby the customer decides on investments and electricity consumption, such as reducing 

their total energy costs in response to the electricity tariff while maintaining a comfortable 

temperature in their home. 

For the purposes of this research project, we updated DR-DRE to include an explicit 

representation of household preferences in the form of a utility function and calibrated the 

parameters in the model to observed ComEd load data.5 Given computational limitations, we 

 

5 The original DR-DRE required the implementation of a dead-band control and a penalization function to control for 

space heating and cooling requirements around a specified set point, resulting in synthetic user profiles that were not 
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created clusters of households with similar usage profiles and generated representative load 

profiles for each cluster. As further described in Bharatkumar et al. (2019), we then used 

weather data to estimate, via regression techniques, the portion of the cluster’s representative 

hourly load that is used for space heating and cooling (which we refer to as thermal load). We 

calculate the resulting non-thermal loads as the difference between observed total loads and 

regression-estimated thermal loads. We then use the resulting non-thermal loads to calibrate 

the model such that the cluster’s representative customer preference parameters create 

synthetic non-thermal loads that closely mimic regression-estimated patterns of non-thermal 

electricity consumption. Furthermore, we calibrate the HVAC system and building materials 

parameters to create synthetic thermal loads that are of similar magnitudes to our regression-

estimated thermal loads. Thus, the model’s synthetic loads will reflect the preference parameters 

specific to the cluster’s representative customer under a baseline tariff scenario with a flat (non-

time varying) volumetric rate. 

We impose net energy metering (NEM),6 which means that the customer receives the retail rate 

for every kWh of injections into the grid in each time period (this is true in both the avoided cost 

sense and for excess generation unused by the household within the hour). Under time-varying 

tariffs, the customer will receive the hourly volumetric portion7 of the rate for any kWhs 

exported during that hour. However, natural gas distributed generators do not receive 

compensation for exports to the grid, as these generators are generally not connected to the grid 

in the same way as solar PV or batteries, nor is there an existing compensation scheme for that 

technology, other than its ability to reduce a customer’s bill. 

In DR-DRE 2.0, the decision to invest in DERs (including rooftop PV, batteries, heat pumps and 

natural gas DG) is made endogenously through a total cost-minimization algorithm subject to a 

utility constraint.  

Importantly, DR-DRE 2.0 deals with heat pumps in a different way than other DERs, because all 

households have some sort of heating option already. Thus, for the heat pump option we assume 

that customers make the decision to invest in a heat pump if their existing boiler is at the end of 

its useful life. Essentially, the model forces the customer to choose between whether to invest in 

 

based on observed load data. The modified version uses preference parameters calibrated to observed loads to 

create a set of hourly synthetic user loads. For an in-depth discussion of the calibration technique and the utility 

function, see Bharatkumar et al. (2019). 
6 We remove the NEM assumption for a sensitivity analysis related to battery adoption; see Table 11. 

7 This will include any volumetric costs, including the cost for supply and distribution, but won’t include fixed costs. 
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electric heating or gas heating in order to minimize total costs (inclusive of the upfront costs and 

lifetime costs for both the gas and electric options). For all other DERs, the decision is whether 

to invest or not; there is no alternative and the investment is not forced. 

For all DERs (besides heat pumps), DR-DRE 2.0 has the customer make the investment if they 

receive a positive net present value (NPV) relative to no investment; NPVs will thus be 

determined by how much DERs can offset costs, how much lifetime revenue they can receive 

through NEM (under a 3% discount rate) and the upfront cost.  

2.2 Creating representative household loads from smart meter data 

Solving DR-DRE 2.0 for hourly time steps over a one-year period takes approximately 30 

seconds. Hence, it would have taken a prohibitively long time to run the model for our full 

sample of more than 40,000 customers. We therefore created clusters of customers based on 

important characteristics of their load profiles, arriving at 45 representative customers. 

2.2.1 ComEd smart meter data 

Our main dataset on customer loads is the 2016 five-digit zip code anonymous advanced 

metering infrastructure (AMI) interval data from ComEd (2020). This dataset provides us with 

half-hour consumption data for most residential and small commercial customers in the ComEd 

service territory, and identifies customer location based on their five-digit zip code and an 

anonymous identifier. The dataset is restricted, however, to remove large, identifiable customers 

using the 15/15 rule: each zip code-level group must contain at least 15 customers, and none of 

those customers may have more than 15% of the total load at that zip code. Customers who 

exceed the 15% rule are dropped from the dataset. In our data subset, this excludes any large 

industrial and commercial customers.  

Because ComEd’s AMI deployment began in November 2009 and was scheduled to take 10 

years, not all residential customers had AMI data during 2016. Therefore, with guidance from 

ComEd engineers we identified three zip codes within the service territory (see Figure 1) that 

resulted in 55,635 residential customers and a very high percentage of full-year coverage. For 

the purposes of our modeling, we keep only customers with a full year’s coverage of data, which 

reduced our sample to 54,412 users.  

 

FIGURE 1 
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ComEd service territory, with the three selected zip codes in purple, 

Chicago, IL 

 

 

 

 

 

 

 

 

 

 

Table 1 shows some summary statistics of the customers within each of the identified zip codes, 

and Figure 2 shows the average load shape during summer and winter (solid red and blue lines, 

respectively), with error bars showing standard deviations.  
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TABLE 1 

Summary statistics of sub-sample ComEd residential customers 

Zip code No. of 

customers 

Total 

demand 

(MWh/yr) 

Peak 

demand 

(kW) 

Single 

family no 

electric 

heat (%)  

Advanced 

metering 

infrastructure 

coverage (%) 

60629 33,593 162,081 50,183 76 82 

60638 22,010 116,286 41,922 83 85 

60652 13,769 82,843 28,529 90 88 

 

FIGURE 2 

Average summer and winter loads 

 

 

Importantly, we did not have information on existing customer-level appliance use or DER 

adoption. However, ComEd engineering staff stated that the adoption levels of solar power were 

negligible in the Chicago region. Thus, we ran a simple test on our sample to look at zero net 

AMI loads (which could correspond to times of solar generation). We found no customers with 

zero net loads during sun hours, and instead found that zero loads were randomly distributed 

throughout the day. These results indicate that it is highly unlikely that anyone owns solar 

panels (although a larger customer with a small panel could potentially not have any zero net 

loads). Thus, we assume that there is no prior adoption of rooftop PV in our sample of 

customers.  

We further restricted the sample to single-family homes without electric heat, for two reasons. 

First, as demonstrated in Table 1, only a very small percentage of customers have electric heat, 
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and given that these customers will have very different consumption patterns, we dropped 

homes with electric heat. Second, because multi-family customers are more likely to be renters 

and less likely to be able to adopt DERs, we dropped customers within the multi-family class. 

However, this reduction allowed us to keep 81% of the total sample of residential customers, 

resulting in 44,185 customers in single-family homes. 

2.2.2 Clustering approach 

To develop clusters of representative customer categories, we first employed VISDOM, a python 

tool used for organizing and creating visualizations of data,8 to create a data dictionary of load 

shapes, based on the observed 44,185 loads. Then, we ran a k-means algorithm9 to cluster the 

customers by the variability in load shapes (i.e., describing the variability of the users’ loads 

across all of VISDOM’s dictionary of load shapes, defined as “entropy”10) and the size of the load 

shapes (at a daily level, during summer peaks and during winter peaks). This resulted in five 

clusters, a description of which is shown in Table 2. 

TABLE 2 

Description of the five initial clusters from k-means algorithm 

Cluster Entropy Daily load 

percentile 

Summer 

mean 

peak load 

percentile 

Winter 

mean 

peak load 

percentile 

No. of 

customers 

in each 

cluster 

1 7.97 0.61 0.87 0.68 16,770 

2 8.01 0.28 0.58 0.31 10,595 

3 7.45 0.69 0.87 0.68 8,630 

4 6.63 0.50 0.63 0.43 2,516 

5 7.48 0.29 0.54 0.27 5,674 

 

We then split each cluster into three different groups based on the temporal location of 

customers’ summer peaks: specifically, if a customer’s summer maximum demands occurred 

 

8 See Kwac et al. (2014) for a description of the VISDOM tool. 
9 For a description of the k-means methodology, see Kwac et al. (2014) and Steinley (2006). 
10 Entropy is defined as the log of the expected probability of load C occurring, thus it is unitless. See Kwac et al. 

(2014) for more details. 
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during peak hours, off-peak hours or shoulder hours.11 To do this, we followed the peak 

definitions as defined by ComEd in their time-of-use tariffs. We then further split those clusters 

into three more groups based on the timing of the winter peaks (peak, off-peak and shoulder). 

This resulted in nine different combinations of each five clusters, or 45 different final clusters — 

as illustrated in Figure 3.12 Appendix B lists the 45 cluster types and number of households 

within each cluster, as well as showing the resulting yearly average load shapes for each cluster. 

In the rest of this paper, we use these 45 clusters to represent 45 customer types with different 

load-shape characteristics. For a more detailed description of the clustering process, see Esparza 

et al. (2019). 

 

FIGURE 3 

Decision tree for clustering 

 

 

 

  

 

11 When we conducted the clustering analysis, we did so with the raw data from the ComEd service territory, selecting 

only homes that have no electric heating. Thus, their maximum demands almost always happen during the summer. 

During optimization, certain households adopt heat pumps (see Results section), but we did not redo the clustering 

approach, even though these households may see a shift to winter maximum demands. In including households that 

later shift to winter peaking in clusters that have summer peaks, we still capture the households’ underlying 

preference for use of air conditioning in the preference parameter calibration. 
12 One extra benefit of this approach is that each household is represented within the cluster that most accurately 

matches its load shapes.  
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2.3 Electricity system and DER technology cost assumptions 

In our tariff design scenarios, we consider not only electricity distribution costs but also the 

upstream costs of electricity transmission and generation.13 The ComEd service territory belongs 

to the wholesale electricity market organized by the regional transmission organization PJM. 

Thus, ComEd (or the retail supplier of the customer’s choice) will pass on costs (potentially with 

administrative markups) from long-term contracts and/or spot market purchases from PJM, as 

well as any transmission, generation capacity and other potential charges. Our data and related 

assumptions on electricity system and technology costs are outlined below. Depending on how 

all the different electricity system cost elements are recovered from residential customers (e.g., 

as flat or time-variant or fixed charges), they may affect incentives to invest in DERs. Our tariff 

design scenarios in the following section are therefore designed to represent both the most 

common ways to recover these costs, as well as the most cost-reflective approach for doing so.  

2.3.1 Distribution network costs 

Embedded costs 

For data on embedded distribution system costs to construct our cost-reflective tariffs, we use 

ComEd’s embedded cost of service study (ECOSS) from December 2015, which identifies the 

amount of revenue collected for each customer class and breaks it down by cost type (customer 

related, meter related, distribution related and distribution taxes).14 As can be seen in Table 3, 

the total cost of service is highest for single-family homes without electric heat, as this class 

makes up the largest percentage of ComEd residential customers. 

 

  

  

 

13 Transmission costs are included as an adder to the volumetric portion of the rate. 
14 All ECOSS are created administratively, and thus the underlying method of applying costs to classes may reflect 

errors or biases in cost allocation. We assume away these biases or errors and allocate the costs to the classes in 

the same manner as applied by the utility.  
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TABLE 3 

2015 ComEd embedded cost of service study by customer class 

Cost category Single family 

no electric 

heat 

Multi-family 

no electric 

heat 

Single family 

with electric 

heat 

Multi-family 

with electric 

heat 

Customer-related 

costs 
$289,282,811 $98,541,853 $5,205,590 $15,950,146 

Metering services 

costs 
$127,931,383 $61,431,608 $1,994,011 $9,220,059 

Distribution-related 

costs 
$702,724,819 $123,414,259 $12,466,799 $27,231,279 

IL electricity 

distribution tax 
$23,358,481 $5,138,087 $824,628 $1,794,492 

No. of customers in 

this class 
27,383,584 13,149,378 426,817 1,973,540 

Sales (million MWh) 20.2 4.4 0.7 1.6 

 

We utilize the information in this table to create the cost-reflective tariffs described in the 

following section. For example, we divide the customer- and metering-related costs by the 

number of customers in that class in order to identify the customer-specific fixed charges, and 

we use distribution-related costs to calculate the residual costs after imposing a distribution 

capacity charge.  

Long-run distribution costs 

As the network is built up to accommodate coincident peak demand,15 the long-run marginal 

costs of the distribution system will depend on the magnitude of the coincident peak demand. 

These long-run marginal costs are not identified in the cost of service studies as they are not 

embedded costs (i.e., costs associated with infrastructure in which the utility has already 

invested); instead, we identify them using a model known as the US-Reference Network Model 

(US-RNM) (Mateo et al. 2019).  

 

15 In many service territories recently there has been an increased need for ramping and flexibility of the system, 

especially with greater adoption of DERs. This has led to what is known as the “duck curve”: a dip in midday demand 

during sunny hours, with a rapid increase in the late afternoon/evening as the sun goes down and demand peaks. We 

do not consider the potential costs of accommodating these ramping or flexibility needs in this paper.  
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US-RNM develops an efficient electricity network based on building footprints of the 

geographical area of interest (in this case, the three zip codes identified in Figure 1),and 

calculates the cost of the network based on a catalog of relevant equipment of the utility under 

study. The network is sized to accommodate active and reactive aggregate peak demand. To 

calculate long-run marginal costs, we run US-RNM multiple times with different levels of 

demand within a 25% range of the observed 2016 peak demand. With each different level of 

demand, US-RNM produces a cost; thus, we use these data points to trace out a curve around 

the observed demand. The slope of the curve ($40/kW-year), as represented in Figure 4, is 

therefore the long-run marginal cost (assuming existing diurnal patterns of consumption16); this 

feeds into the coincident peak demand charge (as described in more detail in the following 

section) in our cost-reflective tariffs.  

FIGURE 4 

Long-run marginal cost of the network 

 

 

  

 

16 As new DERs and increased electrification of transport and heating come online, these patterns may very well 

change. Thus, our results are valid for existing patterns but shouldn’t be extrapolated into future scenarios, such as 

when all vehicles and heating have been electrified.  
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2.3.2 Installed generation capacity system costs 

To identify the marginal cost of generation capacity, we use results from PJM’s capacity market. 

Specifically, we use the Final Zonal Unforced Capacity (UCAP) Prices for the 2015/2016 delivery 

year for January–May 2016, and the 2016/2017 delivery year for June–December 2016. The 

prices are listed in Table 4. 

TABLE 4 

Final Zonal Unforced Capacity (UCAP) Prices in the ComEd service 

territory 

Year Final zonal net load price  

($/MW-day) 

Corresponding  

$/kW-month 

2015/2016 135.81 4.18* 

2016/2017 101.62 3.12† 

* Following ComEd’s methodology, we multiply the resulting price by the residential supply base uncollectible cost factor (SBUF) 

and the incremental supply uncollectible cost factor (ISUF). These charges in 2016 were: ISUF, 0.9936; SBUF, 1.0278 (4.14 was 

the $/kW-month price from the capacity market outcome). The values in the table represent the adjusted values. 

† The $/kW-month price from the capacity market outcome was $3.09, which is very similar to the 2016 UCAP value. 

 

2.3.3 Variable electricity generation costs 

To model electricity supply in our three zip codes of interest, we developed a single-node hourly 

economic dispatch (ED) model parametrized to the ComEd region. The ED model is formulated 

as an optimization problem that minimizes the cost of scheduling generating power units over a 

one-year time horizon, constrained to meeting zonal demand for electricity and taking into 

account the presence of renewable resources, while satisfying a limited number of technical and 

environmental constraints. The technological and economic parameters are based on the 

generation units belonging to the ComEd region as provided by SNLEnergy for 2016. In 

addition, we incorporate metered hourly demand profiles based on the ComEd load zone and 

also renewable generation profiles for the year 2017, both of which can be found in PJM’s data 

management tool.17 This simple model gives us the hourly scheduling of all the generating units, 

as well as operational costs and hourly marginal prices for the system.18 Our ED model can 

 

17 PJM’s Data Miner 2, accessible at http://dataminer2.pjm.com/list. 
18 For more in-depth discussion of the ED model and its results, see Unel et al. (2020). 

http://dataminer2.pjm.com/list
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approximate observed prices quite well, producing a correlation between the two price datasets 

of 0.88 (see Table 8).  

2.3.4 Cost of DER technologies  

For the purchase price of the DERs modeled (rooftop PV, batteries and natural gas DG), we 

gathered data from a variety of sources; see Table 5. 

TABLE 5 

Cost assumption sources for DERs 

DER type Source Cost/kW ($) 

Rooftop PV Fu et al. 2018 2,700 

Residential storage SolarQuotes (2020) 1,055 

Natural gas distributed generators HomeAdvisor (2020)  258 

 

3. Tariff design scenarios 

For our simulations, we designed six different tariff design scenarios. The main tariff elements 

are presented below and further detailed later in this section. Appendix A presents the 

corresponding charges/prices for each tariff design. 

Flat tariff 

 Fixed monthly customer charge 

 Flat volumetric distribution charge 

 Flat volumetric supply charge 

 Demand charge on customer’s total monthly kWs to recover PJM generation 

capacity costs. 

Time-of-use (TOU) tariff 

 Fixed monthly customer charge 

 Flat volumetric distribution charge  

 Volumetric time-of-use electric supply charge (peak hours 3–7 p.m.; shoulder hours 

6 a.m.–3 p.m., 7 p.m.–12 a.m.; off-peak hours 12 a.m.–6 a.m.) 

 Demand charge on customer’s total monthly kWs to recover PJM generation 

capacity costs. 

Critical peak price (CPP) tariff 
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 Fixed monthly customer charge 

 Flat volumetric distribution charge  

 CPP for electricity supply 

o 10 hottest days of the year: CPP during peak hours of the day as identified 

in the TOU rate (3–7 p.m.)  

o 10:1 peak to off-peak price ratio 

 Demand charge on customer’s total monthly kWs to recover PJM generation 

capacity costs. 

Real-time price (RTP) tariff 

 Fixed monthly customer charge 

 Flat volumetric distribution charge  

 Hourly real-time prices on electricity supply 

 Demand charge on customer’s total monthly kWs to recover PJM generation 

capacity costs. 

Cost-reflective rate — fixed monthly charge (CRRf) tariff 

 Fixed monthly customer charge (metering and billing) 

 Distribution critical peak demand charge (based on long-run marginal cost 

estimate) on top 10 ComEd peak hours of the year 

 Hourly real-time prices on electricity supply 

 Demand charge on customer’s total monthly kWs to recover PJM generation 

capacity costs 

 Fixed per customer charge to recover residual costs. 

Cost-reflective rate — volumetric charge (CRRv) tariff 

 Fixed monthly customer charge (metering and billing) 

 Distribution critical peak demand charge (based on long-run marginal cost 

estimate) on top 10 ComEd peak hours of the year 

 Hourly real-time prices on electricity supply 

 Demand charge on customer’s total monthly kWs to recover PJM generation 

capacity costs 

 Volumetric charge to recover residual costs. 

As can be seen in the breakdown above, each tariff has a slightly different implementation of 

either supply or distribution cost recovery. We have designed these scenarios to make it possible 
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to attribute differences in results across the tariffs to individual elements of the tariffs. For 

example, any differences in the flat vs the TOU, CPP and RTP tariffs will be attributed to the 

time granularity of the volumetric supply charges, as all other charges are the same across these 

four scenarios. Although there are more changes to the cost-reflective tariffs relative to the 

others (in terms of the distribution peak demand charge and the extra revenues recovered either 

through a monthly charge or a volumetric rate), both have real-time prices and the combined 

effect of the distribution peak demand charge and the residual cost recovery can therefore be 

derived by comparing against outcomes under the RTP tariff. Furthermore, the difference 

between the two cost-reflective tariffs can be attributed to the difference in residual cost 

recovery, i.e., either through an increase in the volumetric rate or a fixed monthly charge.  

3.1 Flat tariff 

In 2016, the majority of residential customers in the ComEd service territory had a flat 

volumetric rate that did not vary over the course of the day. We therefore assume that all 

customers in our sample were on the basic residential service rate schedule as presented in 

Table 6.19 

 

  

 

19 The ComEd load data do not indicate which rate schedule each customer was on in 2016. 
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TABLE 6 

Basic residential service in 2016 for “single family no electric heat” 

customer class — business as usual scenario 

Tariff portion Price  Resulting fixed variable 

aggregate tariff structure 

Customer charge  $10.53/month Fixed rate  $14.89/month 

Standard metering charge  $4.36/month Variable rate $0.11/kWh 

Distribution facilities charge $0.03156/kWh 

 

Electricity supply charge (summer) $0.05799/kWh 

Electricity supply charge (winter) $0.05865/kWh 

IL electricity distribution charge $0.00116/kWh 

Transmission services charge $0.01122/kWh 

Environmental cost recovery 

adjustment 

$0.00038/kWh 

Energy efficiency programs $0.00345/kWh 

 

We used this flat rate as our business as usual (BAU) scenario to calibrate the preference 

parameters for the utility function in the DR-DRE 2.0 model. However, this BAU volumetric 

supply charge of approximately 6 cents/kWh is higher than a direct pass-through of supply (i.e., 

variable generation) costs: the (load weighted) average supply price in 2016 was 2.9 cents/kWh, 

indicating a markup of approximately 3 cents/kWh. It is possible that this markup may at least 

partially be recovering the costs of installed generation capacity charges from PJM as well as a 

hedging premium in long-term supply contracts, but ComEd does not document this in its 

embedded cost of service study. Thus, in order to ensure that the tariffs are revenue neutral, we 

replace the 2016 supply charges with those generated by the ED model in our flat-rate scenario. 

We thus calculate a flat rate based on the load-weighted average price dictated by the ED model. 

The resulting volumetric supply rate is 2.7 cents/kWh. Thus, none of our rates include a 

volumetric markup.20 To recover the PJM installed generation capacity costs as described in 

Table 4, we include a monthly demand charge that is the same across all tariff design scenarios. 

(Keeping this charge unchanged across scenarios makes any differences in results across rates 

 

20 It is possible that if more cost-reflective rates became the norm, then they would all have the markup. However, as 

existing ComEd TOU and RTP rates do not have this markup, we remove it from all rates. 
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not attributable to the installed generation capacity charge — this is desirable because it is not 

the main focus of our study.)  

For the flat tariff scenario, we use the charges in Table 6, with the exception of the calculation of 

the supply and capacity charges as just described. 

3.2 Time-of-use (TOU) tariff  

Following ComEd’s 2019 Residential Time of Use Pricing Pilot,21 we develop a similar TOU 

tariff, which varies the supply portion over the time of day. To identify peak and off-peak hours, 

we looked at historical prices and loads (pre-2016), and identified that the maximum peak 

revenues would have been collected at 5 p.m. and the minimum at 3 a.m. Thus, we choose a 

four-hour super-peak window around the maximum peak, and a six-hour off-peak window 

around the minimum, resulting in the same peak windows as ComEd’s 2019 TOU rate. 

To identify the rates within the three peak periods, we follow ComEd’s methodology formula, 

which is described in the 2019 Residential Time of Use Pricing Pilot Filing,22 but instead use 

2016 historical real-time prices and loads.23  

TABLE 7 

Time-of-use tariff supply charges  

Period Time of day 
Summer price 

(¢/kWh) 

Non-summer price 

(¢/kWh) 

Super-peak 3–7 p.m. 6.61 5.54 

Shoulder 
6 a.m.–3 p.m., 

7 p.m.–12 a.m. 
3.74 3.46 

Off-peak 12–6 a.m. 1.89 2.23 

 

 

21 See https://www.comed.com/SiteCollectionDocuments/MyAccount/MyBillUsage/CurrentRates/ 

75_Rate_RTOUPP.pdf. 
22 Ibid. 
23 ComEd provides historical load profiles beginning in April 2009 on their website, which provides an average profile 

for each delivery class. We use the residential profile for our analysis, for all dates prior to 2016, accessed July 24, 

2019, https://www.comed.com/MyAccount/MyService/Pages/ARCHIVE/HistoricalLoadProfiles.aspx. 

https://www.comed.com/SiteCollectionDocuments/MyAccount/MyBillUsage/CurrentRates/75_Rate_RTOUPP.pdf
https://www.comed.com/SiteCollectionDocuments/MyAccount/MyBillUsage/CurrentRates/75_Rate_RTOUPP.pdf
https://www.comed.com/MyAccount/MyService/Pages/ARCHIVE/HistoricalLoadProfiles.aspx
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To be consistent across all tariffs, we impose the same monthly demand charge to recover the 

marginal PJM generation capacity costs as in the flat tariff, and include in the volumetric rate 

the distributional facilities charges24 and volumetric taxes/fees as defined in Table 6. 

3.3 Critical peak price (CPP) tariff 

For this tariff, we identify the top 10 hottest days of the year and assume that these will be the 

critical peak event days. We implement a CPP during the peak hours of the day as identified in 

the TOU rate (3–7 p.m.). These 10 hottest days (as shown in Figure A1 in Appendix A, blue bars) 

are also very much correlated with high-demand and high-price times. To ensure a high ratio 

between peak and off-peak prices, and following what other utilities have done for CPP prices,25 

we impose a price ratio of 10:1 on supply prices, where the price in the off-peak period is 

$0.024/kWh and the critical peak price is $0.24/kWh. These values were created based on the 

hourly prices generated by our ED model. The formula we use to calculate the off-peak price is 

as follows: 

𝑁𝑜𝑛 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑒𝑎𝑘 𝑝𝑟𝑖𝑐𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑝𝑝𝑙𝑦 𝑐𝑜𝑠𝑡

(10 ∗ 𝐴𝑓 ∗ 𝐿𝑜𝑎𝑑𝐶𝑃𝑇 + 𝐴𝑓 ∗ 𝐿𝑜𝑎𝑑𝑁𝑃𝑇)
 

  where: 

 Af= Adjustment factor (1.08) 

 LoadCPT = Load during critical peak hours (3–7 p.m. on 10 hottest days) 

 LoadNPT = Load during non-critical peak hours 

 Total supply cost = ∑ (𝐶𝑜𝑚𝐸𝑑𝐿𝑜𝑎𝑑𝑛 ∗  𝐸𝐷 𝑟𝑒𝑎𝑙 𝑡𝑖𝑚𝑒 𝑝𝑟𝑖𝑐𝑒𝑛)8760
𝑛=1   

 

The capacity demand charge and volumetric adders are included in the same way as in the TOU 

and flat tariffs. 

 

24 The one exception is in the cost-reflective rate, which imposes a demand charge for the distribution costs rather 

than the flat volumetric distribution facilities charge. 
25 See Fenrick et al. (2014) for a review of critical peak pricing rates across multiple utilities.  
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In our CPP scenario we implicitly assume that the utility informs the customer through an 

email, phone or text notification that the following day will be a high-priced day. Thus, there is a 

clear signal to the customer that they can respond to.26 

3.4 Real-time price (RTP) tariff 

Following ComEd’s 2016 Basic Electric Service Hourly (BESH) Pricing Tariff,27 we maintain the 

distribution portion of the bill fixed, except for the customer charge, which was slightly higher 

for those customers ($10.92), and charge customers the hourly supply prices based on our ED 

model’s 2016 real-time prices.28 Table 8 shows summary statistics of observed hourly prices and 

those estimated by the ED model for the entire year, and the correlations across the datasets. 

This table demonstrates that the ED model produces prices that are very much in line with the 

observed prices, with 0.88 correlation.  

 

TABLE 8 

Hourly electricity prices 

 

Economic dispatch 

hourly prices 

($/MWh) 

PJM day-ahead 

hourly prices 

($/MWh) 

Mean 25.8 26.1 

Standard deviation 11.8 14.5 

50th percentile 24.1 23.4 

Correlation 0.88 

 

The capacity demand charge and volumetric adders are included in the RTP tariff in the same 

way as in the CPP, TOU and flat tariffs.  

 

26 In practice, the utility may not accurately predict the 10 hottest days of the year, but for modeling purposes we 

assume perfect foresight. Furthermore, in practice, utilities choose CPP days when they expect very high demand 

from an upcoming hot day. Thus, it is likely that many of the days we chose would also have been chosen by the 

utility. 
27 See https://www.comed.com/SiteCollectionDocuments/MyAccount/MyBillUsage/CurrentRates/05_RateBESH.pdf. 
28 Following ComEd’s methodology for passing through real-time prices to customers, these need to be adjusted by 

the base uncollectible cost factor (SBUF), the incremental supply uncollectible cost factor (ISUF) and the distribution 

loss factor (DLF) (see Rate BESH Tariff Filing). In 2016, ISUF was 0.99, SBUF 1.02 and DLF 0.0636. 
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3.5 Cost-reflective rate — fixed monthly charge (CRRf) tariff 

ComEd’s tariffs all present a volumetric rate for distribution cost recovery, yet these types of 

tariffs do not reflect the structure of the costs associated with delivering electricity to customers. 

Thus, we develop a cost-reflective rate that assigns costs to the tariff based on cost causation 

from information pulled from the 2015 ComEd ECOSS. 

The first part of the tariff is a fixed charge, to collect costs that do not vary over time or demand 

— for example, customer-specific charges due to metering, billing and so on. From the cost of 

service study, we use the costs associated with what is described as customer-related and 

metering services, and identify the fixed charge to be $15.24. 

The second part of the tariff is a distribution system demand charge, to collect costs that vary 

with coincident peak demand. To estimate the size of this charge, we run US-RNM as described 

in the previous section; this produces the long-run marginal cost, which is defined as the slope 

of the curve ($40/kW-year) in Figure 4. We apply this charge as a coincident critical peak 

demand charge on the top 10 peak hours of the year; the resulting distribution demand charge is 

thus $4/kW applied 10 hours per year (see Figure A1 in Appendix A for the days of the year with 

demand charges). Similar to the CPP tariff scenario, we assume that the utility will announce 

that the following day will be a high-priced day, such that the customer is able to respond. 

Although the utility may not know a priori which 10 hours will be the hottest in the year, our 

modeling assumes perfect foresight and that the utility was able to predict accurately the hottest 

hours of the year and signal this information to the customer.  

The supply portion of the cost-reflective tariff consists of an hourly rate as defined by 2016 ED-

modeled real-time prices. The PJM generation capacity demand charge is applied in the same 

way as the other tariffs. 

Finally, we calculate all residual required distribution network revenues from the ComEd cost of 

service study after applying the fixed charge and distribution demand charge to customer 

demands. In a truly cost-reflective tariff, the residual revenues should be recovered through a 

fixed monthly charge, such as to not distort incentives. Thus, our cost-reflective tariff divides the 

residual revenues by the number of customers to attain the residual monthly charge. 

3.6 Cost-reflective rate — volumetric charge (CRRv) tariff 

As an alternative to the cost-reflective tariff described above, we create a slightly different tariff, 

changing how the utility recovers the residual revenues. Instead of applying the residual 
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revenues as a fixed charge, we calculate a flat volumetric distribution charge by dividing the 

residual revenues by total kWhs demanded over the course of the year. Thus, the tariff will have 

five parts: a fixed charge, a volumetric rate that doesn’t vary over time, a distribution network 

capacity-coincident critical peak demand charge, a generation capacity demand charge, and a 

real-time price.  

 

4. Results  

The results of our tariff scenario runs for each of our 45 representative customers include 

information on both adoption of DERs (including the size of the DER) as well as load shape. 

Below, we summarize some of our main findings related to adoption of DER, how these vary 

across clusters, and how the underlying tariff and level of DER technology costs affect these 

adoption rates. 

4.1 Effect on rooftop PV adoption 

Our model demonstrates that there are two major economic drivers for investment in rooftop 

PV: total upfront cost and the payment per kWh of PV generation. The results show that under 

current rooftop PV investment costs (including the 30% investment tax credit), no clusters will 

invest in PV, regardless of the underlying electricity tariff. This is likely due to a combination of 

factors, including low solar irradiation in Chicago, but also because the high upfront costs and 

low volumetric supply prices that are prevalent in the ComEd service territory reduce the 

incentive to invest under NEM (where the customer implicitly gets paid the volumetric price in 

the relevant hour for the PV-produced electricity). To that end, we run some sensitivity analyses 

to identify the effect of the two economic incentives: volumetric prices and upfront capital costs. 

Regarding the volumetric rates, we run the simulation under the observed flat rates (which have 

a 3-cent markup on the volumetric portion) and find greater levels of adoption. Intuitively, in 

locations where volumetric prices are higher or in rates where more costs are recovered through 

the volumetric rather than the fixed portion of the rate, there would be a greater incentive to 

invest in PV. 

We next test how the adoption rates differ under lower PV investment costs. Because we do not 

find adoption at current levels of PV system costs (which are net of a 30% federal subsidy on all-

in costs), we run a number of simulations reducing the all-in cost of PV capacity, from 70% 
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(which is BAU) to 40% of current costs. These alternative cost scenarios reflect the fact that PV 

costs have been decreasing significantly over time and will likely continue to drop over time.  

Table 9 shows the percentage of current upfront costs necessary to achieve PV investments, 

separated out by tariff. We also show the resulting adoption rate under the lower PV costs, and 

the average size of the PV system adopted (conditional on adoption). 

 

TABLE 9 

Fraction of current PV costs required to achieve PV investment 

Rate 

Alternative cost 

scenario (%)*  

Average size of PV 

(kW)† 

Adoption rate (% 

of households) 

Flat 50 1.9 85 

TOU 50 4.2 100 

CPP 50 0.3 28 

RTP 50 4.2 100 

CRRv 40 1.4 73 

CRRf N/A N/A 0 

* Alternative cost scenario represents the percentage of non-subsidized PV costs required for financial incentive to invest. 

† Conditional on adoption. 

These results demonstrate that, in order to achieve PV adoption, different tariffs will require 

different reductions in cost. Given the lower bundled volumetric rates under CRRf compared to 

RTP, the reductions need to be larger (total costs would need to be 40% of current all-in costs) 

in order to achieve PV adoption. With CRRf tariffs, which include a fixed charge used to recover 

residual costs, the bundled volumetric rate is even lower than under CRRv; thus, we find that PV 

costs would need to be even less than 40% of existing all-in costs in order to achieve PV 

adoption.29 Furthermore, we find different size of investments across the different tariffs, with 

TOU and RTP leading to adoption of larger PV systems.  

This demonstrates that tariffs do indeed affect PV adoption incentives, and that there is an 

interplay with the investment cost of the PV system, such that, under certain tariffs, the cost of 

PV would not have to come down as much in order to achieve greater adoption. We find that the 

 

29 We do not run the analysis on costs below 40% of all-in costs.  
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two time-variant tariffs with higher volumetric prices (TOU and RTP) lead to the greatest level 

of adoption and that customers also invest in larger PV systems. The reason for this is that 

volumetric rates are higher during the hours of the day when the PV systems generate 

electricity.  

4.2 Effect on battery adoption 

We find that no clusters invest in batteries under any tariff design scenario, even at 10% of 

current capital costs. This is likely due to the fact that the price differences across time-periods 

in the volumetric rate are not large enough to make it profitable for the customer to invest in a 

battery in order to arbitrage.30  

To further explore the decision to invest in batteries, we conduct three sensitivity analyses. First, 

we adjust the upfront capital cost. We find that when the capital cost drops to 5% of current 

costs, 8% of customers will adopt under the TOU rates as described in Table 7. Our second 

sensitivity analysis is to make the TOU rate more extreme, whereby the super-peak charge 

recovers twice the system costs of the original TOU rate; we label this TOU2. The new TOU 

prices are listed in Table 10. 

 

  

 

30 Importantly, our demand charge rates are not modeled in the same way as most commonly imposed demand 

charges, which charge customers for their monthly peak demand, either coincident or non-coincident with pre-set 

hours of the day. Instead, our demand charges are backward looking, which means that they are imposed only on a 

few hours of the year. It’s possible that with a TOU demand charge, which charges customers for their monthly 

maximum peak demand during peak hours of the day, the arbitrage signal would be high enough to make battery 

investment profitable. However, given modeling restrictions, we do not model this sort of demand charge.  
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TABLE 10 

TOU2 supply prices 

Period Price, summer (¢/kWh) Price, winter (¢/kWh) 

Super-peak price 7.92 7.03 

Shoulder price 3.33 3.08 

Off-peak price 1.68 1.98 

 

As can be seen in Table 10, the price is 1.3–1.5 cents/kWh higher during the super-peak period 

by (depending on the season) relative to our previously defined TOU rate, and lower by 0.21–

0.42 cents/kWh in the off-peak hours (depending on season and time of day). Under this tariff, 

with a greater peak to off-peak ratio, we find that adoption of batteries increases to 44% under 

the 5% upfront battery cost scenario.  

Finally, we conduct a third sensitivity analysis, related to removing NEM. Combined with a flat 

volumetric rate, NEM allows the consumer to use the grid as a battery and removes the arbitrage 

potential that batteries can provide to the household. Instead of paying customers the hourly 

retail rate (as in NEM), we instead impose a flat export price, whereby the customers will receive 

the yearly average ED supply price as an export (2.58 cents/kWh). This reflects real-world 

situations where NEM has been replaced by an export price that reflects the utility’s avoided 

hourly cost (i.e., the supply cost; see Revesz and Unel 2017 for examples of where this has been 

implemented). Under the no-NEM scenario, we see battery adoption when the upfront cost is 

10% of the current cost, with both TOU and TOU2 rates.  

 

Table 11 

Results with no NEM 

Rate PV cost (%) 
Battery 

cost (%) 

PV 

adoption 

(%) 

Battery 

adoption 

(%) 

Net 

load 

(kWh) 

PV 

size 

(kW) 

Battery 

size 

(kW) 

TOU 10 5 100 100 1,154 5.2 2.3 

TOU 10 10 100 99 1,887 5.2 0.8 

TOU 50 50 69.5 0 5,300 1 0 

TOU2 10 5 100 100 1,154 5.2 2.3 

TOU2 10 10 100 98.8 1,937 5.2 0.8 

TOU2 50 50 69.4 0 5,371 0.9 0 
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FIGURE 5 

Loads under NEM and no-NEM scenarios  

 

 

The changes to loads, PV generation and battery charging under NEM and no-NEM scenarios, 

and at less than 5% of upfront battery costs, are also presented graphically in Figure 5. The 

consumption line shows total thermal and non-thermal loads demanded by the household. The 

figure shows that with NEM, batteries are adopted only under the TOU2 rate, and they are 

charged only during off-peak hours (12–6 a.m.). When we remove NEM, battery charging takes 

place during solar hours, as customers use the excess generation from their PV systems rather 

than exporting to the grid.  

Thus, we provide evidence that the incentive to invest in batteries increases under significantly 

lower upfront costs, more extreme price ratios in TOU or a lower flat price on exports to the 

grid. These findings indicate that the incentive to invest in batteries is likely to be strengthened 

over time. For example, battery costs have come down significantly over the past decade and are 

expected to continue to do so (Henze 2019). Furthermore, utilities may begin to implement both 

TOU rates with higher ratios (given the observed higher reductions in peak demand under 

higher price ratios; see Lessem et al. 2017), as well as actively identifying alternatives to NEM 

(see, for example, Revesz and Unel 2017 for a discussion of the regulatory trends moving toward 

NEM alternatives). Thus, these trends highlight that battery adoption may become more 

profitable over time. 

4.3 Effect on electric heat pump adoption 
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The model chooses between investing in an electric heat pump and a gas heater given the 

underlying costs and tariffs. We find that the gas heater is chosen almost always, except under 

the CRRf tariff. This is because the volumetric rate is quite low under this tariff, making the 

investment in electric heating much more profitable for the consumer.  

However, we find that almost 20% of households do not invest in an electric heat pump, even 

under CRRf. Those who do so are larger households with an average yearly load and maximum 

demands that are twice as large as those of customers who choose not to invest. This is intuitive, 

as large customers have a greater incentive to offset a larger heating need by choosing a cheaper 

fuel-cost option, and the upfront capital cost of a heat pump makes up a relatively smaller share 

of total costs. 

It is important to point out that although nobody invests in PV under CRRf, the tariff does 

provide the incentive to invest in another clean technology — namely, heat pumps. This is an 

important finding, since the building sector contributes significantly to carbon dioxide 

emissions in the US (almost 9% of the US total greenhouse gas emissions in 2015; Leung 2018), 

and thus electrifying this fossil-fuel-based heating system may help to provide large 

environmental benefits once the US electricity mix becomes cleaner.  

4.4 Effects on natural gas distributed generator adoption 

We do not see adoption of natural gas distributed generators under any tariff. Part of this is due 

to our assumption that the customer will not receive payments for exports to the grid; rather, 

the benefit of this investment comes from avoiding using grid electricity during periods with 

high demand charges and/or volumetric rates. However, even for cost-reflective tariffs that have 

significant demand charges during certain hours of the year, investing in these systems is not 

profitable due to the high upfront costs of a DG system 

Importantly, our simulations do not model other benefits associated with these types of DG 

investments, such as reliability benefits and black start capability. Although this is generally the 

reason these systems are adopted in the residential sector, our model is unable to capture these 

alternative benefits, and thus likely underestimates the incentive of households to invest in this 

technology.  

4.5 Combined effect on distribution system long-run costs 
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Moving from a flat tariff to a more time-variant, cost-reflective tariff causes two different effects: 

a consumption shift, and an incentive to invest in DERs. With respect to the consumption 

pattern shift, customers may change their demand in response to the new, underlying prices 

under a new tariff. In a scenario where nobody invests in PV or batteries, the overall effect is 

exclusively from this consumption. 

Figure 6 shows how average yearly loads change under different tariffs and PV cost 

assumptions. The top row shows the average yearly loads under BAU costs of PV, which includes 

the 30% investment tax credit (thus, it is listed as 70% cost). The bottom row shows the average 

yearly loads under a scenario in which the upfront cost of PV is lower, specifically at 40%.  

 

FIGURE 6 

Average yearly loads under different tariffs and PV cost assumptions 

 

Note: the top row shows the loads under BAU PV cost scenarios (70% of current investment cost with a federal tax credit); the 

bottom row shows the results under a lower-cost scenario (specifically, 40% of current non-subsidized PV costs). 

These figures show graphically the impact of the interaction of PV investment with the tariff. In 

the BAU PV cost-assumption scenario — in which we find that, given high upfront costs, nobody 

invests in PV, batteries or DG31 — tariffs that incorporate some form of peak-time pricing (i.e., 

TOU and CPP) lead to reductions in demand during the set peak hours.  

 

31 Investments in heat pumps are made under CRRf, but because this investment is not optional, we assume that the 

no-investment case includes the ability to have a heat pump. 
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When customers begin to invest in PV because of reductions in cost (bottom panel of Figure 6), 

we see that net demand bottoms out during sunny hours.  

Both of these effects — reductions in peak demand due to peak prices and reductions in net 

demand due to PV exports — will have an impact on distribution system network costs. 

However, the ability of these shifts in consumption to affect distribution system costs depends 

on to what extent that shift reduces maximum coincident peak demands. Any reduction in 

maximum coincident peak demand (as defined by the consumption during the 1o hours of the 

year with the highest peak demand) between the flat tariff and all other tariff scenarios is the 

benefit to the distribution system of moving toward a more cost-reflective tariff. Table 12 below 

details the (cluster-size weighted) average change in coincident max demands when moving 

from a flat tariff to all other tariffs. We then multiply the change in maximum coincident peak 

demand by the long-run marginal cost and by the number of households in our sample in order 

to calculate the avoided cost on the distribution system. 32 We also present this avoided cost in 

terms of $/kWh avoided in the final column of the table; to put this into context, consumption 

from single-family homes in the ComEd service territory in 2016 cost the grid $0.035/kWh33.  

 

  

 

32 This implies an assumption that all households face the same rate.  
33 To reach this $/kWh cost, we divide the total 2016 embedded cost of service for single-family homes by the total 

kWhs they consumed in 2016. 
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TABLE 12 

Effect on distribution system from moving from a flat tariff  

Tariff Average reduction 

in coincident 

maximum 

demands (kW) 

relative to flat 

tariff 

Avoided cost on the 

distribution system from 

consumption pattern changes 

($) 

$/kWh avoided 

TOU 0.21 366,000 0.001  

CPP 0.23 400,000 0.001  

RTP 0.11 191,000 0.000  

CRRv 1.53 2,709,000 0.009  

CRRf 1.55 2,741,000 0.010  

 

As can be seen in Table 12, all time-variant tariffs produce reductions in average maximum 

coincident peak demands relative to a flat tariff, even without PV investment. The largest 

benefits in terms of shifted consumption come from implementing the cost-reflective tariffs, as 

these are the ones that provide the largest incentives for households to reduce their coincident 

demand, given the imposition of a distribution critical peak demand charge. 

Investment in DERs will also affect coincident maximum demands, although under current DER 

cost assumptions we do not see investments (other than in heat pumps under CRRf). However, 

when DER costs are much lower, investments are made. Thus, in Table 13 we detail the change 

in average coincident maximum demands, by tariff, between a BAU cost scenario and a 40% 

cost scenario. In this 40% cost scenario, investments in PV are made by almost all clusters (see 

Appendix C), except in the case of CRRv (where only 73% of clusters invest) and CRRf (where no 

clusters invest). We then calculate the effect on distribution system costs in the same way as in 

Table 12. As can be seen in this table, the $/kWh avoided can be up to seven times larger for 

certain tariffs than when there is no investment in PV (as shown in Table 12). 
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TABLE 13 

Effect on distribution system from investing in PV under 40% all-in PV cost 

Tariff Average 

reduction in 

coincident 

maximum 

demands (kW) 

from 

investment 

Avoided costs on 

the distribution 

system from PV 

investment 

Total avoided 

costs ($) 

$/kWh 

avoided 

from load 

shifting 

and pv 

investment 

Flat 

rate 

0.91 $1,608,000 1,608,000 

0.005  

TOU 0.88 $1,561,000 1,927,000 0.006  

CPP 0.92 $1,622,000 2,022,000 0.007  

RTP 0.88 $1,553,000 1,744,000 0.006  

CRRv 0.34 $600,000 3,309,000 0.012  

CRRf — — 2,741,000 0.005  

 

These reductions in coincident peak demand compare outcomes with and without DER 

investment under the same tariff scenario. Thus, the total effect on avoided distribution system 

costs from investing in DERs and moving away from a flat tariff is the sum of the results from 

the second columns in Tables 12 and 13. 

Most tariffs produce similar additional avoided distribution system costs from DER investment, 

although CPP results in the largest avoided costs. The smallest additional effect from DER 

investment comes from the cost-reflective tariffs, due to the fact that there is less investment in 

CRRv (and none in CRRf). The overall benefits are largest under the most cost-reflective tariffs.  

The benefits are large for a region comprising three zip codes, but it is important to note — as 

can be seen by comparing Tables 12 and 13 — that the largest benefits in avoided system costs 

are achieved by moving from a flat rate to a cost-reflective tariff, rather than from DER 

investment. Furthermore, we do not consider any increased system costs due to potential 

distribution capacity investments needed to support the presence of new rooftop PV; depending 

on the concentration of PV systems in a specific area, these investments may be quite large. 

Thus, these avoided cost estimates indicate only some of the benefits investments in PV could 

provide, without quantifying any of the potential associated distribution system cost increases. 

Nevertheless, unless these unquantified distribution system costs of PV integration are large, 
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these reductions in avoided system costs could ultimately result in decreased electricity tariffs in 

the long run, as revenue requirements drop as a result of reduced investment needs. 

 

5. Discussion and conclusion  

In this paper, we use an economics-engineering simulation model to analyze the effects of more 

granular and time-variant residential electricity tariffs on changes in electricity demand and 

investment in DERs. We analyze tariffs from the least to the most granular in terms of time 

variation, including TOU, CPP and RTP rates, as well as creating two cost-reflective tariffs based 

on ComEd’s embedded cost of service studies.  

We run these six different tariff design scenarios for each of our 45 representative customers, in 

addition to varying our assumptions on DER investment costs. First, we assume current all-in 

costs for DERs, including the 30% US investment tax credit on rooftop PV and battery storage.  

Under the BAU PV cost scenario, we find that investments in rooftop PV, batteries and natural 

gas distributed generators are not privately optimal. However, we quantify an important 

reduction in peak demands through moving away from a flat tariff and towards more time-

variant, cost-reflective tariffs, thereby significantly reducing long-run distribution costs. We find 

that the largest gain in avoided distribution system costs is achieved with cost-reflective tariffs, 

which include a distribution critical peak demand charge that is applied only on the highest cost 

hours of the year. We also find that the cost-reflective tariff with the lowest volumetric rate 

results in the adoption of heat pumps. This result illustrates that cost-reflective electricity tariffs 

can be an important driver of beneficial electrification in the building sector and thereby 

contribute to reductions in carbon dioxide emissions — especially as the US electricity mix 

becomes cleaner over time. 

When considering lower costs for DER technologies, we find that PV costs would have to be 

approximately 50% of current investment costs (thus, a 20% reduction after the investment tax 

credit) to achieve investments across all tariffs with the exception of the cost-reflective tariffs, 

which require even greater reductions in PV costs to make the investment profitable to 

households. This is due to the fact that both of these tariffs recover distribution costs in a non-

volumetric manner, thereby reducing the volumetric rate and the potential revenues from PV 

exports to the grid. We find that TOU and RTP tariffs require the lowest reduction in costs 

(50%) to ensure 100% investment in rooftop PV across all our representative customers.  
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With respect to battery investments, we find that the incentive to invest in this technology is 

increased by massive reductions in battery upfront costs (to 5% or 10% the current costs), the 

removal of NEM, and a steeper price difference during peak and off-peak hours.  

A limitation of this analysis is that it takes electricity use and consumption preferences in the 

Chicago area in 2016 as a point of departure. The electricity system of the future will, through 

electrification of the heating and transport sector, need to accommodate new electricity services 

and end uses not considered here, such as electric vehicle (EV) charging. Another related 

dimension to consider in future research is the decoupling of electricity consumption and energy 

services that could be made available by battery and thermal storage in vehicles and buildings.  

Our findings indicate that more granular time-variant rates and cost-reflective rates can help 

reduce coincident peak demand and associated distribution system costs, but that they are 

unlikely to lead to widespread DER deployment given current DER technology costs and the 

electricity and gas prices considered here for our Chicago study area.34 Our findings therefore 

also highlight the need to consider region-specific costs and conditions when analyzing the 

effects of electricity tariff reform, as well as future energy services such as widespread EV 

charging. 

  

 

34 As electricity prices increase, the financial case for investing in PV also grows. This implies that in states such as 

California and Hawaii, where the retail rate is significantly high, the likelihood of investing is much larger; this has 

played out in California, where with up to almost 45% of all homes have rooftop PV (Gavop 2019).  
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Appendix A: Tariff scenarios 

 

Tariff Fixed 

charge 

($/month) 

Volumetric 

charges 

($/kWh) 

Demand 

charge 

($/kW) 

Peak 

periods 

Flat rate 14.89 0.075 4.21 (Jan–

May) 

3.12 (Jun–

Dec) 

N/A 

TOU 14.89 0.07–0.11 

(depending on 

time of day and 

season) 

4.21 (Jan–

May) 

3.12 (Jun–

Dec) 

Super-peak: 3–

7 p.m. 

Off-peak:12–

6 a.m. 

Shoulder: 6 a.m.–

3 p.m., 7 p.m.–

12 a.m. 

CPP 14.89 0.072–0.287 

(depending on 

time of day) 

4.21 (Jan–

May) 

3.12 (Jun–

Dec) 

3–7 p.m. on top 

10 hottest days of 

the year 

RTP 15.28 Real-time price 

for supply 

4.21 (Jan–

May) 

3.12 (Jun–

Dec) 

N/A 

CRRf 33.18 Real-time price 

for supply 

$4/kW applied 

on top 10 

peak hours of 

the year;  

4.21 (Jan–

May) 

3.12 (Jun–

Dec) 

Variable peak 

hours of 

year/month  

CRRv 15.24 Real-time price 

for supply + 

$0.024/kWh 

$4/kW applied 

on top 10 

peak hours of 

the year;  

4.21 (Jan–

May) 

3.12 (Jun–

Dec) 

Variable peak 

hours of 

year/month 
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FIGURE A1 

Number of high-priced hours per day across the year (CPP and CRR) 
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Appendix B: Clusters 

Cluster description No. of households 

Summer off-peak, winter off-peak, cluster 1 51 

Summer off-peak, winter off-peak, cluster 2 81 

Summer off-peak, winter off-peak, cluster 3 42 

Summer off-peak, winter off-peak, cluster 4 60 

Summer off-peak, winter off-peak, cluster 5 38 

Summer off-peak, winter peak, cluster 1 95 

Summer off-peak, winter peak, cluster 2 101 

Summer off-peak, winter peak, cluster 3 50 

Summer off-peak, winter peak, cluster 4 63 

Summer off-peak, winter peak, cluster 5 27 

Summer off-peak, winter shoulder, cluster 1 320 

Summer off-peak, winter shoulder, cluster 2 301 

Summer off-peak, winter shoulder, cluster 3 192 

Summer off-peak, winter shoulder, cluster 4 167 

Summer off-peak, winter shoulder, cluster 5 82 

Summer peak, winter off-peak, cluster 1 243 

Summer peak, winter off-peak, cluster 2 127 

Summer peak, winter off-peak, cluster 3 186 

Summer peak, winter off-peak, cluster 4 101 

Summer peak, winter off-peak, cluster 5 53 

Summer peak, winter peak, cluster 1 2976 

Summer peak, winter peak, cluster 2 2038 

Summer peak, winter peak, cluster 3 1844 

Summer peak, winter peak, cluster 4 1218 

Summer peak, winter peak, cluster 5 535 

Summer peak, winter shoulder, cluster 1 4655 

Summer peak, winter shoulder, cluster 2 2573 

Summer peak, winter shoulder, cluster 3 2486 

Summer peak, winter shoulder, cluster 4 1528 

Summer peak, winter shoulder, cluster 5 611 

Summer shoulder, winter off-peak, cluster 1 266 

Summer shoulder, winter off-peak, cluster 2 181 

Summer shoulder, winter off-peak, cluster 3 198 

Summer shoulder, winter off-peak, cluster 4 131 

Summer shoulder, winter off-peak, cluster 5 86 

Summer shoulder, winter peak, cluster 1 2262 
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Summer shoulder, winter peak, cluster 2 1578 

Summer shoulder, winter peak, cluster 3 1180 

Summer shoulder, winter peak, cluster 4 843 

Summer shoulder, winter peak, cluster 5 343 

Summer shoulder, winter shoulder, cluster 1 5902 

Summer shoulder, winter shoulder, cluster 2 3615 

Summer shoulder, winter shoulder, cluster 3 2452 

Summer shoulder, winter shoulder, cluster 4 1563 

Summer shoulder winter shoulder cluster 5 741 

 

Figure B1 presents the yearly loads for all 45 clusters, demonstrating variability in timing of the 

peak load, as well as magnitude of total loads. 

 

FIGURE B1 

Yearly average load shape by cluster 
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Appendix C: Investments in DERs by cost of PV 

 

Tariff

Share of current 

CAPEX Mean energy bill

PV adoption 

rate

Mean PV size 

(kW)

Mean total net 

load

Heat pump 

adoption rate

Mean heat pump 

size (kW)

BAU flat rate 70% 1,028$              0% N/A 6,685 0% N/A

60% 1,028$              0% N/A 6,685 0% N/A

50% 795$                  85% 1.9 3,711 0% N/A

40% 512$                  100% 4.3 -53 0% N/A

Time of use 70% 1,095$              0% N/A 6,733 0% N/A

60% 1,095$              0% N/A 6,733 0% N/A

50% 513$                  100% 4.2 94 0% N/A

40% 513$                  100% 4.2 92 0% N/A

Critical peak price 70% 1,016$              0% N/A 6,707 0% N/A

60% 1,016$              0% N/A 6,707 0% N/A

50% 975$                  28% 0.3 6,176 0% N/A

40% 512$                  100% 4.3 -110 0% N/A

Real-time price 70% 1,034$              0% N/A 6,721 0% N/A

60% 1,034$              0% N/A 6,721 0% N/A

50% 517$                  100% 4.2 183 0% N/A

40% 517$                  100% 4.2 181 0% N/A

Cost-reflective rate 

— fixed monthly 

charge 70% 894$                  0% N/A 6,871 0% N/A

60% 894$                  0% N/A 6,871 0% N/A

50% 894$                  0% N/A 6,871 0% N/A

40% 737$                  73% 1.6 4,370 0% N/A

Cost reflective rate 

— volumetric 

charge 70% 798$                  0% N/A 12,242 83% 5103

60% 798$                  0% N/A 12,242 83% 5103

50% 798$                  0% N/A 12,242 83% 5103

40% 798$                  0% N/A 12,242 83% 5103  


