Appendix A: Climate Change Impacts

Submitted with Comments by:
the States of California, Connecticut, Delaware, Hawaii, Iowa, Illinois, Maine, Maryland, Minnesota, North Carolina, New Jersey, New Mexico, New York, Oregon, Rhode Island, Vermont, and Washington, the Commonwealths of Massachusetts, Pennsylvania, and Virginia, the District of Columbia, and the Cities of Oakland, Los Angeles, San Francisco, San Jose, and New York on

the Environmental Protection Agency’s and the National Highway Traffic Safety Administration’s Joint Proposed “SAFE” Vehicles Rule for Model Years 2021-2026 Passenger Cars and Light Trucks; and the Draft Environmental Impact Statement

Our States and Cities have already begun to experience adverse impacts from climate change. Based on the overwhelming scientific evidence, those harms are likely to increase in number and severity unless aggressive steps are taken to reduce emissions of carbon dioxide and other greenhouse gases. Summarized below are some of those most significant threats being faced by our States and Cities.

**California**

Climate change’s adverse effects have become impossible to ignore in California. The state weathered a historic five-year drought only to face record-setting fire seasons and a variety of other unprecedented phenomena increasingly harming the health and prosperity of Californians from all walks of life and all parts of the state, as described in more detail in a recent report of the California Air Resources Board.1

Drought conditions beginning in 2012 left reservoirs across the state at record low levels, often no more than a quarter of their capacity. The Sierra snowpack—critical to California’s water supply, tourism industry, and hydroelectric power—was the smallest in at least 500 years.2 The resulting cutbacks threatened the livelihoods of farmers and fishermen alike. In the Central Valley, the drought cost California agriculture about $2.7 billion and more than 20,000 jobs in 2015 alone.3 In addition, the drought led to land subsidence, due to reduced precipitation and increased groundwater pumping, and the death of 129 million trees throughout the state.4

Even prior to the drought, the U.S. Forest Service had found that California was at risk of losing 12 percent—over 5.7 million acres—of the total area of forests and woodlands in the state due to insects and disease thriving in a hotter climate.5 Several pine species are projected to lose around half of their basal area.6 And a majority of the ponderosa pine in the foothills of the central and southern Sierra Nevada Mountains has already died, killed by the western pine beetle and other bark beetles.7 The increasing threat from these insects is driven in large part by warmer

---


3 California’s 2017 Climate Change Scoping Plan Update, supra, at 7.


5 California’s 2017 Climate Change Scoping Plan Update, supra, at 7.

6 Id.

7 Id.
summer temperatures attributable to climate change. The very high levels of tree mortality led Governor Brown to issue an Emergency Proclamation on October 30, 2015, directing state agencies to identify and take action to reduce wildfire risk through the removal and use of the dead trees.

Notwithstanding the Governor’s Proclamation, the hotter, drier weather and millions of dead trees have increasingly accelerated the damage from wildfires. The 2017 season—the worst on record—killed dozens of people, destroyed thousands of homes, forced hundreds of thousands to evacuate, and burned more than half a million acres. Prior to 2017, the worst year on record was 2015. In between, California faced the most expensive wildfire in U.S. history, the Soberanes fire, which burned for three months in 2016 and cost more than $250 million to put out. Climate change is expected to make longer and more severe wildfire seasons “the new normal” for California. Besides the immediate threats they pose to life and property, wildfires significantly impair both air quality (via smoke and ash that can hospitalize residents) and water quality (via the erosion of hillsides stripped of their vegetation).

Off the coast, rising ocean temperatures and ocean acidification have spurred toxic algal blooms, resulting in high levels of the neurotoxin domoic acid. This toxin has hit California’s economically valuable Dungeness crab fishery particularly hard. From 2015 to 2017, domoic acid contamination forced California to close the fishery for parts of the season in order to protect consumers from serious health risks, with the 2015-16 season declared a federal disaster. Other fisheries have suffered a similar fate. The Dungeness crab fishery is expected to decline significantly in the future as acidification increases. In addition, high levels of domoic

---


12 California Department of Forestry and Fire Protection, California’s Forests and Rangelands: 2010 Assessment, Ch. 3-7 (2010).


acid are poisoning marine mammals, and have been linked to reproductive failure (including high rates of miscarriage and premature birth) among California sea lions.\textsuperscript{16}

California’s many miles of coastline, particularly coastal bluffs, make it uniquely vulnerable to sea-level rise and more intense storms. Even if storms do not become more intense or frequent, sea-level rise itself will magnify the adverse impact of any storm surge and high waves on the California coast. Some observational studies report that the largest waves are already getting higher and winds are getting stronger.\textsuperscript{17} California is likely to face greater than average sea-level rise, because of gravitational forces and the rotation of the Earth. Recent projections indicate that if no significant greenhouse gas mitigation efforts are taken, the San Francisco Bay Area may experience sea level rise between 1.6 to 3.4 feet, and in an extreme scenario involving the rapid loss of the Antarctic ice sheet, sea levels along California’s coastline could rise up to 10 feet by 2100.\textsuperscript{18}

In addition to damage to the physical environment, increased temperatures California will experience due to climate change will put the health of state residents at risk. Increased hospitalizations for multiple diseases, including cardiovascular disease, ischemic heart disease, ischemic stroke, respiratory disease, pneumonia, dehydration, heat stroke, diabetes, and acute renal failure are associated with increases in same-day temperature.\textsuperscript{19} Such temperature increases have also been found to be associated with increased risk of preterm delivery\textsuperscript{20} and stillbirths.\textsuperscript{21} Recent California studies suggest increased mortality risk not only with extreme heat, but also with increasing ambient temperature.\textsuperscript{22}

\begin{itemize}
\item \textsuperscript{16} T. Goldstein et al., \textit{The Role of Domoic Acid in Abortion and Premature Parturition of California Sea Lions (Zalophus californianus) on San Miguel Island, California}, JOURNAL OF WILDLIFE DISEASES. 45(1): 91-108 (2009).
\item \textsuperscript{17} National Research Council of the National Academy of Sciences, \textit{Sea-Level Rise for the Coasts of California, Oregon and Washington: Past, Present, and Future}. National Academies Press (2012).
California 2018 Supplement

In 2018, the State of California produced two substantial reports on the impacts of climate change in California, which incorporate the latest scientific research on the impacts of climate change in California.

The first report, published May 2018 titled “Indicators of Climate Change in California” examines thirty-six separate indicators and reflects the contributions of dozens of scientists from California’s universities, and state agencies, as well as the U.S. National Oceanic and Atmospheric Administration and the U.S. Department of Energy’s Lawrence Berkeley National Laboratory. A copy of the full “Indicators” report is included in the attachments to the States’ comments.

The second report, published August 2018 titled “California’s Fourth Climate Assessment” includes thirty-three papers from State-funded research, and eleven papers from externally funded researchers, as well as regional summaries and a statewide summary of climate vulnerabilities, and a key findings paper. A copy of selected research papers and the regional and statewide summaries and key findings reports are included in the attachments to the States’ comments.

Key findings from those reports and other sources include the following:

Temperature Changes and Air Quality Impacts

“Since 1895, annual average air temperatures have increased throughout the state, with temperatures rising at a faster rate beginning in the 1980s. The last four years were notably warm, with 2014 being the warmest on record, followed by 2015, 2017, and 2016. Temperatures at night have increased more than during the day: minimum temperatures (which generally occur at night) increased at a rate of 2.3 degrees Fahrenheit (°F) per century, compared to 1.3°F per century for maximum temperatures.”

“Extremely hot days and nights — that is, when temperatures are at or above the highest 2 percent of maximum and minimum daily temperatures, respectively — have become more frequent since 1950. Both extreme heat days and nights have increased at a faster rate in the past 30 years. Heat waves, defined as five or more consecutive extreme heat days or nights,

____________________________________________________________________________________


25 California Climate Indicators 2018 at S-4.
are also increasing, especially at night. Nighttime heat waves, which were infrequent until the mid-1970s, have increased markedly over the past 40 years.”

In addition, rising temperatures “could lead to increases in ground-level ozone and reduce the effectiveness of emission reductions taken to achieve air quality standards.”

“A recent detailed analysis suggests that adoption of low-carbon energy in California to reduce GHG emissions 80 percent below 1990 levels would lead to a 55 percent reduction in air pollution mortality rates relative to 2010 levels (Zapata et al., 2018). These public health improvements have a value of $11-20 billion/year in California (Zapata et al., 2018).”

**Human Health Impacts**

Climate change poses direct and indirect risks to public health, as people will experience earlier death and worsening illnesses.

“Nineteen heat-related events occurred from 1999 to 2009 that had significant impacts on human health, resulting in about 11,000 excess hospitalizations. However, the National Weather Service issued Heat Advisories for only six of the events. Heat-Health Events (HHEs), which better predict risk to populations vulnerable to heat, will worsen drastically throughout the state: by midcentury, the Central Valley is projected to experience average Heat-Health Events that are two weeks longer, and HHEs could occur four to ten times more often in the Northern Sierra region.”

“The 2006 heat wave killed over 600 people, resulted in 16,000 emergency department visits, and led to nearly $5.4 billion in damages. The human cost of these events is already immense, but research suggests that mortality risk for those 65 or older could increase tenfold by the 2090s because of climate change.”

**Environmental Justice Impacts**

“Multiple studies of vulnerability and climate impacts indicate that existing inequities can be exacerbated by climate change. For example, the consequences of climate-related water impacts are particularly acute for communities already dealing with a legacy of inequalities. A recent study on drought and equity in California found that low-income households, people of color, and communities already burdened with environmental pollution suffered the most severe impacts caused by water supply shortages and rising cost of water (Feinstein et al., 2017). In a report prepared as part of the Fourth Assessment, Ekstrom et al. (2018) found

---

26 *Id.* at S-5.


28 *Id.* at 71.

29 *Id.* at 10.

30 *Id.*
that while all water districts faced similar challenges during the drought, small water districts (defined as those serving less than 10,000 people or less than approximately 3,300 connections) were less likely to have the resources and capacity to overcome those challenges. These districts are most likely to serve small, rural communities in California. Furthermore, for marginalized populations in rural areas of the state, agricultural actions in response to the drought, including increases in groundwater pumping and crop choices, are increasing and reshaping their vulnerability to drought and water shortage (Greene, 2018).31

“Inequities not only exist in varying exposures to climate risk, but also in the availability and implementation of potential adaptation or resilience solutions. Recent research analyzed differences in tree canopy, an important tool for adapting to the effects of extreme heat, at the census block group scale in coastal Los Angeles and found disparities between canopy in high-income and low-income neighborhoods (Locke et al., 2017). This disparity can have implications for communities because of the benefits tree canopy provides in reducing the negative effects of extreme heat events. A study prepared for the Fourth Assessment provides one of the first estimates of these benefits in one location (Taha et al., 2018).”32

Tribal and Indigenous Communities Impacts

“Tribes and Indigenous communities in California face unique challenges under a changing climate. Tribes maintain cultural lifeways and rely on traditional resources (e.g., salmon fisheries) for both social and economic purposes. However, tribes are no longer mobile across the landscape. For many tribes in California, seasonal movement and camps were a part of living with the environment. Today these nomadic options are not available or are limited. This is the result of Euro-American and U.S. policy and actions and underpins several climate vulnerabilities. Tribes with reservations/Rancherias/allotments are vulnerable to climate change in a specific way: tribal lands are essentially locked into fixed geographic locations and land status. Only relatively few tribal members are still able to engage in their cultural traditions as livelihoods.”33

Precipitation and Water Supply Impacts

“California has the highest variability of year-to-year precipitation in the contiguous United States.”34 By 2050, “the average water supply from snowpack is projected to decline by 2/3 from historical levels.”35

“Statewide precipitation has become increasingly variable from year to year. In seven of the last ten years, statewide precipitation has been below the statewide average (22.9

31 California Statewide Summary at 36-37.
32 Id. at 37.
33 Id. at 10.
34 Id. at 24.
inches). In fact, California’s driest consecutive four-year period occurred from 2012 to 2015. In recent years, the fraction of precipitation that falls as rain (rather than snow) over the watersheds that provide most of California’s water supply has been increasing — another indication of warming temperatures.\textsuperscript{36}

“Spring snowpack, aggregated over the Sierra Nevada and other mountain catchments in central and northern California, declines substantially under modeled climate changes (Figure 6). The mean snow water equivalent (SWE) declines to less than two-thirds of its historical average by 2050, averaged over several model projections under both RCP 4.5 and 8.5 scenarios. By 2100, SWE declines to less than half the historical median under RCP 4.5, and less than one-third under RCP 8.5. Importantly, the decline in spring snowpack occurs even if the amount of precipitation remains relatively stable over the central and northern California region; the snow loss is the result of a progressively warmer climate. Furthermore, while the models indicate that strong year-to-year variation will continue to occur, the likelihood of attaining spring snowpack that reaches or exceeds historical average is projected to diminish markedly (Pierce et al., 2018) (Figure 6).”\textsuperscript{37}

**Agriculture Impacts**

“Agricultural production could face climate-related water shortages of up to 16% in certain regions. Regardless of whether California receives more or less annual precipitation in the future, the state will be dryer because hotter conditions will increase the loss of soil moisture.”\textsuperscript{38}

“Winter chill has been declining in certain areas of the Central Valley. This is the period of cold temperatures above freezing but below a threshold temperature needed by fruit and nut trees to become and remain dormant, bloom, and subsequently bear fruit. When tracked using “chill hours,” a metric used since the 1940s, more than half the sites studied showed declining trends; with the more recently developed “chill portions” metric, fewer sites showed declines.”\textsuperscript{39}

“It is evident from recent droughts that agricultural production will be challenged by water shortages, higher temperatures, changing atmospheric conditions, and conversion of agricultural land to developed uses (Medellin-Azuara et al., 2018; Wilson et al., 2017). Agriculture is the economic foundation for many of California’s communities, particularly rural communities where other employment opportunities are limited. Roughly 6.7 percent of jobs statewide are generated by farms and farm processing, and in the Central Valley the figure is much higher (22 percent) (UC Agricultural Issues Center, 2012). This means that climate change impacts to agriculture, and even nuanced impacts such as shifting cropping patterns, may create hardships in the rural communities where agriculture is foundational.

\textsuperscript{36} California Climate Indicators at S-5.
\textsuperscript{37} California Statewide Summary at 27.
\textsuperscript{38} Id.
\textsuperscript{39} California Climate Indicators at S-5.
Different crops have different labor demands (Medellín-Azuara et al., 2016), and shifting crop patterns may result in changes in employment throughout the agricultural sector (Greene, 2018; Villarejo, 1996). A Fourth Assessment study found that in the 2012-2016 drought, to access higher market prices and compensate for the higher cost of water, many farms switched to higher value crops, for which cultivation and harvesting could be largely automated—leaving agricultural workers with employment shortages beyond the drought (Greene, 2018). A report by the University of California found that in 2016, the drought resulted in a $603 million loss to the economy and the loss of 4,700 jobs due to the impacts on agriculture (Medellín-Azuara et al., 2016).”40

Forest Impacts

A new paper published on October 18, 2018, estimates that “human-caused climate change caused over half of the documented increase in fuel aridity since the 1970s and doubled the cumulative forest fire area since 1984,” contributing an additional 4.2 million ha [hectares] of forest fire.41 As the paper notes, “[i]ncreased forest fire activity across the western United States in recent decades has contributed to widespread forest mortality, carbon emissions, periods of degraded air quality and substantial fire suppression expenditures.”42

“A changing climate combined with anthropogenic factors has already contributed to more frequent and severe forest wildfires in the western U.S. as a whole (Abatzoglou & Williams, 2016; Mann et al., 2016; Westerling, 2016).”43

“One Fourth Assessment model suggests large wildfires (greater than 25,000 acres) could become 50% more frequent by the end of century if emissions are not reduced. The model produces more years with extremely high areas burned, even compared to the historically destructive wildfires of 2017 and 2018.”44

“By the end of the century, California could experience wildfires that burn up to a maximum of 178% more acres per year than current averages.”45 Increased wildfire smoke will also lead to more respiratory illness.46

In addition, the changes in climate make trees more vulnerable to pest infestations.

40 California Statewide Summary at 59.


42 Id.

43 California Statewide Summary at 28.

44 California Key Findings at 6.

45 Id.

46 Id. at 8.
“Moisture stress in conifer forests enhances tree vulnerability to insect infestation, particularly by bark beetles (Anderegg et al., 2015; Bentz et al., 2010; Berryman, 1976; Gaylord et al., 2013; Hart et al., 2014; Kolb et al., 2016; Raffa et al., 2008). Between 2010 and 2017, an estimated 129 million trees have died (Young et al., 2017). Bark beetle outbreaks may be promoted by warming for multiple reasons (Bentz et al., 2010). Warming may promote successful beetle overwintering (Weed et al., 2015) and may also promote earlier timing of adult emergence and flight in spring/early summer, which may enable beetles to increase the frequency at which they can mate, lay eggs, and emerge as adults (Bentz et al., 2016).”47

**Drought and Land Subsidence Impacts**

“The recent 2012-2016 drought was exacerbated by unusual warmth (Williams, Seager, et al., 2015), and disproportionately low Sierra Nevada snowpack levels (Dettinger & Anderson, 2015). This drought has been described as a harbinger of projected dry spells in future decades, whose impacts will likely be worsened by increased heat (Mann & Gleick, 2015). A very wet winter in 2016-2017 followed this drought, a further indication of potential continued climate volatility in the future (Berg & Hall, 2015; Polade, et al., 2017; Swain et al., 2018).”48

“Warming air temperatures throughout the 21st century will increase moisture loss from soils, which will lead to drier seasonal conditions even if precipitation increases (Thorne et al., 2015). Warming air temperatures also amplify dryness caused by decreases in precipitation (Ault et al., 2016; Cayan et al., 2010; Diffenbaugh et al., 2015). These changes affect both seasonal dryness and drought events. Climate projections from the previous and present generation of GCMs (e.g. Pierce et al., 2014; Swain et al., 2018) show that seasonal summer dryness in California may become prolonged due to earlier spring soil drying that lasts longer into the fall and winter rainy season. The extreme warmth during the drought years of 2014 and 2015 intensified some aspects of the 2012-2016 drought (Griffin & Anchukaitis, 2014; Mao et al., 2015; Stephenson et al., 2018; Williams, Seager, et al., 2015) and may be analogous for future drought events (Diffenbaugh et al., 2015; Mann & Gleick, 2015; Williams, Seager, et al., 2015).”49

In addition, a “secondary, but large, effect of droughts is the increased extraction of groundwater from aquifers in the Central Valley, primarily for agricultural uses. The pumping can lead to subsidence of ground levels, which around the San Joaquin-Sacramento Delta has been measured at over three-quarters of an inch per year.”50

“This subsidence compounds the risk that sea-level rise and storms could cause overtopping or failure of the levees, exposing natural gas pipelines and other infrastructure to damage or structural failure. At this rate of subsidence, the levees may fail to meet the federal levee

47 California Statewide Summary at 64.
48 *Id.* at 13.
49 *Id.* at 26.
50 *Id.* at 14.
height standard (1.5 ft. freeboard above 100-year flood level) between 2050-2080, depending on the rate of sea-level rise.”\(^{51}\)

**Sea-Level Rise, Coastal Erosion and Infrastructure Impacts**

“Along the California coast, sea levels have generally risen. Since 1900, mean sea level has increased by about 180 millimeters (7 inches) at San Francisco and by about 150 millimeters (6 inches) since 1924 at La Jolla. In contrast, sea level at Crescent City has declined by about 70 millimeters (3 inches) since 1933 due to an uplift of the land surface from the movement of the Earth’s plates. Sea level rise threatens existing or planned infrastructure, development, and ecosystems along California’s coast.”\(^{52}\)

“If emissions continue at current rates, Fourth Assessment model results indicate that total sea-level rise by 2100 is expected to be 54 inches, almost twice the rise that would occur if greenhouse gas emissions are lowered to reduce risk.”\(^{53}\)

“31 to 67% of Southern California beaches may completely erode by 2100 without large-scale human interventions.”\(^{54}\)

“Flooding from sea-level rise and coastal wave events leads to bluff, cliff, and beach erosion, which could affect large geographic areas (hundreds of kilometers). In research conducted for the Fourth Assessment, Erikson et al. (2018) found that if a 100-year storm occurs under a future with 2m (6.6 feet) of SLR, resultant flooding in Southern California could affect 250,000 people and lead to damages of $50 billion worth of property and $39 billion worth of buildings.”\(^{55}\)

In addition, airports in major urban areas will be susceptible to major flooding from sea-level rise and storm surge by 2040-2080, and 370 miles of coastal highway will be susceptible to coastal flooding by 2100.\(^{56}\)

**Ocean Acidity and Health Impacts**

“Increasing evidence shows that climate change is degrading California’s coastal and marine environment. In recent years, several unusual events have occurred along the California coast and ocean, including a historic marine heat wave, record harmful algal bloom, fishery closures, and a significant loss of northern kelp forests.”\(^{57}\)

\(^{51}\) California Statewide Summary at 12.

\(^{52}\) California Climate Indicators at S-7.

\(^{53}\) California Key Findings, at 6.

\(^{54}\) Id. at 15.

\(^{55}\) California Statewide Summary at 31.

\(^{56}\) Id. at 54-55.

\(^{57}\) Id. at 12.
In addition:

“[o]cean acidification … is predicted to occur especially rapidly along the West Coast (e.g., Gruber et al., 2012). Ocean acidification presents a clear threat to coastal communities through its significant impacts on commercial fisheries and farmed shellfish (Ekstrom et al., 2015) as well as to ocean ecosystems on a broader scale. Ocean acidification affects many shell-forming species, including oysters, mussels, abalone, crabs, and the microscopic plankton that form the base of the oceanic food chain (Kroeker et al., 2013; Kroeker et al., 2010). Significant changes in behavior and physiology of fish and invertebrates due to rising CO2 and increased acidity have already been documented (e.g., Hamilton et al., 2017; Jellison et al., 2017; Kroeker et al., 2013; Munday et al., 2009). Species vulnerable to ocean acidification account for approximately half of total fisheries revenue on the West Coast (Marshall et al., 2017).”

Connecticut

In April 2010, the Governor’s Steering Committee on Climate Change produced a report that predicted the impact of climate change on Connecticut’s agriculture, infrastructure, natural resources and public health. In general the report concluded that the impact of climate change on these four areas would be largely negative; Connecticut crops such as maple syrup, apple and pear production, and shellfish will suffer; infrastructure to control coastal flooding and storm water could be substantially damaged; rare habitats and critical species face elimination; and Connecticut’s public health, particularly of the most vulnerable communities, is threatened by a decrease in air quality, extreme heat and the favorable conditions for increased disease.

The Connecticut Institute for Resilience and Climate Adaptation or CIRCA, an institute housed at the University of Connecticut, has projected a rise in sea level of approximately twenty inches by 2050. In response to this latest analysis, Governor Malloy signed Public Act 18-82, An Act Concerning Climate Change Planning and Resiliency, into law which requires state and federally funded projects to plan for a scenario of 50 centimeters of sea level rise by 2050, ensuring the success of future projects undertaken in the state, the prudence of state investments, and the safety of those residing on or near the shoreline. In addition to preparations for the imminent rise in sea level, Public Act 18-82 sets an interim target of a 45% reduction in greenhouse gas emissions from a 2001 baseline by 2030, ensuring Connecticut remains on a path to achieve an 80% reduction in emissions by 2050 as mandated under the state’s Global Warming Solutions Act.

Observed Change

Connecticut has already begun to experience the severe consequences of climate change induced by unchecked, increasing GHG emissions. Between 1895 and 2011, temperatures in the

---

58 Id. at 66-67.

Connecticut increased by almost 2°F (0.16°F per decade), and precipitation increased by approximately five inches, or more than 10% (0.4 inches per decade).\textsuperscript{60} Between 1980 and 2018, average annual temperature in Connecticut has risen by over 2°F. Over the same period, winter temperatures have warmed by 3°F.

The Northeast has experienced a greater recent increase in extreme precipitation than any other region in the United States; between 1958 and 2010, Connecticut saw more than a 70% increase in the amount of precipitation falling in very heavy events. In 2011 Hurricane Irene caused power outages affecting 754,000 customers and over $1 billion in damage, and in 2012 Hurricane Sandy caused power outages affecting more than 600,000 customers and over $360 million in damage. The latter forced thousands of Connecticut residents evacuate, saw thousands apply for FEMA assistance, damaged roads and infrastructure, and took nine days for utilities to restore power.\textsuperscript{61} Many of Connecticut’s coastal communities and assets remain at risk to more frequent future storm events exacerbated by climate change.

**Projections**

Connecticut is highly vulnerable to changes in mean and extreme climate due to regional characteristics like a dense population and aging infrastructure. In conservative estimates, climate projections for Connecticut robustly indicate that annual mean temperature will rise by 5-10°F by the end of the 21\textsuperscript{st} Century.

Mean annual precipitation is also likely to increase, particularly in winter and spring seasons, contributing to increased flooding risk through the region. Additionally, weather and climate extremes are projected to be more frequent and intense which will impact both natural and socioeconomic sectors. As temperatures increase along the coast, humidity will also rise, resulting in amplified heat stress during summer months. For inland areas, drought events will become more severe and longer-lived, causing increased competition for limited water resources, agricultural crop damage, ecosystem stress, and risk of wildfire. Communities in Connecticut should expect that coastal flooding intensity and frequency to increase in coming decades due to accelerating trends in coastal erosion, extreme precipitation, and storms.

**Sea Level**

Direct and remotely sensed measurements of sea level have shown that the annual mean level of the ocean surface is rising. In the Northeast, coastal flooding has increased due to approximate one foot rise in sea level since 1900. This rate of sea level rise exceeds the global


average of approximately eight inches, due primarily to land subsidence and thermal expansion (of ocean water) along the Northeastern coast. In moderately conservative estimates, sea level rise along the Connecticut coast is projected to be ~0.76 ft (0.23 meters) higher than 2000 levels by 2050. However, the upper range of projected sea level rise by 2050 is over 1.5 feet. This will strongly impact the many coastal communities and businesses in Connecticut.

**Delaware**

As a low-lying state with 381 miles of coastline, Delaware is vulnerable to coastal storms, sea level rise, and flooding exacerbated by climate change. Sea levels around Delaware have already risen 13 inches this century. This means that storm surges come further inland and coastal towns flood more frequently, jeopardizing infrastructure, and leading to costly repairs. Towns like Slaughter Beach are partnering with the state to build climate adaption plans, recognizing that these events will only get worse and more expensive. As climate change exacerbates sea level rise, over 17,000 homes and almost 500 miles of roadway in Delaware are at risk of permanent inundation from sea level rise by the end of the century.

In addition, rising temperatures and extreme heat events as a result of climate change threaten public health and especially Delaware’s most vulnerable citizens – young children, the elderly, outdoor workers, and individuals with underlying health conditions. Extreme heat days and extended heat waves can exacerbate poor air quality and unhealthy outdoor conditions, especially in urban areas like Wilmington. Extreme heat, saltwater intrusion from sea level rise, and changes in precipitation also threaten Delaware’s $8 billion agricultural industry, which is strongly ingrained in both the state’s economy and culture.

**Hawaii**

Hawaiians have experienced numerous climate change-related harms over the past decade. For example, during one July weekend in 2017, large surf from Tropical Cyclone Fernanda swept across Hawaii’s eastern shores. At the same time, Hawaii also saw, for the third time in just a few months, another round of record-level high tides. These “king tides” over the summer sent water washing over seawalls, coming dangerously close to homes and making some...

---


roads virtually impassable. The king tides and climate change’s effects on Hawaii’s beaches are well-documented. 65

The State of Hawaii has conducted studies on the effects of Climate Change, and the conclusions of these reports show that Hawaii will be severely impacted. 66 Over the next 50 to 100 years, Hawaii could see tides that could make Hawaii’s main roads, like Ala Moana Boulevard, un-drivable; many areas, including world famous Waikiki Beach, will become inundated from the rise of the ocean level, oceans so warm that coral, which serves as a habitat for marine life, die off in vast stretches; and an alarming rise in frequency and intensity of destructive tropical cyclones.

More specifically, scientific research has determined that:

- Sea level has been rising in Hawaii for the past century or more. Rates of rise vary amongst the islands due to differing rates of subsidence based on distance from actively-growing Hawaii Island. Rates of sea-level rise in Hawaii ranged from 0.6 inches (1.5 cm) on Oahu and Kauai, to 1.3 inches (3.3 cm) on Hawaii Island per decade over the last century. 67

- Over the past century, 70% of the beaches in Hawaii have eroded and over 13 miles of beach have been completely lost to erosion. 68

- This dominant trend of beach erosion could be driven by local sea-level rise. 69

- Shoreline retreat, averaging 1 ft per year (0.3 m/yr) statewide, wetland migration and cliff collapse due to erosion are occurring now on many of Hawaii’s coastlines. 70


• Elevated groundwater tables, due in part to sea-level rise, are contributing to flooding in low coastal areas during higher tides and heavy rainfall events.\textsuperscript{71}

• Antarctic and Greenland ice sheets are melting faster than previously predicted, which is contributing to the acceleration of global sea-level rise.\textsuperscript{72}

• More tropical cyclones have developed from storms in the Pacific between 1991 and 2010 than previously recorded from the last century.\textsuperscript{73}

• Hawaii and the central western Pacific Ocean has been modeled to experience about 1 ft-2.5 ft (0.3 m-0.8 m) higher than global average sea-level rise by the year 2100.\textsuperscript{74}

Because of the urgent need to take action to address these threats to Hawaii’s health and natural resources, Hawaii has taken steps to regulate and reduce the local emission of greenhouse gas emissions. For example, \textit{Act 234 of the 2007 Legislature} established the foundation for Hawaii to regulate greenhouse gas emissions throughout the state to combat the threat of climate change and sea level rise. Act 234 declared a policy to reduce greenhouse gas emissions statewide to 1990 levels by 2020. To implement Act 234, \textit{Hawaii’s Clean Air Rules} were amended to incorporate greenhouse gas rules regulating major sources of greenhouse gases in Hawaii. These rules utilize the Air Pollution Control Permit process to regulate these sources.

\textbf{Illinois}

Climate change is affecting Illinois in a number of ways—both by fundamentally altering the state’s environment in ways never seen before and by intensifying well-recognized weather hazards. The fundamental changes can be seen in Illinois’ farming industry and in the state’s greatest environmental asset, Lake Michigan.

The farming sector is particularly vulnerable to extreme precipitation caused by climate change. 2012 was Illinois’ third driest summer on record. The very next year, heavy rainfall caused flooding in parts of the state that, together with the wettest January-to-June period ever

\begin{flushright}
Briefing Sheet, Honolulu: Center for Island Climate Adaptation and Policy. University of Hawaii Sea Grant College Program (2010).
\end{flushright}


recorded in Illinois, forced farmers to delay planting and lose revenue.\textsuperscript{75} Heat waves during the crop pollination season may reduce future yield: hotter weather and altered rain patterns could cause 15\% loss in the next 5 to 25 years and up to a 73\% average loss by the end of the next century.\textsuperscript{76} Milder winters will lead to more weeds, insects, and diseases surviving throughout winter, also hurting yield and quality.\textsuperscript{77}

Climate disruption also contributes to whipsawing water levels on Lake Michigan. In January 2013, the lake fell to an all-time low water level. In 2015, it climbed to its highest level since 1998, the second-largest recorded gain over a 24-month span.\textsuperscript{78} Rapidly swinging water levels hurt the commercial shipping industry, recreational boaters, wildlife, and beach-goers. For example, for every inch the lake loses, a freighter must forgo 270 tons of cargo. High water erodes beaches and damages property.\textsuperscript{79}

Climate change has already turned up the volume on well-recognized catastrophic extreme weather events, causing stronger storms, increased precipitation, and higher average temperatures. In recent years, the state has been struck by deadly tornadoes in November 2013 and the 2014 polar vortex.\textsuperscript{80}

Illinois also suffers from frequent flooding, and climate change has and will cause the frequency and strength of these floods to increase. For instance, flooding caused by increased precipitation causes dramatic damage to the lives and property of Illinois residents; this toll will increase as climate change intensifies. For example, in 2009, a freight train carrying ethanol derailed in Cherry Valley, Illinois due to washout of train tracks following heavy rains.\textsuperscript{81} Fourteen of the tanker cars carrying ethanol caught fire, killing a woman in her car waiting for the train to pass. Seven other people were injured and about 600 nearby homes were evacuated.\textsuperscript{82}

\footnotesize

\textsuperscript{76} \textit{Id.}

\textsuperscript{77} \textit{Id.}


\textsuperscript{79} \textit{Id.}


A few days later, a 54-mile-long fish kill occurred on the Rock River when ethanol that was not consumed by the fire flowed downstream, killing over 70,000 fish.\textsuperscript{83}

**CHERRY VALLEY TRAIN DERAILEMENT**

![Image from Rockford Register Star](image)

In another instance, a major flood struck Jo Daviess County in northwestern Illinois in 2011 after 15 inches of rain fell during a 12-hour time period. The flood waters caused extensive damage to roads and train tracks and at least one fatality.\textsuperscript{84} Illinois has also struggled with urban flooding caused by heavy rains falling on impervious surfaces.\textsuperscript{85}


Furthermore, rising average temperatures injures Illinois residents. Hotter weather will inevitably harm public health and lead to heat-related deaths. For instance, over 700 Illinois residents died due to the historically intense heat wave in July 1995.\textsuperscript{86} Intensified drought conditions strengthen these impacts—the inverse of heavy precipitation.

Though catastrophes such as these have occurred from time to time throughout Illinois’ history, climate change will cause them to happen more frequently and with more ferocity than ever before, at the cost of the lives and health of Illinois residents.

**Iowa**

Climate change increases Iowa’s propensity for flooding and droughts, creates challenges for the state’s agricultural economy, and poses risks to public health. While already experiencing some of climate change’s adverse effects, Iowa will likely only become more susceptible to climate change-related harms as average temperatures continue to increase.

Climate change influences the frequency and duration of precipitation events, and Iowa is feeling the effects.\textsuperscript{87} Over the past half century, Iowa has seen an increase in annual precipitation and a greater frequency of extreme rain events.\textsuperscript{88} The latest science suggests that the increase in precipitation will continue, while Iowa will also continue experiencing more significant drought

---


\textsuperscript{87} Iowa Climate Statement 2017, CTR. FOR GLOBAL & REGIONAL ENVTL. RES., 1 (2017), https://cgrer.uiowa.edu/sites/cgrer.uiowa.edu/files/wysiwyg Uploads/Iowa%20Climate%20Statement%202017%20It's%20not%20just%20the%20heat,%20it's%20the%20humidity!_FINAL_August_10_2017.pdf.

in some areas. The increased rain events are due to higher surface evaporation from a warmer world, while dry spells are due to reduced evaporation stemming from a lack of moisture. In other words, changes in Iowa’s climate will likely continue to make wet seasons wetter and dry seasons dryer.

Extreme rain events have caused significant flooding throughout Iowa, and with Iowa’s over 70 interior rivers, the flooding has adversely affected much of Iowa’s population. Since 1990, Iowa has had over 30 presidentially declared flood-related disaster declarations. The flooding has caused an estimated 13.5 billion dollars worth of property-related damage. In 2016, a presidential declaration identified 19 counties affected by severe flooding, many of which were also hit hard by flooding in 2008. In 2018 alone, 30 counties have already been identified in presidential disaster declarations due to severe storms and flooding.

Heavy rainfall and melting snow have also led to significant flooding in Iowa’s bordering Mississippi and Missouri Rivers. In 2011, the high level of the Mississippi River forced navigation closures and caused billions of dollars in damage downstream. That same year, flooding along the Missouri River led to hundreds of millions of dollars in damages and also closed the river to navigation. Iowa’s Sioux City and Council Bluffs were two of the cities affected most by the flood, experiencing extensive property damage and crop loss.

---

90 Chia Chou et al., Increase in the Range Between Wet and Dry Season Precipitation, 6 NATURE GEOSCIENCE, 263, 263–67 (2013).
94 Id.
95 Id.
97 DEP’T OF HOMELAND SEC., MISSOURI RIVER FLOOD COORDINATION TASK FORCE REPORT, 12, 39 (2011).
99 DEP’T OF HOMELAND SEC., MISSOURI RIVER FLOOD COORDINATION TASK FORCE REPORT, supra, at 39.
Iowa also has felt the impacts of climate change in its dry seasons. As recently as 2017, drought conditions throughout the state left locations with rainfall at less than 50 percent of normal precipitation. In 2012, a prolonged drought cost the region more than $250 million when the scarcity of water led to narrowed navigation channels, forced lock closures, and dozens of barges running aground on the Mississippi River.

Iowa has warmed between one-half to one degree in the last century, and a continued increase in temperature may lead to more challenges for Iowa’s agricultural economy. Iowa leads the nation in egg production, harvested acreage of principal crops, corn export value, corn for grain production, and hog and pig inventory. Climate change may put additional heat stress on farmers’ crops and livestock, posing a greater risk of substantial decreases in crop yields and livestock productivity. Under some estimates, absent significant adaptation by Iowa farmers, the state could face declines in its corn crop of 18–77 percent—a significant blow to a corn industry currently worth nearly $10 billion. Crop production can be inhibited by changing rain patterns such as wetter springs—which delay planting and increase flood risk—and less rain during the increasingly hot summers. Farmers may also face the survival and spread of more unwanted pests because of warmer winters and a longer growing season.

Climate change also puts Iowans’ public health at risk. The higher temperatures can increase air pollutants such as ozone and fine particulates, which increase the risk of heart and lung-related illness. Allergic diseases and asthma are expected to become more widespread

---


102 *What Climate Change Means for Iowa*, supra, at 1.


and more severe due to exposure to new plants and increases in pollen counts. The warmer, wetter climate can even increase the risk of infectious diseases transmitted by insects that will be better able to live in a more humid and warm Iowa environment. Iowans’ health risks will only likely increase as average temperatures continue to increase.

**Maine**

Maine is experiencing significant, negative effects of climate change through rising sea levels, ocean acidification, and invasive species that are expanding their range northward as the environment warms. By way of example, The Gulf of Maine is warming faster than 99% of the world’s ocean waters. These warmer waters have brought with them an invasion of non-native green crabs that are devastating soft-shell clam flats throughout southern and mid-coast Maine. At the same time, ocean waters globally have become approximately 30% more acidic over the last century, and features of the Gulf of Maine, including its extensive freshwater inputs, make it particularly vulnerable to acidification. The increasing acidity inhibits shell formation in all shellfish, including lobsters, which just five years ago were the basis of an industry estimated to be worth $1.7 billion in Maine. These symptoms of climate change threaten both the health of the State’s marine ecosystem and a coastal economy that depends on it.

Similar changes are occurring in Maine’s interior. Iconic species that drive the State’s tourist economy are suffering from the effects of global warming. Longer, hotter summers and more frequent droughts are shrinking brook trout habitat and undermining efforts to restore sea-run salmon in Maine’s downeast rivers. A plague of winter ticks brought on by decreased

---


110 *Id.*


112 *Id.*


snowpack has taken a significant toll on Maine’s moose population.\textsuperscript{117} Milder winters have also hurt the ski industry,\textsuperscript{118} while shorter and earlier springs are interfering with maple sugaring operations.\textsuperscript{119}

**Maryland**

With more than 3,000 miles of coastline, Maryland’s coast is particularly vulnerable to rising sea levels and the more extreme weather events associated with climate change: shoreline erosion, coastal flooding, storm surges, inundation, and saltwater intrusion into groundwater supplies.

In 2007, the Maryland Commission on Climate Change (MCCC) was established by Executive Order 01.01.2007.07 and was charged with evaluating and recommending state goals to reduce Maryland’s greenhouse gas emissions to 1990 levels by 2020 and to reduce those emissions to 80 percent of their 2006 levels by 2050. The MCCC was also tasked with developing a plan of action that addressed the causes and impacts of climate change and included firm benchmarks and timetables for policy implementation. As a result of the work of more than 100 stakeholders and subject matter experts, the MCCC produced a climate action plan. That plan was the impetus for Maryland’s Greenhouse Gas Emissions Reduction Act of 2009, an enhanced version of which became law in 2016.\textsuperscript{120}

As emphasized by the MCCC’s Science and Technical Working Group, estimates show that “Maryland is projected to experience between 2.1 and 5.7 feet of sea level rise over the next century. In fact, sea level could be as much as 2.1 feet higher in 2050 along Maryland’s shorelines than it was in 2000.”\textsuperscript{121}

Sea level rise could inundate some facilities of the Port of Baltimore, placing one of the most important ports along the East Coast at risk. In 2016, for instance, the Port generated nearly


$3 billion in wages and salaries, supported over 13,000 direct jobs, and moved 31.8 million tons of international cargo.\textsuperscript{122}

The state’s tourism sector is also likely to feel the impact of climate change.\textsuperscript{123} In 2015, for instance, tourism resulted in $2.3 billion in tax revenue, which directly supported more than 140,000 jobs with a payroll of $5.7 billion.\textsuperscript{124} Rising sea levels, flooding, and heightened storm surges will place further strain on Maryland’s low-lying urban and coastal lands, making tourism less feasible and increasing the costs of maintaining bridges, roads, boardwalks, and other tourism infrastructure.\textsuperscript{125} Beaches, moreover, “will move inland at a rate 50 to 100 times faster than the rate of sea level elevation” and “the cost of replenishing the coastline after a 20-inch rise in sea level would be between $35 million and $200 million.”\textsuperscript{126}

Further, skiing and other snow sports “are at obvious risk from rising temperatures, with lower-elevation resorts facing progressively less reliable snowfalls and shorter seasons.”\textsuperscript{127} Wisp Mountain Park, for example, is a popular skiing destination in Western Maryland, and the only ski resort in the State. Even in late December of 2015, only one of the resort’s 35 trails was open because of the difficulty keeping snow on the ground in above-freezing temperatures.\textsuperscript{128}

Climate change may also adversely impact Maryland’s agricultural industry, which employs some 350,000 people.\textsuperscript{129} In 2015, the market value of agricultural products produced in Maryland was $2.2 billion, with net farm income exceeding $500 million.\textsuperscript{130} By 2050, absent additional action, rising summer temperatures could result in nearly $150 million in median annual losses for corn, soy, and wheat.\textsuperscript{131} Increased flooding could adversely affect the stability, salinity, drainage, and nutrient balance of soil in low-lying areas, causing declines in crop production and making farming less viable. Rising seas could lead salt water to flow into aquifers used for irrigation. Livestock could suffer from higher temperatures, too, and would


\textsuperscript{125} MCCC 2015 Annual Report 14, supra.

\textsuperscript{126} MCCC 2017 Annual Report 16, supra.

\textsuperscript{127} MCCC 2016 Annual Report 18-19, supra.

\textsuperscript{128} MCCC 2017 Annual Report 15, supra.

\textsuperscript{129} Id. at 13.

\textsuperscript{130} Id. at 14.

\textsuperscript{131} MCCC 2015 Annual Report 15, supra.
need more access to cooler areas. By causing soil erosion and nutrient runoff, moreover, increased rainfall could adversely affect water quality, including in the Chesapeake Bay.\textsuperscript{132}

Climate change will have significant effects on forests, which contribute some $2.2 billion to the Maryland economy, as well as $24 billion in ecological services.\textsuperscript{133} Climate change will exacerbate species’ existing stressors and alter their distribution, with some species likely to leave or decline and others likely to arrive or increase. Further, the services that forests provide—such as temperature regulation and water filtration—may be affected by climate change.\textsuperscript{134}

Climate change also threatens the Chesapeake Bay, the largest estuary in the United States. Development and pollution have made the Bay and its ecosystems more vulnerable to stressors, including those resulting from climate change. Already, the Bay has warmed by three degrees Fahrenheit. Further temperature increases could change the composition of commercial fisheries and deprive aquatic life of the oxygen needed to survive. Some species are likely to move north towards cooler waters and more suitable habitats. Other forms of aquatic life, including invasive pests and diseases, are likely to arrive or proliferate in the Bay’s newly-warmed waters.\textsuperscript{135}

In terms of health impacts, Maryland is likely to experience increasing numbers of 90-degree days, markedly exacerbating heat-related illnesses and mortality, particularly among the elderly.\textsuperscript{136} A two-week heat wave in 2012, for instance, led to 12 deaths in Maryland.\textsuperscript{137} By mid-century, rising temperatures could cause 27 additional deaths each summer in Baltimore alone.\textsuperscript{138}

\textbf{Massachusetts}

Temperatures in Massachusetts have warmed by an average of 1.3 degrees Celsius since 1895, almost twice as much as the rest of the contiguous 48 states. According to recent research by the University of Massachusetts, the Northeast, including Massachusetts, will continue to see temperatures rise higher more quickly than the rest of the United States and the world.\textsuperscript{139}

\begin{enumerate}
\item[132] Id.
\item[133] Id.
\item[134] Id. at 15-16.
\item[135] Id. at 16.
\item[136] MCCC 2017 Annual Report 9, 17, supra.
\item[137] MCCC 2016 Annual Report 18-19, supra.
\item[138] Id.
\end{enumerate}
Rising temperatures will result in milder winters with more freeze-thaw cycles and less precipitation falling as snow and instead as rain and freezing rain. Hotter summers will increase the number, intensity, and duration of heat waves and lead to poorer air quality.\textsuperscript{140} Massachusetts already has the nation’s highest incidence of pediatric asthma: among Massachusetts children in kindergarten to eighth grade, more than 12 percent suffer from pediatric asthma, and 12 percent of Massachusetts’s adult population suffers from asthma.\textsuperscript{141} Warmer temperatures increase ground level ozone, which impairs lung function and can result in increased hospital admissions and emergency room visits for people suffering from asthma, particularly children. Higher temperatures and carbon dioxide levels also will cause plants to produce more pollen, which can exacerbate asthma and other respiratory illnesses. More extreme heat also presents health hazards for people, including increased cardiovascular disease, Type II diabetes, renal disease, nervous disorders, emphysema, epilepsy, cerebrovascular disease, pulmonary conditions, mental health conditions, and death—especially for our most vulnerable residents.

The Northeast has seen the country’s largest increases in heavy precipitation events (more than a 70-percent increase in the heaviest 1 percent of all events since 1958).\textsuperscript{142} Some areas in Massachusetts have shown an increasing trend in the number of days with two inches of precipitation or more from 1970-2008. For example, over the last 60 years, the Connecticut River basin has experienced more than a doubling of heavy rainfall events. Regionally, the majority of heavy precipitation events have occurred during the summer months of May through September.\textsuperscript{143} One hundred-year flood events are now occurring every 60 years, and 50-year floods are now occurring approximately every 30 years. Flooding has increased in association with extreme precipitation events, causing costly property damage and putting fish, wildlife, and their habitats at increased risk. Since 1990, Massachusetts has been affected by numerous major weather disasters, including Superstorm Sandy and Tropical Storm Irene.\textsuperscript{144} Superstorm Sandy, a post-tropical storm in 2012, was the most extreme and destructive event to affect the northeastern United States in 40 years and the second costliest in the Nation’s history. Storm impacts in Massachusetts included strong winds, record storm tide heights, flooding of some coastal areas and loss of power for 385,000 residents.\textsuperscript{145} Massachusetts suffered an estimated $375 million in property losses alone.\textsuperscript{146} In January 2018, the storm surge from a powerful winter storm caused major coastal flooding and resulted in a high tide in Boston of 15.16 feet,

\begin{footnotesize}{\begin{enumerate}
\item \textit{Id.} Centers for Disease Control and Prevention, 2014 Adult Asthma Data: Prevalence Tables and Maps, at https://www.cdc.gov/asthma/brfss/2014/tableC1.htm; Massachusetts Department of Public Health, Pediatric Asthma, at https://matracking.ehs.state.ma.us/Health-Data/Asthma/pediatric.html.
\item Horton, \textit{supra}, at 373.
\item Runkle et al., \textit{Massachusetts State Summary}, NOAA TECHNICAL REPORT NESDIS 149-MA, 4 (2017), at https://statesummaries.ncies.org/MA.
\item \textit{Id.}
\item \textit{Id.}
\end{enumerate}}\end{footnotesize}
the highest tide since records began in 1921, even surpassing the infamous Blizzard of 1978. And two months later, a March coastal storm resulted in a 14.67 feet Boston tide (the third-highest on record), damaged 2,113 homes, including 147 that were destroyed, and caused more than $24 million in flooding damage across six Massachusetts coastal counties.

Beyond the damage that more intense storms can cause homes, businesses, and private and public infrastructure generally, such events also threaten the aging combined sewer and stormwater systems serving many Massachusetts cities such as Boston and Lowell. Heavy precipitation and coastal flooding can overwhelm these systems and release untreated sewage to our rivers and coastal waters, threatening public health and water quality.

Massachusetts is a coastal state especially vulnerable to sea level rise caused by climate change, which is already exacerbating coastal flooding and erosion from storm events and will eventually inundate low-lying communities, including the City of Boston. Roughly 5 million Massachusetts residents—75% of the state’s population—live near the coast. The total output of the Massachusetts coastal economy was $249.2 billion in 2014, representing over 54% of the state’s annual gross domestic product, and coastal counties accounted for 53% of the state’s employment and wages. According to the National Climate Assessment, in Boston alone, cumulative damage to buildings, building contents, and associated emergency costs could potentially be as high as $94 billion between 2000 and 2100, depending on the sea level rise scenario and which adaptive actions are taken.

Increased sea level, combined with increased erosion rates, is also predicted to threaten Massachusetts’ barrier beach and dune systems. Development on the beaches themselves, as in the case of Plum Island, will continue to face challenges associated with erosion and storm damage. Barrier beaches will be more susceptible to erosion and overwash, and in some cases

---


153 Horton, supra, at 379.
breaching. Such breaching will put at risk extensive areas of developed shoreline located behind these barrier spits and islands, such as the shorelines of Plymouth, Duxbury, and Kingston. Engineered structures, such as seawalls designed to stabilize shorelines, could be overtopped. The cost of maintaining and upgrading these engineering structures and replenishing dunes and beaches damaged by erosion will increase as sea levels rise, requiring investments of millions of dollars by local governments.154 Large areas of critical coastal and estuarine habitat, including the North Shore’s Great Marsh—the largest continuous stretch of salt marsh in New England, extending from Cape Ann to New Hampshire—are at risk as they will be unable to adapt and migrate as sea level rises and local land subsides. 155

Massachusetts already is seeing what climate change means for our natural resources. The signs of spring—including the arrival of migratory birds and the blooming of wildflowers and other plants—are arriving earlier. Warmer temperatures also are contributing to the rise in deer populations in Massachusetts, resulting in loss of underbrush habitat for forest species and the spread of tick-borne diseases such as Lyme disease. As the Gulf of Maine is warming much faster than other water bodies, key cold-water ocean fisheries, including cod and lobster, are in decline. The timing of the migration of anadromous fish species, such as Atlantic salmon and alewives, has advanced in the last few decades, and they are migrating earlier in the season.156


155 City of Boston, Climate Ready Boston, supra, at 60.

Minnesota

Minnesota’s climate is changing, and it’s already affecting residents’ health and the state’s environment and economy. Rising temperatures may interfere with winter recreation, extend the growing season, change the composition of trees in the North Woods, and increase water pollution problems in lakes and rivers. The state will have more extremely hot days, which may harm public health in urban areas and corn harvests in rural areas.

The Minnesota Pollution Control Agency (MPCA) is a member of Minnesota’s Environmental Quality Board (EQB). EQB’s 2015 “Minnesota and Climate Change: Our Tomorrow Starts Today” report, outlines many changes our state is already experiencing as a result of climate change.\(^{157}\) Minnesota is getting warmer and increases in temperatures means ice cover on lakes is forming later and melting sooner, which impacts traditional winter sports and tourism; the ragweed pollen season is increasing; and Minnesota is seeing a rise in tick- and mosquito-borne illnesses; among other current and expected impacts.

Minnesota has gotten noticeably warmer, especially over the last few decades. The temperature in the state has increased 1°F to 2°F since the 1980s.\(^{158}\) Since the beginning of the data record (1895) through 1959, Minnesota’s annual average temperature increased by nearly 0.2°F per decade, which is equivalent to over 2°F per century. This is shown in the graph at the left (below). This warming effect has accelerated over the last 50 plus years. Data from 1960-2016 show that the recent rate of warming for Minnesota has sped up substantially to over 0.5°F per decade, which is equivalent to 5.0°F per century. This is shown in the graph to the right (below).

\(^{157}\) Environmental Quality Board, “Minnesota and Climate Change: Our Tomorrow Starts Today”(2015), available at https://www.eqb.state.mn.us/content/climate-change

With a warming atmosphere, more evaporation occurs. The graph on the left (below) highlights the trend for the early part of the last century, 1895-1959, while the graph on the right (below) highlights the trend for the most recent half century, 1960-2016. For most of the first half of the 20th century, the trend in precipitation was slightly downward, at a loss of 0.2 inches per decade or the equivalent of -2 inches per century. This downward trend was influenced by the Dust Bowl years of the 1930s. However, the rate of precipitation across the state has increased by nearly 0.5 inches per decade or the equivalent of 5 inches per century over the last 50+ years.159

Source: NOAA, 2017

---

159 See Minnesota Dep’t of Health, Climate Change in Minnesota, www.health.state.mn.us/divs/climatechange/climate101.html (last visited Oct. 24, 2018) (relying on NOAA data)
Floods are becoming more frequent. According to EPA, over the last half century, average annual precipitation in most of the Midwest has increased by 5 to 10 percent, with greater inter-annual variability. But rainfall during the four wettest days of the year has increased about 35 percent. Yearly frequency of the largest storms – those with three inches or more of rainfall in a single day – have more than doubled in just over 50 years. In the past decade, such dramatic rains have increased by more than 70 percent. Since 2004, Minnesota has experienced three 1,000-year floods and an increase in intense weather events including hailstorms, tornadoes and droughts. In 2007, we saw several counties in the state receive drought designation, while others were declared flood disasters – an occurrence that repeated itself in 2012 when 11 counties declared flood emergencies while 55 received drought designations.

Climate change impacts outside of Minnesota have affected our air quality and our health. Since 2015, thirteen of seventeen air quality alerts issued by the Minnesota Pollution Control Agency are directly attributable to wildfires or forest fires in Canada or the western United States.

Climate change has caused financial impacts to Minnesota as well. In 2013, Minnesota had some of the highest weather-related disaster claims in the nation. Since 1997, 32 severe weather natural disasters have cost Minnesota nearly $500 million in natural disaster recovery assistance to affected jurisdictions alone. The impacts of climate change are expected to worsen in Minnesota, affecting our economy, our ecosystems and the health of all Minnesotans.

New Jersey

New Jersey’s coastal geomorphology – its sandy beaches, flat coastal plain with a gradually sloping shoreline, low-lying barrier islands, and gradual subsidence – makes the risks of sea level rise from global warming particularly severe in the state. New Jersey’s nearly 1,800 miles of tidally-flowed shoreline, its 239 coastal communities, and its 2 million coastal county residents, are especially vulnerable to flooding, inundation, and erosion from sea level rise and the effects of stronger, fiercer storms. New Jersey has been ranked as one of the most

---


161 Id.

162 Minnesota and Climate Change, supra, at 6; see also Saunders, S. et al., Doubled Trouble: More Midwestern Extreme Storms. Rocky Mountain Climate Organization; Natural Resources Defense Council (2012).

163 Minnesota and Climate Change, supra, at 6; see also Office of the Legislative Auditor, State of Minnesota (2012), Helping Communities Recover from Natural Disasters: Evaluation Report Summary

threatened states in terms of the value of coastal real estate at risk from sea level rise and chronic
flooding in the coming decades.\textsuperscript{165} Rising sea levels also endanger water supplies as saltwater
 intrusion of New Jersey’s coastal and lower Delaware River aquifers increases water salinity
above drinking standards.\textsuperscript{166}

Sea levels in New Jersey are already rising by an average of 1.6 inches per decade, 
amost double the global rate.\textsuperscript{167} USEPA has projected that the global warming will cause sea
levels to rise an additional 18 inches to 4 feet in New Jersey by 2100.\textsuperscript{168} Further sea level rise of
even 12 inches could cause shorelines to recede by as much as 120 feet.\textsuperscript{169} Barrier islands on the
state’s Atlantic Coast from Bay Head to Cape May could be broken up by new inlets or lost to
erosion if sea level rises three feet by 2100.\textsuperscript{170} And up to 3 percent of New Jersey’s land area
could be inundated by four-foot sea level rise,\textsuperscript{171} which would affect countless homes, 
businesses, hospitals, schools, and critical infrastructure.

These effects of sea level rise are magnified during storm events, which increase the
severity of coastal flooding and erosion. For example, in 2012, Superstorm Sandy wreaked
havoc in the state when a storm surge reached 9-10 feet above normal in some coastal areas. The
extensive damage the State experienced from severe winds and coastal flooding reached an
estimated $29.4 billion in repair, response and restoration costs.\textsuperscript{172} Sandy also cost the state an
estimated $11.7 billion in lost gross domestic product, including $950 million in tourism

\textsuperscript{165} Union of Concerned Scientists, \textit{Underwater: Rising Seas, Chronic Floods, and the
Implications for US Coastal Real Estate} (June 2018), at 5-7, 10-11, available at
accessed October 23, 2018).

\textsuperscript{166} NJ Climate Adaptation Alliance, \textit{A Summary of Climate Change Impacts and Preparedness
Opportunities for the Water Resources Sector in New Jersey} (March 2014), at 5, available at
https://njadapt.rutgers.edu/docman-lister/resource-pdfs/98-njcaa-water/file (last accessed October 21,
2018).

\textsuperscript{167} NOAA National Centers for Environmental Information, \textit{State Climate Summaries: New

\textsuperscript{168} USEPA, \textit{What Climate Change Means for New Jersey}, EPA 430-F-16-032 (August 2016),
accessed October 17, 2018).

\textsuperscript{169} Small-Lorenz et al., \textit{Building Ecological Solutions}, supra, n.1, at 16.

\textsuperscript{170} USEPA, \textit{What Climate Change Means for New Jersey}, supra, n.5, at 1.

\textsuperscript{171} Small-Lorenz et al., \textit{Building Ecological Solutions}, supra, n.1, at 12.

\textsuperscript{172} NOAA, \textit{New Jersey Climate Summary}, supra, n.4.
losses. Sandy had a catastrophic effect on regional electric and wastewater infrastructure: 73% of the state’s electric customers experienced outages and the state’s largest treatment plant was inundated and dumped 240 million gallons of sewage into the Newark Bay.

Sea level rise and coastal flooding also threaten to obliterate New Jersey’s extensive coastal wetlands. Its tidal marshes are one of the state’s defining features, valuable as a buffer for back-bay communities against erosion and tidal flooding, and as wildlife habitat. The state’s coastal wetlands are an important stopover point for about 1.5 million migratory birds, including rare and endangered species like the red knot, and the Delaware Bay’s tidal shores are the breeding grounds for the world’s largest population of horseshoe crabs.

With more frequent and intense storms and accelerated sea level rise, tidal flats and marshes could become open water, jeopardizing species that entirely depend on this ecosystem to feed and nest. In Barnegat Bay and Little Egg Harbor, the rising sea is already eroding and submerging small marsh islands, which are important nesting areas for many seabirds. USEPA found that the salt marshes all along the Atlantic Coast between Cape May and the Meadowlands could be entirely displaced by sea level rise of three feet. Coastal wetlands along Delaware Bay in Cumberland County are more vulnerable still and could be lost if the sea rises by only two feet.

**New Mexico**

The Southwest and New Mexico are experiencing the effects of climate change at a rate much faster than the majority of U.S. states. Warming trends in the southwestern U.S. have exceeded global averages by nearly 50 percent since the 1970s, and average temperatures in New


Mexico have been increasing 50 percent faster than the global average over the past century.\textsuperscript{178} Temperatures in the Upper Rio Grande River basin are increasing at a rate of roughly 0.7° F per decade, contributing to an average warming of 2.7° F since 1970.\textsuperscript{179} Mountains have shown a higher rate of temperature rise when compared to lower elevations.\textsuperscript{180} Both minimum and maximum monthly temperatures also show rising trends. The number of very hot days and nights -- defined as temperatures above the warmest 10 percent of days on record -- has increased since 1950. Heat waves lasting longer than four days have also significantly increased since 1960.\textsuperscript{181} These occurrences do not only affect a specific part of the state; over 95 percent of New Mexico has experienced mean temperature increases.\textsuperscript{182}

Key findings from the Third U.S. National Climate Assessment (Assessment) for the Southwest include:

- Snowpack and streamflow amounts are projected to decline in parts of the Southwest, decreasing surface water supply reliability for cities, agriculture, and ecosystems.\textsuperscript{183} (This is a critical issue for New Mexico because the state’s social, economic and environmental systems are already water-scarce and thus vulnerable to the supply disruptions which are likely to accompany future climate changes.\textsuperscript{184}).

- Increased warming, drought, and insect outbreaks caused by or linked to climate change have increased the frequency of catastrophic wildfires impacting people and ecosystems in the Southwest. Fire models project more wildfire and increased risks to communities across extensive areas.\textsuperscript{185}

- The Southwest’s 182 federally recognized tribes and communities share particularly high vulnerabilities to climate changes such as high temperatures, drought, forest fires, and

\textsuperscript{178} Nature Conservancy, \textit{Implications of Recent Climate Change}, at iii; Robert Repetto, \textit{New Mexico’s Rising Economic Risks from Climate Change}, DÉMOS, at 1 (2012).

\textsuperscript{179} Jason Funk et al., \textit{Confronting Climate Change in New Mexico} at 6-7, 9 (Union of Concerned Scientists, April 2016); \url{www.ucusa.org/NewMexicoClimateChange} (last visited Oct. 18, 2018).


\textsuperscript{182} Nature Conservancy, \textit{Implications of Recent Climate Change}, supra, at iii.


\textsuperscript{185} Id.
severe storms. Tribes may face loss of traditional foods, medicines, and water supplies due to declining snowpack, increasing temperatures, increasing drought, forest fires, and subsequent flooding. Historic land settlements and high rates of poverty—more than double that of the general United States population—constrain tribes’ abilities to respond effectively to climate challenges.186

- The Southwest produces more than half of the nation’s high-value specialty crops, which are irrigation-dependent and particularly vulnerable to extremes of moisture, cold, and heat. Reduced yields from increasing temperatures and increasing competition for scarce water supplies will displace jobs in some rural communities.187

- Increased frost-free season length, especially in already hot and moisture-stressed regions like the Southwest, is projected to lead to further heat stress on plants and increased water demands for crops. Higher temperatures and more frost-free days during winter can lead to early bud burst or bloom of some perennial plants, resulting in frost damage when cold conditions occur in late spring; in addition, with higher winter temperatures, some agricultural pests can persist year-round, and new pests and diseases may become established.188

Key findings from the Assessment for New Mexico include:

- Streamflow totals in the Rio Grande and other rivers in the Southwest were 5 percent to 37 percent lower between 2001 and 2010 than average flows during the 20th century. Projections of further reduction of late-winter and spring snowpack and subsequent reductions in runoff and soil moisture pose increased risks to water supplies needed to maintain cities, agriculture, and ecosystems.189

- Drought and increased temperatures due to climate change have caused extensive tree death across the Southwest. Winter warming due to climate change has exacerbated bark beetle outbreaks by allowing more beetles, which normally die in cold weather, to survive and reproduce.190 Wildfire and bark beetles killed trees across one fifth of New Mexico


188 Id.

189 Id.

190 Id.

- Exposure to excessive heat can aggravate existing human health conditions, such as respiratory and heart disease. Increased temperatures can reduce air quality because atmospheric chemical reactions proceed faster in warmer conditions. As a result, heat waves are often accompanied by increased ground level ozone, which can cause respiratory distress. Increased temperatures and longer warm seasons will lead to shifts in the distribution of disease-transmitting mosquitoes.

Additionally, a recent study led by Los Alamos National Laboratories found that greenhouse gas-driven warming may lead to the death of 72 percent of the Southwest’s evergreen forests by 2050, and nearly 100 percent mortality of these forests by 2100.

If action is not taken to reduce greenhouse gas emissions, climate models project substantial changes in New Mexico’s climate over the next 50 to 100 years. Barring reduction efforts, projected climate changes by mid- to late 21st century include: air temperatures warming by 6-12 degrees Fahrenheit on average, but more so in winter, at night, and at high elevations; more episodes of extreme heat, fewer episodes of extreme cold; more intense storm events and flash floods; and winter precipitation falling more often as rain and less often as snow. Severe and sustained drought will stress water sources, already over-utilized in many areas, forcing increasing water-allocation competition among farmers, energy producers, urban dwellers, and ecosystems.

**New York**

New York has begun to experience adverse effects from climate change. In 2014, the New York Attorney General’s Office released a report, *Current and Future Trends in Extreme Rainfall Across New York State*, which highlights dramatic increases in the frequency and intensity of extreme rain storms across New York. As but one example, devastating rainfall

191 *Id.* at 468.

192 *Id.* at 484.

193 *What Climate Change Means for New Mexico and the Southwest, supra*, at 2-3.


195 *Confronting Climate Change in New Mexico, supra*, at 3.

196 *What Climate Change Means for New Mexico and the Southwest, supra*, at 1-2.

from Hurricane Irene in 2011 dropped more than 11 inches of rain in just 24 hours, causing catastrophic flooding in the Hudson Valley, eastern Adirondacks, Catskills and Champlain Valley. Thirty-one counties were declared disaster areas. Over 1 million people were left without power, more than 33,000 had to seek disaster assistance, and 10 were killed. Damage estimates totaled $1.3 billion. While no individual storm can be tied to climate change, the trends in extreme rainfall already being felt across New York State are consistent with scientists’ predictions of new weather patterns attributable to climate change.

**Hurricane Irene Flooding**

Image from ABC 7 Eyewitness News

Similarly, in August 2014, a weather front stalled over Long Island, dumping more than 13½ inches of rain—nearly an entire summer’s worth—in a matter of hours and breaking the state’s rainfall record. That deluge flooded out over 1,000 homes and businesses, opened massive sinkholes on area roadways, and forced hundreds to evacuate to safer ground. Initial damage estimates exceeded $30 million.
Also, New York’s rate of sea level rise is much higher than the national average and could account for up to 6 feet of additional rise by 2100 if greenhouse gas emissions are not abated. Storm surge on top of high tide on top of sea level rise is a recipe for disaster for coastal New York. The approximately 12 inches of sea level rise New York City has experienced since 1900 may have expanded Hurricane Sandy’s flood area by about 25 square miles, flooding the homes of an additional 80,000 people in the New York City area alone. That flooding devastated areas of New York City, including the Brooklyn-Queens Waterfront, the East and South Shores of Staten Island, South Queens, Southern Manhattan, and Southern Brooklyn, which in some areas lost power and other critical services for extended periods of time.

Hurricane Sandy exposed critical weaknesses in the resilience of New York’s utility infrastructure, the danger that this weakness poses to New Yorkers, and the collateral damage to the economy:

- Almost 2 million utility customers suffered from electricity outages;
- Tens of thousands of utility customers were left without power for weeks;
- Hospitals were shut down and patients displaced;
- Many drinking water utilities lost power, which disrupted their ability to provide safe water; and sewage treatment plants could not operate, resulting in billions of gallons of untreated or partially treated sewage flowing into local waterways.

The costs of Hurricane Sandy to New York alone will likely top $40 billion, including $32.8 billion to repair and restore damaged housing, parks and infrastructure and to cover economic losses and other expenses. That figure includes $9.1 billion to help mitigate and prevent potential damages from future severe weather events.\(^{200}\)

Of course, sea level rise will not stop in 2100, nor in 2200 especially if a high GHG emission scenario continues, resulting in locked-in or “committed” sea level rise over hundreds or thousands of years, drastically altering New York’s coastline and disrupting our

---


communities. The figure below illustrates the inundation in portions of New York City resulting from the committed sea level rise expected from 4°C (7.2°F) of warming. Note that in the ongoing rulemaking for the Safe Vehicles Rule, the National Highway Traffic Safety Administration has determined that taking no policy actions to reduce CO2 emissions will cause global surface temperature in 2100 to increase to 3.48°C, close to the 4°C warming represented in the figure.

Although New York has taken a number of actions to reduce pollutants such as nitrogen oxides and volatile organic compounds that contribute to ground level ozone (smog) formation, ozone pollution remains a persistent problem. Much of New York City and Long Island have not attained the 2008 ozone standards, much less the more protective 2015 standards. A significant amount of the pollutants that contribute to smog is generated in upwind states and carried by prevailing winds into New York and other northeastern states. As the climate warms, increased temperatures create more favorable conditions for the formation of smog. According to the Third National Assessment on Climate Change, for example, under a scenario in which greenhouse...
gases continue to increase, this would lead to higher ozone concentrations in the New York metropolitan region, driving up the number of ozone-related emergency room visits for asthma in the area by 7.3 percent—more than 50 additional ozone-related emergency room visits per year in the 2020s, compared to the 1990s. The figure below, included in that report, shows that projected worsening in asthma cases in the New York City area.

North Carolina

The effects of climate change have been felt and will continue to be felt from the mountains to the sea and across every sector of North Carolina’s economy.

With approximately 3,375 miles of shoreline, North Carolina is particularly vulnerable to the effects of sea-level rise. In its 2010 Sea Level Rise Assessment Report, the North Carolina Coastal Resource Commission’s Science Panel on Coastal Hazards concluded that a 39-inch rise in sea levels was likely to occur on the North Carolina coast in the next century. The Panel’s

---


2015 update predicted that sea levels would rise by 1.9 to 10.6 inches at different locations along North Carolina’s coast by 2045.208

Because of eastern North Carolina’s low-lying topography, North Carolina faces extensive loss of land to inundation from sea-level rise.209 In 2014, the North Carolina Division of Emergency Management concluded that over the century, North Carolina could see the inundation of 800 square miles of North Carolina’s coastal plain, representing 9% of the land area in North Carolina’s 20 coastal counties.210 Another study predicted that 13 North Carolina communities will face chronic inundation from sea level rise by 2035 and that a further 36 communities will experience chronic inundation by 2100.211

North Carolina sits within a frequent hurricane path, making its coastal region especially vulnerable to hurricanes and inland flooding. This year, Hurricane Florence claimed the lives of 39 people in North Carolina212 and caused an estimated $13 billion in damage.213 The storm shattered the previous rainfall record set by Hurricane Floyd in 1999 of 24.06 inches. During the hurricane, Elizabethtown, North Carolina saw 35.93 inches of rainfall and Swansboro, North Carolina saw more than 33 inches of rainfall.214 A rainfall meteorologist at North Carolina State University calculated that Hurricane Florence, compared to all storms in the United States over the last 70 years, produced the second highest amount of rain in a concentrated (14,000 square mile) land area.215 On the meteorologist’s list, four of the top seven storms occurred in the last

---


210 Id.


three years.\textsuperscript{216} In 2016, Hurricane Matthew had devastating impacts on many of the same areas of eastern North Carolina, killing at least 27 people and causing some $1.5 billion in damage, from which the state is still recovering.\textsuperscript{217}

The amount of rainfall and flooding these hurricanes have brought used to be extremely rare in North Carolina, but it is not rare anymore. Based on pre-climate change weather patterns, Hurricane Florence’s rainfall was described as an event that eastern North Carolina could expect to occur only once every 1000 years.\textsuperscript{218} Hurricane Matthew, a 500-year flood event,\textsuperscript{219} hit eastern North Carolina just two years before Florence. As Governor Cooper of North Carolina said, “We have to understand that when you have two so-called 500-year floods within 22 months of each other, [we’re] not sure you’re talking about [a] 500-year flood anymore. We’ve got something else on our hands.”\textsuperscript{220} A third 500-year flood event, caused by Hurricane Floyd, struck eastern North Carolina in 1999.\textsuperscript{221} That makes three 500-year (or longer) flood events to hit eastern North Carolina in the past 19 years.

Climate change presents severe health risks for North Carolina’s citizens, especially vulnerable populations such as the elderly and children. The North Carolina Department of Health and Human Services has evaluated health risks associated with climate change impacts such as increased drought, increased precipitation, heat waves, hurricanes, and sea-level rise.\textsuperscript{222} The health risks associated with these impacts include:

- Waterborne disease outbreaks, increased foodborne illnesses, and compromised drinking water quality.
- Increases in mosquito populations after hurricanes and high rain events.
- Physical injuries caused by hurricanes, flooding, high winds, droughts, and heat waves.
- Respiratory illness caused by prolonged drought periods.

\textsuperscript{216} Id.


\textsuperscript{218} Risk Management Solutions, Hurricane Florence: Rainfall up to a 1,000-Year Return Period (Sep. 14, 2018), \textit{available at} https://www.rms.com/blog/2018/09/14/hurricane-florence-rainfall-up-to-a-1000-year-return-period/.


\textsuperscript{221} Millner, M., University of North Carolina, Remembering Hurricane Floyd (Oct. 2009), \textit{available at} https://docsouth.unc.edu/highlights/floyd.html.

\textsuperscript{222} N.C. Department of Health and Human Services, Division of Public Health, North Carolina Climate and Health Profile (March 2015), \textit{available at} http://epi.publichealth.nc.gov/oee/climate/ClimateAndHealthProfile.pdf.
• Lung disease and premature death from heart or lung disease from increased ground-level ozone formed by rising temperatures.\textsuperscript{223}

Droughts caused by climate change can make a forest more prone to wildfires,\textsuperscript{224} creating another major risk to North Carolinians’ health. Between October and November of 2016, thirty fires scorched 80,000 acres in drought-stricken western North Carolina counties. State air quality officials detected 24 instances of code orange conditions during the fires, 11 instances of code red, two in code purple and two in code maroon. Fine particulate matter from wildfires is an existing threat to North Carolinians’ health, causing increases in respiratory and cardiovascular emergencies in downwind communities.\textsuperscript{225}

Climate change also harms North Carolina’s agriculture and agribusiness sector, which is largely based in the eastern part of the state and contributed $84 billion to North Carolina’s economy in 2016.\textsuperscript{226} Major crops include corn, cotton, tobacco, sweet potatoes, pork, turkey, and chicken. Increasingly severe droughts cause crop failures, and higher temperatures reduce livestock productivity.\textsuperscript{227} Saltwater intrusion from sea level rise can make soils too salty for native plants to grow, impacting crop yields.\textsuperscript{228} North Carolina’s forestry industry would suffer similar impacts from saltwater intrusion, and increasingly severe and frequent hurricanes would damage North Carolina’s forestlands. One study in North Carolina predicted that forest damages rise by $500 million for every increase in category level of hurricane.\textsuperscript{229}

\textsuperscript{223} Id.

\textsuperscript{224} Id.

\textsuperscript{225} N.C. Department of Health and Human Services, Division of Public Health, North Carolina Climate and Health Adaptation Plan Update (2016), \textit{available at} http://epi.publichealth.nc.gov/oee/climate/ClimateAndHealthAdaptationPlan.pdf.

\textsuperscript{226} Brian Long, Today’s Topic: Economic impact of NC agriculture, agribusiness increases to $84 billion, \textit{In the Field}, N.C. Dep’t of Agriculture and Consumer Services (June 7, 2016), \textit{available at} http://info.ncagr.gov/blog/2016/06/07/todays-topic-economic-impact-of-nc-agriculture-agribusiness-increases-to-84-billion/


\textsuperscript{228} N.C. Department of Environmental Quality, Division of Coastal Management, Sea Level Rise, https://deq.nc.gov/about/divisions/coastal-management/coastal-management-hot-topics/sea-level-rise (last visited Jan. 4, 2018)

\textsuperscript{229} University of Maryland, Center for Integrative Environmental Research, Economic Impacts of Climate Change on North Carolina (Sept. 2008), \textit{available at} http://cier.umd.edu/climateadaptation/North%20Carolina%20Economic%20Impacts%20of%20Climate%20Change%20Full%20Report.pdf.
North Carolina’s tourism industry, which generated $22.9 billion in visitor spending in 2016, is also at risk.\textsuperscript{230} Tourism is threatened by loss of beach areas due to sea level rise and decrease in demand for coastal travel due to unpredictable weather patterns.\textsuperscript{231}

North Carolina is already incurring significant transportation and infrastructure costs due to climate change impacts. Large numbers of North Carolina’s coastal railways, ports, airports, and water and energy supply systems are at low elevations and are therefore vulnerable to the effects of sea level rise and more frequent hurricanes.\textsuperscript{232} The North Carolina Department of Transportation is raising the roadbed of U.S. Highway 64 across the Albemarle-Pamlico Peninsula by four feet, which includes 18 inches to account for sea level rise.\textsuperscript{233}

Finally, climate change harms North Carolina’s tremendous ecological resources, such as its coastal estuaries. North Carolina’s coastal estuaries perform essential functions, including filtering pollutants and supporting fisheries.\textsuperscript{234} Disruption of these important resources from storm damage and salt water intrusion negatively impacts fisheries and depletes water quality.

**Oregon**

Oregon is already experiencing adverse impacts of climate change and these impacts are expected to become more pronounced in the future, significantly affecting Oregon's economy and environment:

**Loss of Snowpack and Drought**

The seasonal flow cycles of rivers and streams are changing due to warmer winters and decreased mountain snowpack accumulation, as more precipitation falls as rain, not snow.\textsuperscript{235} The Third Oregon Climate Assessment Report\textsuperscript{236} explained that events in 2015 demonstrated the kind of impacts this is has already had, and will have in the future:

In 2015, Oregon was the warmest it has ever been since record keeping began in 1895 (NOAA, 2017). Precipitation during the winter of that year was near normal, but winter temperatures that were 5–6°F above average caused the precipitation that did fall to fall


\textsuperscript{231} University of Maryland, Economic Impacts of Climate Change on North Carolina, supra.

\textsuperscript{232} EPA, What Climate Change Means for North Carolina, supra.


\textsuperscript{234} N.C. Department of Environmental Quality, Sea Level Rise, supra.


\textsuperscript{236} The Third Oregon Climate Assessment Report, Oregon Climate Change Research Institute, January 2017.
as rain instead of snow, reducing mountain snowpack accumulation (Mote et al., 2016). This resulted in record low snowpack across the state, earning official drought declarations for 25 of Oregon’s 36 counties. Drought impacts across Oregon were widespread and diverse:

Farmers in eastern Oregon’s Treasure Valley received a third of their normal irrigation water because the Owyhee reservoir received inadequate supply for the third year in a row (Stevenson, 2016) …

People near the Upper Klamath Lake were warned not to touch the water as algal blooms that thrived in the low flows and warm waters produced extremely high toxin levels (Marris, 2015) …

More than half of the spring spawning salmon in the Columbia River perished, likely due to a disease that thrived in the unusually warm waters (Fears, 2015) …

The West Coast–wide drought developed alongside a naturally-driven large, persistent high-pressure ridge (Wise, 2016). However, anthropogenic warming exacerbated the drought, particularly in Oregon and Washington (Mote et al., 2016; Williams et al., 2015) …

Oregon’s temperatures, precipitation, and snowpack in 2015 are illustrative of conditions that, according to climate model projections, may be considered “normal” by mid-century.237

And there has been more bad news since 2015. In 2018, researcher John Abatzoglou reported that:

Drought impacts are being felt most notably in Oregon, which endured a period of substandard snowpack followed by unusually dry and warm conditions since May. The impacts cover the gamut from fire to farms to fish …

Fishing restrictions have been enacted in the Umpqua River in western Oregon due to critically warm stream temperatures for steelhead and salmon. The combination of very low flows—including recent daily record low flows—due to subpar precipitation and warm temperatures have allowed water temperatures to warm faster than usual.238

---


Sea Level Rise

Ocean sea levels will rise between four inches and four-and-a-half feet on the Oregon coast by the year 2100, and coastal residents, cities and towns along Oregon’s 300 miles of coastline and 1400 miles of tidal shoreline will be threatened by increased flooding and erosion as a result. Residential development, state highways, and municipal infrastructure are all at risk to such threats.\(^ {239} \)

**Ocean Acidification and Hypoxia**

As a result of climate change, ocean waters are now more acidified, hypoxic (low oxygen), and warmer, and such impacts are projected to increase, with a particular detrimental impact on some marine organisms like oysters and other shellfish, which will threaten marine ecosystems, fisheries and seafood businesses that play a vital role in Oregon’s economy and culture.\(^ {240} \) As the Third Oregon Climate Assessment Report observed, “[T]he West Coast has already reached a threshold and negative impacts are already evident, such as dissolved shells in pteropod populations … and impaired oyster hatchery operations …”\(^ {241} \)

The Oregon Coordinating Council on Ocean Acidification and Hypoxia recently reported that “[n]ew research points to an ever-growing list of marine organisms that are now known to be vulnerable to the threats of ocean acidification and hypoxia (OAH). The list includes species such as Dungeness crabs, rockfishes and salmon that underpin livelihoods and connections to the sea for many Oregonians.”\(^ {242} \)

In March of 2017, KVAL TV in Eugene, Oregon chronicled the experience of the Whiskey Creek Hatchery off Netarts Bay in Tillamook, Oregon. Manager Alan Barton said that “[w]e probably produce about a third of all oyster larvae on the West Coast.” But in 2007 and 2008, hatchery output collapsed by 75%. Working with scientists from Oregon State University, Whiskey Creek identified ocean acidification as the problem. They developed a way to treat the water at the hatchery, which has been successful. But Barton does not believe that treatment is a long-term solution:

\(^ {239} \)See W. Spencer Reeder et al., *Coasts: Complex Changes Affecting the Northwest’s Diverse Shorelines*, in *Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities* 67–109 (Meghan M. Dalton et al. eds., 2013); Ben Strauss et al., Climate Cent., *California, Oregon, Washington and the Surging Sea: A Vulnerability Assessment with Projections for Sea Level Rise and Coastal Flood Risk* 29 (2014).


\(^ {241} \)Third Oregon Climate Assessment Report, supra, at 36.

\(^ {242} \)Oregon Coordinating Council on Ocean Acidification and Hypoxia, 1st Biennial Report, at 8, September 15, 2018.
“The short term prospects are pretty good. But within the next couple of decades we’re going to cross a line I don’t think we’re going to be able to come back from,” he says. “A lot of people have the luxury of being skeptics about climate change and ocean acidification. But we don’t have that choice. If we don’t change the chemistry of the water going into our tanks, we’ll be out of business. It’s that simple for us.”

Forests, Pests and Fires

Oregon is largely defined by its iconic forests, which climate change threatens in a myriad of ways, as the Third Oregon Climate Assessment Report detailed:

Future warming and changes in precipitation may considerably alter the spatial distribution of suitable climate for many important tree species and vegetation types in Oregon by the end of the 21st century. Changing climatic suitability and forest disturbances from wildfires, insects, diseases, and drought will drive changes to the forest landscape in the future. Conifer forests west of the Cascade Range may shift to mixed forests and subalpine forests would likely contract. Human-caused increases in greenhouse gases are partially responsible for recent increases in wildfire activity. Mountain pine beetle, western spruce budworm, and Swiss needle cast remain major disturbance agents in Oregon’s forests and are expected to expand under climate change. More frequent drought conditions projected for the future will likely increase forest susceptibility to other disturbance agents such as wildfires and insect outbreaks.

Over the last several decades, warmer and drier conditions during the summer months have contributed to an increase in fuel aridity and enabled more frequent large fires, an increase in the total area burned, and a longer fire season across the western United States, particularly in forested ecosystems (Dennison et al., 2014; Jolly et al., 2015; Westerling, 2016; Williams and Abatzoglou, 2016). The lengthening of the fire season is largely due to declining mountain snowpack and earlier spring snowmelt (Westerling, 2016). In the Pacific Northwest, the fire season length increased over each of the last four decades, from 23 days in the 1970s, to 43 days in the 1980s, 84 days in the 1990s, and 116 days in the 2000s (Westerling, 2016). Recent wildfire activity in forested ecosystems is partially attributed to human-caused climate change: during the period 1984–2015, about half of the observed increase in fuel aridity and 4.2 million hectares (or more than

---

243 KVAl-TV, ‘One morning we came in and everything was dead’: Climate Change and Oregon oysters, March 1, 2017.
16,000 square miles) of burned area in the western United States were due to human-caused climate change (Abatzoglou and Williams, 2016).  

Health Effects

An increase in forest fire activity is one of the various ways in which climate change threatens human health. As the Third Oregon Climate Assessment noted, “Climate change threatens the health of Oregonians. More frequent heat waves are expected to increase heat-related illnesses and death. More frequent wildfires and poor air quality are expected to increase respiratory illnesses.” For example:

Climate change is expected to worsen outdoor air quality. Warmer temperatures may increase ground level ozone pollution, more wildfires may increase smoke and particulate matter, and longer, more potent pollen seasons may increase aeroallergens (Fann et al., 2016). Such poor air quality is expected to exacerbate allergy and asthma conditions and increase respiratory and cardiovascular illnesses and death (Fann et al., 2016).

Oregon has already experienced a dramatic increase in “unhealthy air days” due to forest fires. The Medford metro region experienced 20 air quality alert days due to fire from 1985 through 2001, 19 of those in one year. From 2002 through 2012, Medford had 22 such days. But since 2013, Medford has had 74 such days, including 20 in 2017 and 35 in 2018. Portland, meanwhile, had a total of two such days from 1985 through 2014 – but 13 such days from 2015 through 2018.

---


245 Third Oregon Climate Assessment Report, supra, at 74.


247 In addition to the impact on human health, fires in the Medford area have punished a beloved Oregon institution, the Oregon Shakespeare Festival in Ashland. In 2018 alone, the Festival had to cancel – or move indoors, to smaller venues – 20 performances, costing the Festival money and ruining many theater-goers’ plans. Wildfire Smoke Disrupts Oregon Shakespeare Festival, New York Times, August 24, 2018.

248 Oregon DEQ, Forest Fire Smoke Impact on Air Quality Health Trends in Bend, Klamath Falls, Medford, and Portland (1985 to 2018), DEQ18-NWR-0066-TR (October 2018). It is worth noting that although air quality alerts are often limited to especially vulnerable populations – “unhealthy for
During the 2017 Eagle Creek fire, the Oregon Health Authority (OHA) reported a 29% increase in emergency room visits for respiratory symptoms in the Portland metro region.\textsuperscript{249}

In its 2014 Oregon Climate and Health Profile Report, OHA elaborated on the health effects of wildfire smoke:

Particulate matter (PM) in smoke from wildfires is associated with cancer, cardiopulmonary disease and respiratory illness … As a result of projected increases in wildfire, Spracklen et al. (2009) anticipate an increase in aerosol organic carbon of up to 40% and an increase in elemental carbon in the western U.S. of up to 20% in 2046–2055 compared to 1996–2005 … PM associated with wildfires in California has been shown to be more toxic to the lungs than normal ambient PM … PM exposure from wildfire smoke is a risk beyond the immediate area of the fire, since high winds can carry the PM long distances … Increases in smoke are associated with hospital admissions for respiratory complaints, and long-term exposure worsens existing cardiopulmonary disease … bronchitis and pneumonia.\textsuperscript{250}

Impact on American Indian Tribes

As the Legislative Summary of the Third Oregon Climate Assessment Report observed:

Changes in terrestrial and aquatic ecosystems will affect resources and habitats that are important for the sovereignty, culture, economy, and community health of many American Indian tribes. Tribes that depend upon these ecosystems, both on and off reservation, are among the first to experience the impacts of climate change. Of particular concern are changes in the availability and timing of traditional foods such as salmon, sensitive groups” – Medford in 2017-18 has experienced 38 days in which the air was unhealthy for all populations, including five “very unhealthy” days and one “hazardous” day.

\textsuperscript{249} Statewide Fire Activation Surveillance Report (090517-090617), Oregon Health Authority.

shellfish, and berries, and other plant and animal species important to tribes’ traditional way of life.251

The threat that climate change poses to salmon populations is a particular source of concern for the tribes:

A 2015 study of Columbia River Basin tribes, including the Confederated Tribes of Warm Springs (CTWS) and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR), found that the primary concerns regarding climate change impacts included the quantity and quality of water resources, snowpack, water temperatures for spawning conditions, and fishing rights (Sampson, 2015). Pacific salmon have great cultural, subsistence, and commercial value to tribes in the Pacific Northwest, and are central to tribal cultural identity, longhouse religious services, sense of place, livelihood, and the transfer of traditional values to the next generation (Dittmer, 2013). During the last 150 years, culturally important salmon populations have declined (Dittmer, 2013). Continuation of past trends of earlier spring peak, more extreme high flows and more frequent low flows in the low elevation basins of northeast Oregon, home to the CTWS and CTUIR, may force earlier migration of juvenile salmon, challenge returning adults in low flow conditions, and increase scour risk for emerging young salmon (Dittmer, 2013).252

Page 58:

The threat that climate change poses to forests is likewise a major concern for tribes:

Changes in forest ecosystems and disturbances will affect resources and habitats that are important for the cultural, medicinal, economic, and community health of tribes (Lynn et al., 2013). In Oregon, 62% of tribal reservation land is forested, and the US government has a trust responsibility toward such forests (Indian Forest Management Assessment Team, 2013). American Indian and Alaska Native tribes that depend on forest ecosystems, whether on or off reservations, are among the first to experience the impacts that climate change is having on forests, such as the expansion of invasive species, insects, diseases, and wildfires (Norton-Smith et al., 2016). Invasive species that displace native species can negatively affect tribal subsistence and ceremonial practices, although there is little knowledge about on how climate change will interact with invasive species (Norton-Smith et al., 2016). Increasing wildfire, insects, and diseases have jeopardized the economic and ecological sustainability of tribally managed forests and important tribal resources (Indian Forest Management Assessment Team, 2013; Norton-Smith et al., 2016). Collaborative adaptive forest management that integrates tribal traditional

251 The Third Oregon Climate Assessment Report, supra, (Legislative Summary).
ecological knowledge can support socio-ecological resilience to climate change (Armatas et al., 2016).253

Pennsylvania

The Commonwealth of Pennsylvania faces two fundamental threats related to climate: (1) sea level rise and its impact on communities and cities in the Delaware River Basin, including the city of Philadelphia; and (2) more frequent extreme weather events, including large storms, periods of drought, heat waves, heavier snowfalls, and an increase in overall precipitation variability. Based on studies commissioned by the Pennsylvania Department of Environmental Protection, as part of its mandate under the Pennsylvania Climate Change Act, 71 P.S. §§ 1361.1 – 1361.8, Pennsylvania has undergone a long-term warming of more than 1°C over the past 110 years.254 The models used in the 2015 Climate Impacts Assessment Update suggest this warming is a result of anthropogenic influence, and that this trend is accelerating. Projections in the 2015 Update show that by the middle of the 21st century, Pennsylvania will be about 3°C warmer than it was at the end of the 20th century.

253 Citing C. Armatas et al., Opportunities to utilize traditional phenological knowledge to support adaptive management of social-ecological systems vulnerable to changes in climate and fire regimes, Ecology and Society 21 (2016); Assessment of Indian Forests and Forest Management in the United States, Indian Forest Management Assessment Team (2013); K. Lynn et al., Northwest Tribes: Cultural Impacts and Adaptation Resources: Chapter 8. In: M. M. Dalton et al., Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities, Island Press: Washington, DC (2013); K. Norton-Smith et al., Climate change and indigenous peoples: a synthesis of current impacts and experiences (2016).

Modeling charts from the 2015 Update show that in both the CMIP5 and statistically downscaled CMIP5 datasets, mid-century temperatures in the Philadelphia region are projected to be similar to historical temperatures in the Richmond, VA area. Similarly, Pittsburgh’s temperatures are projected to resemble the historically observed temperatures in the Baltimore-Washington area. The mean warming across the state simulated by these models is generally 3.0-3.5 °C (5.4-6.3°F). The CMIP5 model mean change is 3.0-3.3 °C (5.4-6.0 °F) across nearly the entire state. The statistically downscaled CMIP5 model mean change is 3.3-3.5 °C (5.9-6.3°F) in the northern half of the state and 3.0-3.3 °C (5.4-6.0°F) in the southern half. Finally, the dynamically downscaled dataset model mean change is only 1.5-1.8 °C (2.7-3.2°F) across the western half of the state and 1.8-2.1 °C (3.2-3.8 °F) across the eastern half. The reduced warming is likely at least partially because these models rely on a different emissions scenario, in which the buildup of greenhouse gases in the atmosphere occurs at a slower rate than in the than in the scenarios that the CMIP5 models use.
The 2015 Climate Impacts Assessment Update also finds that this warming trend will threaten Pennsylvania in other ways:

- Pennsylvania agriculture will have to adapt to by greater extremes in temperature and precipitation.\(^{255}\) Pennsylvania dairy production is likely to be negatively affected by climate change due to losses in milk yields caused by heat stress, additional energy and capital expenditures to mitigate heat stress, and lower levels of forage quality.

- Pennsylvania’s forests will be subject to multiple stressors.\(^{256}\) The warming climate will cause tree species inhabiting decreasingly suitable habitat to become stressed. Mortality rates are likely to increase and regeneration success is expected to decline for these tree species, resulting in declining importance of those species in the state.

- Suitable habitat for plant and wildlife species is expected to shift to higher latitudes and elevations.\(^{257}\) This will reduce the amount of suitable habitat in Pennsylvania for species that are at the southern extent of their range in Pennsylvania or that are found primarily at high latitudes; the amount of habitat in the state that is suitable for species that are at the northern extent of their range in Pennsylvania will increase. The Canada lynx, which is already rare in Pennsylvania, will likely be extirpated from the state.

- The public health of Pennsylvanians is threatened because climate change will worsen air quality relative to what it would otherwise be, causing increased respiratory and cardiac illness.\(^{258}\) The linkage between climate change and air quality is most strongly established for ground-level ozone creation during summer, but there is some evidence that higher temperatures and higher precipitation will result in increased allergen (pollen and mold) levels as well.

- West Nile disease is endemic in Pennsylvania.\(^{259}\) It is currently most prevalent in Southeastern and Central parts of the state, and less prevalent in the Laurel Highlands and the Allegheny Plateau. However, climate change is expected to increase the prevalence of West Nile disease in the higher-elevation areas, due to higher temperatures. In addition to its range, the duration of the transmission season for West Nile disease is sensitive to climate. Warmer temperatures result in a longer transmission season, and therefore greater infection risk.

- Climate change will have a severe, negative impact on winter recreation in Pennsylvania.\(^{260}\) Downhill ski and snowboard resorts are not expected to remain

\(^{255}\) 2015 Climate Impacts Assessment Update, *supra* at 63.

\(^{256}\) *Id.* at 114.

\(^{257}\) *Id.*

\(^{258}\) *Id.* at 321.

\(^{259}\) *Id.* at 135.

\(^{260}\) *Id.* at 141.
economically viable past mid-century. Snow cover to support cross country skiing and snowmobiling has been declining in Pennsylvania, and is expected to further decline by 20-60%, with greater percentage decreases in southeastern Pennsylvania, and smaller decreases in northern Pennsylvania.

- Climate change poses a threat to the fauna of the tidal freshwater portion of the Delaware estuary in Pennsylvania.\textsuperscript{261} One reason is that increased water temperatures with climate change decrease the solubility of oxygen in water and will increase respiration rates, both of which will result in declines in dissolved oxygen concentration. Thus, climate change will worsen the currently substandard water quality in the tidal freshwater region of the Delaware Estuary.

- The freshwater tidal wetlands along Pennsylvania’s southeastern coast are a rare, diverse, and ecologically important resource.\textsuperscript{262} Climate change poses a threat to these wetlands because of salinity intrusion and sea-level rise. Sea-level rise, however, has the potential to drown wetlands if their accretion rates are less than rates of sea-level rise.

**Rhode Island**

Climate change is adversely impacting Rhode Island in many diverse ways, including warming air temperatures, warming ocean temperatures, rising sea level, increased acidity of ocean waters, increased rainfall amounts, and increased intensity of rainfall events.

Rhode Island has experienced a significant trend over the past 80 years toward a warmer and wetter climate. Trends are evident in annual temperatures, annual precipitation, and the frequency of intense rainfall events. Temperatures have been steadily climbing in the Ocean State since the early 1930s. The average annual temperature for the state is currently increasing at a rate of 1 degree Fahrenheit every 33 years. The frequency of days with high temperatures at or above 90 degrees has increased while the frequency of days with minimum temperatures at or below freezing has decreased.\textsuperscript{263}

There has also been a pronounced increase in precipitation from 1930 to 2013. Increased precipitation has occurred as a result of large, slow moving storm systems, multiple events in the span of a few weeks (such as the 2010 spring floods), as well as an increase in the frequency of intense rain events. The average annual precipitation for Rhode Island is increasing at a rate of

\textsuperscript{261} Id. at 152.

\textsuperscript{262} Id.

more than 1 inch every 10 years. The frequency of days having one inch of rainfall has nearly doubled. Intense rainfall events (heaviest 1 percent of all daily events from 1901 to 2012 in New England) have increased 71 percent since 1958. The increased amounts of precipitation since 1970 has resulted in a much wetter state in terms of soil moisture and the ground’s ability to absorb rainfall.264

In addition, the water in Narragansett Bay is getting warmer. Over the past 50 years, the surface temperature of the Bay has increased 1.4° to 1.6° C (2.5° to 2.9° F). Winter water temperatures in the Bay have increased even more, from 1.6° to 2.0° C (2.9° to 3.6° F). Ocean temperatures are increasing world-wide, but temperature increases in the northwestern Atlantic Ocean are expected to be 2-3 times larger than the global average.265 Warmer water temperatures in Narragansett Bay are causing many changes in ecosystem dynamics, fish, invertebrates, and plankton. Cold-water iconic fishery species (cod, winter flounder, hake, lobster) are moving north out of RI waters and warm-water southern species are becoming more prevalent (scup, butterfish, squid). Rhode Island’s marine waters are also becoming more acidic due to increasing CO₂. This may cause severe impacts to shellfish, especially in their larval life stages.266

Sea levels have risen over 9 inches in Rhode Island since 1930 as measured at the Newport tide gauge. The historic rate of sea level rise at the Newport tide gauge from 1930 to 2015 is presently 2.72 mm/year, or more than an inch per decade.267 At present rates, sea levels will likely increase 1 inch between every 5 or 6 years in Rhode Island. NOAA is projecting as much as 6.6 feet of sea level rise by the end of this century in Rhode Island. In the shorter-term, NOAA predicts upwards of 1 foot by 2035 and 1.9 feet by 2050.268 This has critical implications for Rhode Island, as thousands of acres of Rhode Island’s coast will be affected.

Climate change is also altering the ecology and distribution of plants and animals in Rhode Island. In southern New England, spring is arriving sooner and plants are flowering earlier (one week earlier now when compared to the 1850s). For every degree of temperature rise in the spring and winter, plants flower 3.3 days earlier. For woody plants, leaf-out is occurring 18 days earlier now than in the 1850s. Changes in the timing of leaf-out, flowering, and fruiting in plants can be very disruptive to plant pollinators and seed dispersers.269 Changes in the timing of annual cycles has been observed in Rhode Island birds. Based on a 45-year near-continuous record of monitoring fall migration times for passerine birds in

264 Id. at 4.


266 Id.

267 Id. at 28-30.

268 Id.

269 Id. at 38-40
Kingston, RI, Smith and Paton (2011) found a 3.0 days/decade delay in the departure time of 14 species of migratory birds.\textsuperscript{270}

**Vermont**

Climate change is causing an increase in temperatures and precipitation in Vermont. Average annual temperature has increased by 1.3\textdegree F since 1960, and is projected to rise by an additional 2-3.6 \textdegree F by 2050.\textsuperscript{271} Since 1960, average annual precipitation has increased by 5.9 inches.\textsuperscript{272}

Heavy rainfall events are becoming more common.\textsuperscript{273} Increasingly frequent heavy rains threaten to flood communities located in Vermont’s many narrow river valleys. In 2011 Tropical Storm Irene dumped up to 11 inches of rain on Vermont, impacting 225 municipalities and causing \$733 million in damage.\textsuperscript{274} More than 1,500 residences sustained significant damage, temporarily or permanently displacing more than 1400 households.\textsuperscript{275} More than 500 miles of state highway, 2000 municipal road segments, and 480 bridges were damaged.\textsuperscript{276} Farms, water supply and wastewater treatment facilities were also damaged, and the channels of many streams were enlarged and/or relocated.\textsuperscript{277}

In addition to threatening human lives and property, increasingly frequent heavy rains present challenges for state and local land use planning. Further, storm water runoff carries pollutants to the state’s streams and lakes, and hinders the state’s efforts to address phosphorous pollution and resulting algal blooms in Lake Champlain.

Climate change also threatens Vermont’s environment and economy by affecting activities dependent on seasonal climate patterns, such as maple sugaring and winter sports.\textsuperscript{278} Vermont is the nation’s leading maple-syrup producing state.\textsuperscript{279} Warmer temperatures are likely

\begin{footnotesize}
\begin{itemize}
\item\footnotesubscript{270} Id.
\item\footnotesubscript{271} Vermont Climate Change Assessment, \url{http://vtclimate.org/vts-changing-climate/} (last visited Oct. 24, 2018).
\item\footnotesubscript{272} Id.
\item\footnotesubscript{273} Id.
\item\footnotesubscript{276} Id.
\item\footnotesubscript{277} Id.
\item\footnotesubscript{279} Vermont Agency of Agriculture Food & Markets, *Vermont Leads Nation in 2018 Maple Season Production* (June 13, 2018),
\end{itemize}
\end{footnotesize}
to shift the suitable habitat for sugar maples farther north into Canada. Warmer winters may bring more rain and less snow to Vermont, harming the skiing, snowboarding, and snowmobiling industries and local economies that depend on them. Id. During the winter of 2016-17, Vermont recorded more than 3.9 million skier visits, second only to Colorado among the states.

Climate change is also contributing to increased distribution and abundance of ticks and increased tickborne diseases, including Lyme disease and Anaplasmosis, in Vermont. Vermont has the nation’s highest per-capita incidence of Lyme Disease.

**Virginia**

It’s not a question of if or when; Virginia is currently experiencing the effects of climate change. Virginia’s low-lying coastline is especially vulnerable to this threat. Virginia has experienced the highest rates of sea level rise along the East Coast: in Virginia Beach, the sea has risen by almost a foot since the 1960s and more than 14 inches since 1930. Ordinary rain events now cause flooding in the streets of Norfolk, including large connector streets going underwater. Norfolk naval base, the largest navy base in the world, is currently replacing 14 piers due to sea level rise, at a cost of $35-40 million per pier. According to Old Dominion University’s Center for Sea Level Rise, the city of Norfolk alone will need at least $1 billion in the coming decades to replace current infrastructure and keep water out of city homes and businesses. According to a recent study by the Hampton Roads Planning District Commission,


costs from three feet of sea-level rise in the Hampton Roads region are expected to range between $12 billion and $87 billion.\textsuperscript{288} Climate change has lengthened Virginia’s allergy season and facilitated the spread of tick and mosquito borne illnesses—the ticks carrying Lyme disease are now reported in at least 72 counties, up from 12 counties in 1996.\textsuperscript{289} These direct results of climate change generate negative impacts on Virginians, their quality of living, and their pocketbooks. Environmental impacts have direct and immediate negative economic results.

\textbf{Washington}

Washington is a coastal state, a mountain state, and a forest state. Reports prepared by the University of Washington Climate Impacts Group show that climate change will significantly adversely affect each of these signature features of Washington. In addition to these impacts, climate change will cause significant harm to public health.

Approximately 4 million of Washington’s 6.5 million people live in the area around Puget Sound. Climate change will cause the sea level to rise and permanently inundate low-lying areas in the Puget Sound region.\textsuperscript{290} Under a business as usual greenhouse gas scenario, sea level is predicted to rise in Seattle relative to 2000 levels by 2 feet by 2050 and 5 feet by 2100.\textsuperscript{291} Sea level rise will also increase the frequency of coastal flood events. For example, with 2 feet of sea level rise (predicted for Seattle), a 1-in-100 year flood event will become an annual event. Sea level rise will also cause coastal bluffs (the location of many family homes in Puget Sound) to recede by as much as 75-100 feet by 2100 relative to 2000.\textsuperscript{292} This would be a doubling, on average, of the current rate of recession. Sea level rise will also result in reduced harvest for commercial fishing and shellfish operations.\textsuperscript{293}

Climate change is also causing ocean acidification, through the absorption in the ocean of excess carbon dioxide from the atmosphere. Ocean waters on the outer coast of Washington and the Puget Sound have become about 10-40 percent more acidic since 1800.\textsuperscript{294} This increased

\textsuperscript{288} Id.
\textsuperscript{291} State of Knowledge: Climate Change in Puget Sound (November 2015), Climate Impacts Group, University of Washington, (hereinafter “State of Knowledge, Puget Sound”) at 4-7; available at \url{https://cig.uw.edu/resources/special-reports/ps-sok/}
\textsuperscript{292} Id.
\textsuperscript{293} Id.
\textsuperscript{294} State of Knowledge Report, Climate Change Impacts and Adaptation in Washington State: Technical Summaries for Decision Makers, (December 2013), Climate Impacts Group, University of Washington (hereinafter “State of Knowledge Report”), at 2-6; available at \url{https://cig.uw.edu/resources/special-reports/wa-sok/}
acidity is already affecting some shellfish species.\textsuperscript{295} Washington has the largest shellfish industry on the west coast, contributing $184 million to Washington’s economy in 2010 and employing 2710 workers.\textsuperscript{296} Under a business as usual greenhouse gas scenario, ocean waters are expected to become at least 100 percent more acidic by 2100 relative to 1986-2005.\textsuperscript{297} The predicted level of ocean acidification is expected to cause a 34 percent decline in shellfish survival by 2100.\textsuperscript{298}

Washington depends on yearly winter mountain snow pack for drinking water, as well as water for irrigation, hydropower, and salmon. Washington’s winter mountain snowpack is decreasing because climate change is causing more precipitation to fall as rain rather than snow. Snowpack decreased in Washington’s Cascade Mountains by about 25 percent between the mid-20th century and 2006.\textsuperscript{299} By the 2040s, snowpack is predicted to decrease 38-46 percent relative to 1916-2006,\textsuperscript{300} and by the 2080s, snow pack is expected to decline 56-70 percent.\textsuperscript{301} This loss of snowpack will cause a 50 percent increase in the number of years in which water is not available for irrigation, as well as a 20 percent decrease in summer hydropower production.\textsuperscript{302} In addition, the decrease in summer stream flows combined with higher stream temperatures will result in stream temperatures too high to support adult salmon.\textsuperscript{303}

Climate change is also impacting Washington’s forests. Of Washington’s total area (42.5 million acres), a little more than half (22 million acres) is forested.\textsuperscript{304} Washington’s forest products industry generates a gross income of about $48 billion per year, provides more than 100,000 jobs, and contributes approximately $4.9 billion in annual wages.\textsuperscript{305} Climate change is threatening this industry in a number of ways. For example, Douglas fir accounts for almost half the timber harvested in Washington.\textsuperscript{306} Under a moderate greenhouse gas scenario, Douglas fir

\begin{footnotesize}
\begin{itemize}
\item \textsuperscript{295} Id at 2-3.
\item \textsuperscript{296} Washington: A Shellfish State, Washington Shellfish Initiative, at http://www.governor.wa.gov/sites/default/files/WSI%20factsheet.pdf
\item \textsuperscript{297} State of Knowledge Report at ES-2.
\item \textsuperscript{298} Id at 8-4.
\item \textsuperscript{299} Id at 2-5
\item \textsuperscript{300} Id at ES-2.
\item \textsuperscript{301} Id at 6-10.
\item \textsuperscript{302} Id at 6-5.
\item \textsuperscript{303} Id at ES-4, 6-6, 6-11, 6-12.
\item \textsuperscript{305} Washington Department of Commerce, Forest Products Sector, at http://www.commerce.wa.gov/growing-the-economy/\textbackslash{}key-sectors/forest-products\textbackslash{} (last visited Oct. 24, 2018).
\end{itemize}
\end{footnotesize}
habitat is expected to decline 32 percent by the 2060s relative to 1961-1990.\textsuperscript{307} In addition, the area of Washington forest where tree growth is severely limited by water availability is projected to increase (relative to 1970-1999) by about 32 percent in the 2020s, with an additional 12 percent increase in the 2040s and another 12 percent increase in the 2080s.\textsuperscript{308} Wildland fires pose another threat to Washington’s forests. Under a business as usual greenhouse gas scenario, decreases in summer precipitation, increases in summer temperatures and earlier snow melt are predicted to result in up to a 300 percent increase in the area in eastern Washington burned annually by forest fires\textsuperscript{309} and up to a 1000 percent increase in area burned annually on the west side of the state (typically, the wet side).\textsuperscript{310}

By far the highest costs to the state, however, are expected to come from harm to public health. More frequent heat waves and more frequent and intense flooding may harm human health directly. Warming may also exacerbate health risks from poor air quality and allergens. Climate change can indirectly affect human health through its impacts on water supplies, wildfire risks, and the ways in which diseases are spread. Risks are often greatest for the elderly, children, those with existing chronic health conditions, individuals with greater exposure to outside conditions, and those with limited access to health resources.\textsuperscript{311}

**District of Columbia**

The District of Columbia is a densely populated area located at the confluence of two tidal rivers and accordingly is particularly vulnerable to the impacts of climate change including dangerous heat waves, flooding caused by rising tides and heavy rains, and increasingly severe weather.

Water levels along the Potomac and Anacostia Rivers have increased 11 inches in the past 90 years due to a combination of sea level rise and subsidence. As a result, nuisance flooding has increased by more than 300% according to the National Oceanic and Atmospheric Administration.\textsuperscript{312} By 2080, the U.S. Corps of Engineers predicts up to 3.4 feet of additional sea level rise in the District.\textsuperscript{313} At the same time, heavy rain events are projected to grow more frequent and intense according to local climate change projections completed by the District. As

\textsuperscript{307} State of Knowledge Report, *supra*, at 7-1.

\textsuperscript{308} Id at 7-3.

\textsuperscript{309} Id.

\textsuperscript{310} Id at 7-4.

\textsuperscript{311} State of Knowledge, Puget Sound, *supra*, at ES-7.


a result, today’s 100-year rain event could become a one in 25-year event by mid-century. The combined impact of rising tides and heavier rains pose significant threats to the District’s infrastructure, community resources, cultural assets, government and military facilities, and residents. For example, during the second half of the century, Joint Base Anacostia-Bolling and Washington Navy Yard can expect more frequent and extensive tidal flooding, loss of currently utilized land, and substantial increases in the extent and severity of storm-driven flooding. With an intermediate rate of sea level rise, Naval Support Facility Anacostia could lose roughly 50 percent of its land area, and the Washington Navy Yard about 30 percent of its current land area, by end of century.

The District is also vulnerable to rising temperatures and a corresponding increase in extreme heat events. Local climate change projections indicate that the number of heat emergency days, defined as days when the heat index exceeds 95 degrees Fahrenheit, could more than double from the current 29 days per year to 80 days per year by the 2050s under a high emission scenario. As temperatures rise, and dangerously hot days grow more frequent, heat-related illnesses are also likely to increase. Hotter temperatures can also stress infrastructure like roads, rail lines, and our power grid, causing disruptions.

The City of Los Angeles

As EPA’s August 2016 bulletin entitled “What Climate Change Means for California” recognized, California’s climate is changing, and Southern California in particular has already warmed about three degrees (F) in the last century. Like California as a whole, in Los Angeles, climate change will result in more common heat waves, less rainfall, increased stress on water supplies, increased risk of wildfires, and increased threats to coastal development and infrastructure.

As for heat waves, a recent UCLA study concluded that under a business as usual scenario, the annual number of days when temperatures exceed 95 degrees (F) in Los Angeles will increase from 6 days (1981-2000) to 22 days (2041-2060), and ultimately to 54 days (2081-2100). EPA’s August 2016 bulletin recognizes that hot days “can be unhealthy—even dangerous.” Indeed, high air temperatures, which are amplified in urban settings like Los Angeles, can cause heat stroke and dehydration and affect people’s cardiovascular, respiratory, and nervous systems. Furthermore, as EPA’s bulletin recognizes, warming can also increase the

---

314 Id. at 36.


316 Climate Projections & Scenario Development, supra, at 27.


formation of ground-level ozone, a component of smog that can contribute to respiratory problems. Los Angeles already has the worst smog in the nation, and as the climate changes, progress toward clean air will become even more difficult and expensive. Extreme heat and poor air quality not only negatively impact Los Angeles residents and City employees, but also the City’s ability to retain Los Angeles’s status as a desirable business and tourist destination.

EPA’s bulletin also recognized that the changing climate “is likely to increase the need for water but reduce the supply.” EPA, What Climate Change Means for California, supra. Studies cited in the Los Angeles Department of Water and Power (LADWP) 2015 Urban Water Management Plan reach the same conclusion. On the demand side, forecasted warming is projected to result in as much as a 7 percent increase in water demand. Additionally, climate change would put stress on existing water supply infrastructure. The Los Angeles Aqueduct (LAA), which is one of the major imported water sources delivering a reliable water supply to the City, serves as just one example. The LAA originates approximately 340 miles away from Los Angeles, gathering snowmelt runoff in the Eastern Sierra Nevada. Projected changes in temperature (warmer winters) are anticipated to change precipitation patterns in the Eastern Sierra Nevada with less snow and more rain than historically encountered. This could strain the LAA’s capacity to store runoff in surface reservoirs, as runoff would come earlier in the season than if the snowpack gradually melted in spring and summer, as has historically been the case. If climate change occurs as predicted, the City may have to expend substantial resources for operational and infrastructure changes to the LAA to ensure Los Angeles’ continued reliance on this water source. 321

EPA’s bulletin also recognizes that “higher temperatures and drought are likely to increase the severity, frequency, and extent of wildfires,” which already pose a substantial problem in Los Angeles. Indeed, 2017 was one of the worst wild fire seasons on record. As of December 12, 2017, it was reported that more than 405 square miles in Southern California had burned, 1160 structures had been destroyed, 90,000 people had been displaced, and more than 10,000 fire fighters from California ten other states had been employed to save lives and homes. Researchers project that fires driven by Santa Ana winds, and the fires that occur earlier in the year in Southern California, will burn larger areas by midcentury in part due to rising temperatures.

Finally, the City of Los Angeles has substantial public and private coastal development. Sea level rise caused by climate change may threaten both private property and public

319 EPA, What Climate Change Means for California, supra.


321 Id. at 6-9.

infrastructure along the Los Angeles coast, including at the Port of Los Angeles, which ranks as the #1 container port in the United States and North America.

**New York City**

Changing climate hazards in the New York metropolitan region are increasing the risks for the people, economy, and infrastructure of New York City in numerous and dramatic ways, as documented in the New York City Panel on Climate Change’s January 2015 report, *Building the Knowledge Base for Climate Resiliency*.323 Annual temperatures are hotter, heavy downpours are increasingly frequent, and the sea is rising. These trends are projected to continue and even worsen in the coming decades due to higher concentrations of greenhouse gases in the atmosphere.

Sea level rise in New York City has averaged 1.2 inches per decade since 1900, nearly twice the observed global rate, with a total increase of more than a foot; approximately 60 percent of that rise is driven by climate-related factors.324 As discussed above in the New York State section, this increase in sea level exacerbated the destruction of homes and businesses from flooding during Hurricane Sandy.325

Climate change also risks New Yorkers’ health and safety. Extreme weather events can result in injury and loss of life resulting from exposure, interrupted utility service, or lack of access to emergency services.326 In addition, warming temperatures exacerbate or introduce a wide range of health problems, including cardiovascular and respiratory diseases, pollution and allergen-related health problems, and vector-borne diseases.327 The health consequences of climate change disproportionately affect our most vulnerable populations – the elderly, children, and low-income communities who already experience elevated instances of cardiovascular and respiratory diseases.328

Long-term changes in climate mean that when extreme weather events strike, they are likely to be increasingly severe and damaging. By the 2050s, New York City will likely experience sea levels that are up to thirty inches higher than today, the number of days with


324 New York City Panel on Climate Change 2015 Report, supra, Chapter 2.

325 Id.

326 Id. at 70.

327 Id. at 78-82.

rainfall at or above two inches is projected to increase by as much as 67% by the 2020s, and by the 2080s, what would today be considered a 100-year flood (i.e., a flood that has a 1% chance of occurring in any given year) could have as high as a 12% chance of occurring in any given year, and this flooding could be as much as 4.8 feet higher than today’s 100-year flood because of sea level rise. New York City is also likely to experience more frequent heavy downpours and many more days at or above 90 degrees Fahrenheit by that timeframe.

Rising sea levels will expose the homes, businesses, streets, wastewater treatment plants, and power plants that line our 520 miles of coastline to increased hazards. More extreme weather will also leave the City and its essential infrastructure susceptible to more frequent violent storms and severe flooding; at other times, the new extremes could subject the City to prolonged periods of drought.

Heat waves, defined as three or more consecutive days of temperatures at or above 90 degrees, strain the City’s power grid, cause deaths from heat stroke, and exacerbate chronic health conditions, particularly for vulnerable populations like the elderly. Without mitigation of greenhouse gas emissions, the City can expect temperatures at or above 90°F for thirty-three days per year by the 2020s, for fifty-seven days by the 2050s, and for eighty-seven days by the 2080s.

---

329 New York City Panel on Climate Change 2015 Report, supra, at 31-33, 40-42.
330 Id. at 27.
333 York City Panel on Climate Change 2015 Report at 31.