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Using detailed electricity consumption and solar generation data from homes in an Austin TX neighborhood
between 2013 and 2015, we calculate the environmental benefits of electric vehicles and rooftop solar panels.
We estimate time-varying electric grid marginal emissions and water consumption rates in ERCOT through a re-
gression based analysis, and find that emissions and water consumption rates are lowest at high demand times
due to those hours' reliance on cleaner natural gas generators.We utilize these emissions andwater consumption
rates to estimate the avoided GHGs and water consumption from grid electricity that solar panels provide. For
electric vehicles, we estimate the net effect of this technology, given the avoided gasoline consumption but
increase in grid-related charging. We find that, on average, solar panels avoid approximately 75% of yearly
grid-related emissions (0.7 tons CO2/year per kW of solar capacity) and yearly grid-related water consumption
(400 gal/year per kW of solar capacity), where the benefits depend on the orientation of the panels. We also
find that electric vehicle deployment results in avoiding up to 70% of fuel-related emissions (3.5 tons CO2/year)
and 60% of fuel-related water consumption (1400 gal/year), though the benefits significantly decrease with the
efficiency of the counterfactual vehicle.
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1. Introduction

Being “green” has become much easier for households with the
evolution of technology, such as electric vehicles (EVs) and solar photo-
voltaic (PV) panels. These technologies allow consumers to maintain a
traditional lifestyle while also reducing their environmental impact by
reducing fossil-fuel consumption either on the electricity grid or from
internal combustion vehicles. Governments recognize the environmen-
tal benefits of these technologies and thus have implemented myriad
policies to spur their deployment.

However, the question remains as to what degree these technologies
improve environmental outcomes as they depend on multiple complex
factors including the time- and location-specific emission characteristics
of the electricity generation displaced by solar PV or consumed by EVs.
For example, an EV's environmental impact will depend on when and
where the customer charges it. Similarly, the environmental impact of a
household's solar PV system will vary depending on the type of
generation from the electricity grid that is displaced. The temporal and
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spatial variation of these technologies' environmental impacts means
that households can influence the magnitude of environmental benefits
by engaging in certain behaviors associated with these technologies.

Utilizing household energy consumption and generation data from
the Mueller residential neighborhood in Austin, TX and hourly genera-
tion data for the Texas electricity grid, we analyze how household
solar PV and EV utilization patterns impact the CO2 emissions and
water consumption associated with consuming electricity from the
grid.We then explore how theuse of these technologies can be adjusted
to maximize environmental benefits and whether these optimizing
actions are indeed being taken.

Though several papers have investigated the environmental and elec-
tric system impacts of EVs (see Hadley and Tsvetkova, 2009; Doucette
and McCulloch, 2011; Holland et al., 2016; Huo et al., 2015; Rangaraju
et al., 2015) or solar PV (Spiegel et al., 2000; Connors et al., 2004;
Sivaraman and Keoleian, 2010; Zhai et al., 2012), our paper's detailed,
hourly household level dataset on energy consumption, PV generation,
and EV charging fills several gaps in the literature. First, it allows us to
identify hourly environmental impacts from actual charging patterns
and identify whether households are charging during environmentally
friendly times of day. Second, we are able to estimate the magnitude
and existence of a solar rebound effect, and whether this rebound effect
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Fig. 1. Texas Energy-Water Nexus.
Source: Environmental Defense Fund (2015).

2 The curtailment of wind farms has dropped significantly in TX over the years, with a
maximum of approximately 17% of wind generation curtailed in 2009, dropping down
to about 1.5% in 2013 (see Bird et al., 2014). This substantial decrease in curtailment
was brought about by the development of the state's Competitive Renewable Energy
Zones program, which helped expand transmission lines by over 3500miles to accommo-
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varies with EV ownership. Third, we can identify whether households
are making environmentally optimal decisions with respect to these
technologies. Though many engineering papers have been written on
how to maximize solar capture through panel tilt and orientation (see
for example Li and Lam, 2007; Zhao et al., 2010; Lave and Kleissl, 2011;
Hong et al., 2014), to the best of our knowledge, ours is the first paper
to estimate the environmental impact of solar panel orientation based
on the marginal emissions profile of the system. Our use of a marginal
(rather than average) emissions analysis also allows us tomore accurate-
ly measure the environmental impact of the timing of charging and dis-
tributed generation. Thus, our detailed dataset and carefully constructed
emissions analysis contributes a robust and disaggregated analysis to the
growing literature on the environmental impacts of green technologies.

2. Environmental impacts of electricity

2.1. Emissions and water consumption of electricity generation

Generating electricity causes many types of environmental impacts.
In the United States, electricity is predominantly generated through the
combustion of fossil fuels (EIA, 2016a). Fossil fuel fired electricity gener-
ators emit many local air pollutants, such as NOx, SO2, and particulate
matter, causing air quality effects in adjacent areas. These generators are
also a significant source of greenhouse gas (GHG) emissions. Nationally,
electricity generation is responsible for almost 40% of annual US CO2

emissions (EIA, 2016b).
Fossil fuel based electricity generation is also a water intensive pro-

cess. In 2015 over 1 trillion gallons of water were consumed for cooling
during the production of electricity in the United States (EIA, 2015).
Fig. 1 shows how many gallons of water are used in Texas for each
MWh of electricity generated by generation source; renewables only
utilize a negligible amount of water in producing electricity.

Generally, power plants withdraw water from a nearby surface
source (e.g. river, lake, or coastal water). Most of the water is returned
to the body of water; however, some may evaporate or otherwise
not be returned to its original source. This water is considered to be
consumed. Thus, the water impacts of electricity generation can be
measured by both the withdrawal and consumption of water. These
two water impacts are very different, and each type of generator may
withdraw and consume a different amount of water. For example,
natural gas combustion turbine generators do not require water for
cooling, whereas natural gas or coal steam turbine generators must
use large amounts of water to condense steam and thus have greater
water withdrawal and consumption levels. Withdrawing large quanti-
ties of water is problematic for two reasons: it displaces water for
other uses, such as drinking, and the water that is returned to nature
may be heated, causing local concerns in terms ofwater quality. However,
for purposes of this article, we reduce the scope of our analysis to the
amount of water consumed, rather than withdrawn.1

It is also important to note that most generators do not pay for using
this water, due to its extraction from a body of water rather than using
piped water. Thus, there exists a negative externality associated with
water extraction and consumption for electricity generation that is
currently unpriced.

2.2. The time- and location-varying environmental impacts of grid electricity
consumption

While the environmental impacts of electricity generation are fairly
straightforward in terms of emissions andwater consumption, the envi-
ronmental impacts attributable to electricity consumption are more
1 For purposes of this analysis, we also focus only on downstream water consumption,
rather than including upstream water consumption associated with the extraction and
production of the input fuel. Hence, our water numbers will likely be an upper bound
for EV and a lower bound for PV.
complex particularly when electricity is consumed from an electric
grid with multiple generators. An electric grid must be coordinated by
a balancing authority (e.g. independent system operator or regional
transmission operator) to match electric supply and demand in real
time. To keep generation costs low, the balancing authority will gener-
ally dispatch the generators with the lowest marginal cost first. As
demand increases, more expensive generators are dispatched with the
most expensive generators called upon at times of maximum peak
demand. Additionally, when non-dispatchable generation like solar or
windfluctuate, various dispatchable generators such as coal and natural
gas power plants must increase or decrease generation, accordingly.

For these reasons, the environmental impact of grid electricity
consumption at any point in time is a function of the generator that re-
sponds to the change in electricity demand at that point in time (i.e., the
marginal generator). Any change in demand will change the environ-
mental impact at the marginal generator's rate of emissions and water
consumption; this is referred to as themarginal emission and consump-
tion rate. These rates can fluctuate as different generators with different
emission characteristics operate on the margin.

Often, data onmarginal emission rates are unavailable for particular
areas or time periods, and studies will utilize daily or yearly average
emission rates to estimate emission impacts of different grid usage pat-
terns. The use of average emission rates, however, may bias emission
impact estimates, as not all generators in a systemwill respond propor-
tionally to a change in demand. In fact, many studies have found
instances of over- or under-estimation of emission impacts when aver-
age emission rates are used (Novan, 2011; Kaffine et al., 2013; Jacobson
and High, 2010). Specifically, in the ERCOT region, Holland et al. (2016)
find that CO2 emissions are overestimated by 19% when using an
average rather than a marginal emissions methodology.

Marginal generators are almost always dispatchable generators—ones
that can be ramped up or down in response to a change in demand.
Renewable generation such as wind or solar almost never act on the
margin as they cannot be ramped up and can only under certain occa-
sions be curtailed.2 Instead, if these renewables increase simultaneously
with demand, other dispatchable resources can be curtailed. Kaffine
et al. (2013) find that the intermittency of wind generation leads to an
increased use of natural gas during high demand times, and a cycling
of coal during low demand times (when natural gas generation is less
date the excess wind generation. http://www.eia.gov/todayinenergy/detail.cfm?id=
16831. However, as wind farms continue to expand (wind capacity is expected to double
over the next few years- see SNL Financial, 2016), this curtailment issue may become a
more prominent factor, requiring an expansion of transmission lines. If transmission lines
are built, then the curtailment issue may be alleviated as wind capacity expands.
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Fig. 2. Average wind generation and load in 2014 in ERCOT region.a aData Source: http://www.ercot.com/gridinfo/generation/
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available)3; resulting in different marginal emissions being avoided
throughout the day from wind generation.

This paper focuses on Austin Energy's grid in Texas, whose indepen-
dent system operator (ISO), the Electric Reliability Council of Texas
(ERCOT), manages the flow of electricity and the wholesale market.
Natural gas and coal have dominated the ERCOT generation mix from
2013 to 2015, with the share of natural gas increasing over the years
and displacing some coal generation (see ERCOT 2013, 2014, 2015).
Wind comprises about 11% of total generation in each year, but it gener-
ates much more during the night than during the day. Fig. 2 plots the
average hourly wind generation and load over the course of 2014 in
the ERCOT region. As can be seen in the figure, wind provides approxi-
mately 14% of the average load during the evening, but only about 7%
in the middle of the day. Because wind is clean and does not consume
or withdraw water, it is a great generation source in terms of environ-
mental impact. However, it is important to keep inmind that any action
that increases loadduring times of highwindgeneration (i.e., night)will
not affect the amount of wind that is generated (though it could reduce
the amount of wind curtailment during moments of very high wind
generation, particularly in places that are located outside of the trans-
mission constraint, near the wind generators, or on the Western side
of TX4). Instead, it will require an increase in the generation of a
dispatchable resource, such as natural gas or coal. Ensuring that these
dispatchable generators are as clean as possible will help reduce
environmental impacts from any actions that increase the demand for
centralized electricity generation (such as electric vehicle charging).

This also speaks to the importance of relying on marginal rather than
average analyses. By relying only on average analyses, a larger percentage
ofwindwill appear tomake EVsmorebeneficial for emissions reductions;
however, if charging occurs when coal is on themargin, the environmen-
tal benefit of this charging pattern is significantly decreased if not totally
negated. Our usage of a marginal analysis therefore will better represent
the environmental impacts of charging EVs at different times of day.
3 Increased cycling of coal plants not only causes the plant to be less efficient, it also in-
creases operating costs, which could push the coal plants down the dispatch order. Hence,
as greater amounts of renewables come online, coal plants will retire more quickly,
resulting in a cleaner generation mix in the long run (Hanson et al., 2016).

4 Importantly, in 2013, the percentage of 15min intervals with negative day-ahead prices
of electricity in the TXWestern Hub was less than 3%, and less than 5% in TXWestern Load
Zone; thesemoments are oneswhere curtailment ismost likely. Though these negative price
intervals were more frequent at night for the Western Hub/LZ, the sporadic nature of these
moments throughout the year implies that a tariff which incentivizes customers to plug in
their EVs at night (such as “Free Nights andWeekends”) would do little to ensure increased
environmental benefits (see Historical DAM Load Zone and Hub Prices from http://www.
ercot.com/mktinfo/prices). Projected increases in wind and solar penetrations could mean
more curtailments and more frequent negative prices in the near future.
3. Data

3.1. Pecan Street Inc.

Our primary dataset contains 141 households in Austin's Mueller
neighborhood for the three-year period spanning October 1, 2012 to
September 30, 2015. These data include demographic information
(income, education, household composition); property information
(such as number of bedrooms, existence of programmable thermostats
and other appliances, etc.); solar PV array information (array size, tilt,
azimuth, orientation); EV information (type, existence of charger at
work); and hourly grid electricity consumption, solar PV generation,
and EV charging. The dataset was obtained from Pecan Street Inc., an
organization based in Austin, Texas that conducts research to support
innovation in water and energy management.

For over 200 homes in Austin's Mueller neighborhood, Pecan Street
has installed technology that allows for the precise measurement of
load consumption and energy generation data. These technologies
include dual-socketed utility-grade meters in the home and high-
resolution data monitoring equipment that collects circuit-level energy
consumption data and energy generation data for rooftop PV systems at
one-second to one-minute intervals (our analysis relies on aggregated
hourly intervals of these data). These meters record total electricity
consumption within the household,5 as well as circuit-level electricity
consumption and/or generation data for appliances, electric vehicles,
and solar PV arrays. The benefit of these data is that they are recorded
from actual customers, rather than from approximations or averages,
thereby differentiating our paper from the existing literature on the
environmental implications of solar generation and EV usage.

Within our dataset, 135 households own PV systems (see Appendix
A for data trimming discussion). Hourly generation data (in kWh) are
recorded for over 95% of hourly intervals, where missing data result
from data aggregation malfunctions and/or errors. PV generation can
vary with the amount of cloud cover and maintenance—which would
not show up in simulated estimates of solar production such as the
PVWatts calculator or EnergyPLAN models (as used in Connors et al.,
20046; Zhai et al., 2012). Spiegel et al. (2000) also use observed data
of various projects installed throughout the US; however, our model
benefits from having all panels of a similar age and installed in the
5 To be precise, the data are not calculated on net- total consumption is recorded sepa-
rately from total generation of PV arrays, rather than net consumption.

6 Connors et al. (2004) utilize simulated data rather than household level data; the au-
thors do have the data at the household level but are unable to rely on it primarily given a
large number of missing PV production data hours.

http://www.ercot.com/mktinfo/prices
http://www.ercot.com/mktinfo/prices
Image of Fig. 2
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Fig. 3. Average generation by panel direction, summer.
Fig. 4. Average generation by panel direction, winter.

7 The AMPD collates continuous emission monitoring system (CEMS) data from the
EPA's emission trading programs,which generally require fossil-fuelfired generatingunits
greater than 25 MW to report hourly load and emission information among other data.

8 Generators less than 25 MW generally are not required to report emissions data as
part of the EPA's emissions trading programs. However, a relatively small proportion of
ERCOT's generators are less than 25MW. Approximately 0.36% of ERCOT fossil fuel gener-
ator capacity results from generators less than 25 MW.

9 A generating facility may have multiple generating units. The number of generation
units and facilities are not static across the study period as some facilities begin operation
or retire.
10 To narrow our focus for this paper, we do not estimate the impact on local air pollut-
ants; thus, our calculated environmental benefits are likely a lower bound for PVs. Holland
et al. (2016) estimate both carbon and localized air pollution impacts across the nation at
the county level, and find an overall positive environmental benefit from EVs in Texas.

202 E. Spiller et al. / Energy Economics 68 (2017) 199–214
same neighborhood, thusminimizing variation across weather patterns
that may affect solar production. Furthermore, because we utilize
household consumption data rather than average regional consumption
data (such as in Sivaraman and Keoleian, 2010), we are able to test for
the existence of a solar rebound effect.

With the Pecan Street data, we can also explore the implications of a
panel's orientation on environmental impacts. Figs. 3 and 4 show how
the panel's orientation affects its generation capacity in summer and
winter respectively: facing the panel west provides more generation
later in the day, whereas a south-facing panel maximizes generation
around 1 pm. Notably, facing the panel south producesmore generation
during the winter than facing the panel west (see Section 5.3.1 for a
deeper description of generation differences across panel orientation).

Within our dataset, 46 households have EVs that are primarily
charged at home. A subset of the EVs in our sample is plug-in hybrid
vehicles (Chevy Volts), which use both gasoline and electricity. Pecan
Street has recorded details on how many trips the EV took, how many
miles were driven, and on howmany trips the Chevy Volts utilized gaso-
line. This further differentiates our paper from the existing literature. For
example, Weiller (2011) utilized vehicle trip data from the National
Household Transportation Survey (NHTS). Though NHTS updated their
data in 2009, the survey lacks data for EVs because fewwere in use during
the time period, forcingWeiller to extrapolate information fromgasoline-
fueled vehicle trips. Other papers are required tomake assumptions about
vehiclemiles traveled (Holland et al., 2016) or avoid looking atmiles trav-
elled altogether (Huo et al., 2015). We use this subset of vehicles in the
dataset to calculate the number of miles driven on gasoline, and vehicle
usage is extrapolated to the remainder of the vehicles in the dataset.

For all households in our sample with EVs, we also knowwhen they
were charged, while most papers do not and instead utilize simulations
(Sioshansi et al., 2010; Rangaraju et al., 2015), estimate the differences
in emissions based on hour of the day (Hadley and Tsvetkova, 2009;
Holland et al., 2016), or simply do not look at how the emissions vary
over the course of the day (Doucette and McCulloch, 2011; Huo et al.,
2015). Our household level data allow us to view the actual charging
patterns of EV owners, rather than having to rely on simulations or
representative descriptions of charging patterns. In addition – similar
to our PV analyses – availability of data for total household electricity
consumption and grid electricity consumption enable us to find that
an income effect for EV ownership does not exist. Furthermore, given
that many of the households owning EVs also have PV, we are able to
estimate whether the solar rebound effect is affected by EV ownership.

Some summary statistics can be found in Table 1.

3.2. Electric grid data

Beyond Pecan Street's data, we estimate marginal CO2 emission and
water consumption factors using data from the EPA's Air Market
Program Database (AMPD).7 Hourly load (MW) and CO2 emissions
(short tons) data were retrieved for all generating units located in the
ERCOT footprint within Texas for all hours in the study period. Generator
type (combined cycle, combustion turbine, and several variations of
steam turbines), primary fuel type (coal or natural gas), and locational
information was also retrieved for all generators.8

The resulting dataset contains approximately 315 generating units
representing 100 generating facilities.9 Natural gas plants comprise
the majority of these generators (87%) and contribute 51% of total
GHG emissions in the region.

3.3. Other sources

We also utilize data from two other sources. First, data from US EIA
(2011) and Argonne National Laboratory (2012) help derive the factor
we use for converting gasoline usage to correspondingwater consump-
tion, as detailed in Appendix B.

Second, we utilize historical daily weather data and cloud cover-
age from Austin, TX for estimating the solar rebound equation in
Section 4.1. These data come fromWeather Underground (2016).

4. Methodology

We estimate the environmental impact (in terms of CO2 emissions
and water consumption10) of household solar PV and EV adoption
utilizing household demographic and hourly electricity consumption
and generation data. For PV, these benefits come from avoiding grid elec-
tricity consumption. For EVs, we estimate the net benefits resulting from
an increase in grid electricity consumption and a reduction in gasoline
consumption. For both PV and EVs, we account for the impact of PV and
EV ownership on energy consumption and the time-varying emission
and water consumption intensity of displaced grid electricity generation.

We estimate the hourly impact on grid CO2 emissions and water
consumption caused by solar PV generation and EV charging by
multiplying the household's hourly PV generation or EV charging by
the grid's hourly marginal emission and water consumption factor,



Table 1
Summary statistics pecan street data.

Variable name Min Max Average (Std. Dev.)

Demographics (141 households) Total household income $27,500 $1,000,000+ $151,000 ($125,000)
Education level Unknown Postgrad College degree (NA)
# Females in HH 0 5 1.39 (0.86)
# Males in HH 0 5 1.28 (0.91)

Household electricity consumption data (141 households) Consumption/h (kWh) −4.08 24.00 1.26 (1.21)
Grid consumption/h (kWh) −9.00 24.00 0.49 (1.62)

Solar data (135 households with PV) PV gen/h (kWh) −0.01 9.45 0.81 (1.28)
PV array (kW) 2.94 9.05 5.61 (0.94)
PV tilt (degrees) 20 35 27.5 (3.90)
PV azimuth (degrees) 150 295 209.42 (29.02)
PV orientation South/East, South, South/West, West, West/East

Vehicle data (33 households with EVs) Charging/h (kWh) 0 6.76 0.24 (0.78)

203E. Spiller et al. / Energy Economics 68 (2017) 199–214
respectively, as represented in Eqs. (1) and (2).

GridEmissionsi;t ¼ ElectricityUsei;t � Marginal CO2 Emissions Factort ð1Þ

GridWateri;t ¼ ElectricityUsei;t �Marginal Water Consumption Factort
ð2Þ

where t references each hour over our sample period and i references
each household; GridEmissionsi,t and GridWateri,t represent the
household's hourly amount of grid emissions and grid water either con-
sumed from the EV charging or avoided from the PV Generation;
ElectricityUsei,t refers to the amount of electricity either consumed by
the EV or generated by the PV in each hour; and the Marginal Factors
are the marginal emissions rates estimated in Section 4.2.

For estimating the net environmental impact of EV usage, we also
estimate the avoided emissions and water consumption resulting
from the corresponding reduction of gasoline consumption.

The remainder of Section 4 describes themethodology for accounting
for PV and EV ownership on electricity consumption, and calculating
marginal CO2 emission and water consumption rates as well as avoided
CO2 emissions and water consumption from reductions in gasoline
consumption.

4.1. Solar rebound effect

Eqs. (1) and (2) assume that each kWh produced by the PV system
displaces one kWh of grid electricity. However, this assumption may
not hold given the household's behavioral response to having a PV sys-
tem and an EV. Given that solar PV reduces the household's monthly
utility bills, households might increase their total electricity consump-
tion after installing solar PV such that one kWh of PV generation offsets
Table 2
Regression testing for rebound and income effect.

Variable 1. Coefficient
(Std. Err.)

2. Coefficient
(Std. Err.)

3. Coefficient
(Std. Err.)

Generation −0.915 (0.001) −0.912
(0.001)

−0.903 (0.001)

Electric vehicle indicator 0.214 (0.065) – 0.220 (0.001)
EV*generation 0.015 (0.001) 0.015 (0.001) 0.004 (0.001)
Household square footage 3.62e-4

(6.1e-5)
– 3.57e-4

(1.36e-6)
Household size 0.123 (0.026) – 0.129 (0.001)
Maximum daily
temperature

0.023 (4.1e-5) 0.023 (4.3e-5) 0.023 (4.5e-5)

Cloud cover 0.009 (2.5e-4) 0.009 (2.5e-4) 0.009 (2.6e-4)
R2 0.523 0.523 0.519
Number of observations 2,855,853 2,845,643 2,845,643
Number of households 114a 114 114
Household fixed effects No Yes No
Random effects Yes No No

a The number of households here is reduced below the141 total households; households
are dropped from the regression if we do not have the full information on household char-
acteristics. As a matter of reference, Pecan Street has identified 23 households as being the
threshold number of households for estimating statistically significant regressions.
less than one kWh of grid electricity. This phenomenon has been re-
ferred to as the “solar rebound” effect, analogous to the effect observed
with respect to energy efficiency (Morakinyo et al., 2016) and improve-
ments in vehicle fuel economy (Linn, 2016). However, there has been
little empirical research conducted on the rebound effect to date with
respect to rooftop solar ownership and usage. Paetz et al. (2011) find
anecdotal evidence that customers increase consumption during
moments of lots of sunshine, as they consider the electricity to be free,
and Haas (1994) describes the theoretical basis for this shifting of
consumption to midday times. However, neither of these papers fully
test this theory due to lack of sufficient data.

Due to our highly disaggregated household demographic and energy
data, we are able to estimate the existence and magnitude of a solar
rebound effect by conducting the following random effects regression
model:

grid electricityi;t ¼ γ1generationi;t þ γ2EVi þ γ3EVi � generationi;t

þ ΓXi þ εi;t ð3Þ

where grid_electricityi,t is the total amount of grid electricity consumed by
household i at time t; generationi,t is the amount of PV generated by
household i at time t; EVi is an indicator variable for a household that
has an electric vehicle that is regularly charged; Xi is a vector of controls,
including dailymaximum temperature, household size, and home square
footage11; and εi,t is an i.i.d. error term.

This regression allows us to test whether there is a one-to-one rela-
tionship between PV generation and grid consumption. If there is no re-
bound effect, thenwe expect γ1 to equal−1, signifying that one kWh of
solar PV generation perfectly offsets one kWh of grid electricity con-
sumption. Furthermore,we can test to see if there is an incomeeffect as-
sociated with EV ownership. An income effect would occur if having an
electric vehicle causes the household to consume less (more) electricity
for other non-charging purposes due to the tightening (loosening) of
the budget constraint. A tightening would occur if the need to charge
the EV increases the electricity bill, essentially restricting the budget;
alternatively, a looseningwould occur if the avoided gasoline payments
shifts the budget constraint out. Finally, the EV and generation interac-
tion term allows us to test whether the solar rebound effect varies with
EV ownership.

In order for us to be able to include the presence of an electric vehicle
in our rebound regression, we are unable to include household fixed
effects in our primary regression. Thus, we conduct some robustness
checks, including a fixed effect regression in order to test out the direct
solar rebound effect.

The results of the regressions are presented in Table 2:
Consistent across all three regressions, we identify a rebound effect

associated with solar generation of approximately 9% (the coefficient
11 Other household characteristics were included in the regression (such as education
and income) but thesewere not significant and are therefore not shown in Table 2. Results
available upon request.



Fig. 5. Average CO2 marginal emissions rates as function of total hourly generator load for fiscal year 2014.

Fig. 6.Marginal emissions rates during summer and winter.
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on solar generation is statistically significantly different from−1,with a
p-val of 0). Here we assume that the rebound effect occurs uniformly
across all hours.12 Interestingly, having an electric vehicle increases
that effect by 1.5%. Thus, electric vehicle ownerswill have a slightly larg-
er increase in grid consumption – as the household avoids having to
purchase expensive gasoline, the household budget constraint is shifted
out (even after accounting for charging costs), allowing for an increase
in grid consumption.

However, the coefficient on EV ownership, though statistically sig-
nificant, is not statistically different from the average EV consumption.
Thus, we do not find an income effect related only to EV ownership;
rather, that effect comes through the interaction with solar. Essentially,
households that both own an EV and generate will increase their total
consumption by 1.5% (based on our preferred specification) during
hours when generation is greater than zero. This amount is smaller
under the standard OLS regression (column 3), but the results are
qualitatively similar.

Though we find evidence that a rebound effect exists for households
that generate their own electricity, its magnitude is small. Compared to
most rebound effect estimates for other technologies (such as energy
efficient appliances and vehicles), this rebound effect is on the lower
end of the spectrum. Gillingham et al. (2016) find that most estimates
for the rebound effect associated with appliances and vehicles are
between 5 and 25%. Hence, the direct environmental benefits of PV and
EVs still remain quite large, evenwhen accounting for the rebound effect.

To account for the solar rebound effect, we adjust Eqs. (1) and (2) by
the calculated solar rebound factors, thereby shifting up or down hourly
consumption by 8.5 or 10% depending on whether the household owns
an EV (thus, we assume that the rebound effect occurs uniformly across
all hours).

We can then calculate the monthly and yearly avoided emissions
and water consumption (See Section 5 for results).

Finally, we calculate the average avoided carbon emissions and
water usage for a 1 kW PV array as well as for the average PV array in
our sample, 5.61 kW.

4.2. Time-varying grid CO2 emissions and water consumption intensity

4.2.1. Average marginal CO2 emission rates
There are a number of methods in the literature for estimating

marginal emission rates, ranging from complex system dispatchmodels
to simpler merit ordering methods. Dispatch models use a variety of
12 We assume that the solar rebound effect is constant throughout the day and the year,
as the household will likely see the electricity bill and react to a lower overall price by in-
creasing consumption. This is a simplifying assumption, but is not likely too far from the
truth- households can increase vehicle charging at night and increase their A/C usage dur-
ing the day, for example. Identifying how this coefficient changes over time is not possible,
especially because PV generation is zero at night and thus interacting PV generation with
hourly dummies would not provide correct results during evening hours.
inputs to simulate actual generator dispatch patterns. These models
may incorporate fuel prices, transmission constraints, and other factors
to produce granular estimates of marginal emission rates. Merit order-
ing uses historical or cost data to determine dispatch order. Thismethod
orders the generation units based on capacity factors or marginal costs
and assumes units are dispatched first if they have higher capacity fac-
tors or lower marginal costs; finally, it identifies the marginal generator
needed to fulfill demand based on this order.

Other approaches use linear regression of historical generation and
emission data to estimate marginal emission rates (see for example
Hawkes, 2010; Siler-Evans et al., 2012; Zivin et al., 2014). Both
Hawkes (2010) and Siler-Evans et al. (2012) regress generator emis-
sions data onto load data to estimate marginal emission rates for
Great Britain and the eight regions of the North American Electric
Reliability Corporation, respectively.
Fig. 7. Average CO2 rates by hours of generation.



Table 3
Water consumption by generator technology and cooling system in 2011.

Fuel Generator technology Cooling system 2011 net generation 2011 water consumption Weighted average water consumption

Coal Steam turbine Pond 110.7 0.54 0.57
Tower 47.9 0.65

Natural gas Steam turbine Pond 17.6 0.44 0.48
Tower 6.8 0.71
Cogen – with water consumption 0.9 0.12
Cogen – no water cons. reported 1.3 0.06

Combined cycle Pond 10.2 0.18 0.19
Tower 83.7 0.22
Cogen – with water 36.2 0.17
Cogen – no water cons. reported 15.6 0.16

Note: net generation and water consumption columns are presented as in Scanlon et al. (2013).
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We adapt Hawks and Siler-Evans et al.'s methodology by regressing
the hourly change in grid generator load onto the hourly change in CO2

emissions for generators using hourly generator load and CO2 emission
data. Siler-Evans et al. regress the aggregate hourly change in load onto
emissions for all generators within the region of interest; we instead re-
gress the sum of the absolute value of each individual generator's hourly
change in load and emissions. Our method accounts for generators that
may be on the margin within a given hour but exhibit opposite changes
in load due to intra-hour load changes and/or transmission constraints.
Utilizing aggregate hourly data without accounting for individual
generator trends could erroneously exclude the influence of certain
generators in the estimation of the average marginal emission rate
during certain hours.

Similar to Hawks and Siler-Evans et al., we also restrict the generators
to those located within ERCOT. Though this ignores electricity imports
and exports from outside ERCOT, the amount of imported and exported
electricity in ERCOT is very low (in 2015, net imports and exports aver-
aged 0.1% of total daily electricity consumption; see ERCOT, 2015).

The first difference of the grid generator load and CO2 emission
vectors (i.e. xt−xt−1 for t=2…n) is determined for each generator to
create vectors of n−1 observations of the change in hourly generator
load and CO2 emissions. The absolute value of these differences are then
summed by each hour to produce vectors for change in hourly
generator load (Δ loadt) and change in hourly emissions (Δemissionst)
for all hours. We regress the vector of hourly change in grid generator
load onto the vector of hourly change in emissions to estimate average
marginal emission rates.13 The generalized specification is shown in
Eq. (4).

Δemissionst ¼ β0 þ β1Δloadt þ εt ð4Þ

The coefficient β1 is interpreted as the average marginal emission
rate for the given set of data.

To derive averagemarginal emissions rates for eachhour of household
data, we disaggregate the data into tranches according to total hourly grid
generator load. We sum grid generator load for each hour and segment
observations into twenty quantile bins.14We then apply the linear regres-
sionmodel to each quantile bin to estimate an averagemarginal emission
rate for each bin. Finally, to derive hourly averagemarginal emission rates
13 We refer to these rates as “averagemarginal”- different than themerit ordering,which
is able to identify the last marginal unit, we instead identify the amount of emissions that
are, on average, on the margin every hour. For example, both coal and natural gas may be
on the margin during a specific hour on different days of the year. This method would
therefore average the emissions from both sources (weighted by their respective load)
to create an average marginal emission.
14 For example, the first bin consists of the observations during the 5% of hours when to-
tal hourly generator load is the lowest (i.e., up to the 5th percentile). The next bin consists
of observations between the 5th and 10th percentile of hourswhen total hourly generator
load is the lowest. This is repeated until the final bin contains the 95th percentile of hours,
when total hourly generator load is the highest.
to apply to Eqs. (1) and (2), we assign an averagemarginal emissions rate
to each hour of our household dataset based on the grid generator load
quantile bin of the given hour (β1,bin[t]).

Fig. 5 shows the estimated average marginal emissions rates by
quantile bin for Fiscal Year 2014. The marginal carbon intensity of the
grid generally declines as total hourly grid generator load increases.
This is likely due to the marginal generator switching from coal-fired
generators to natural gas-fired generators as more generators are
dispatched to fulfill increasing demand.

Fig. 6 shows how average marginal emission rates vary across the
hours of the day in summer and winter. As load grows during the
summer mid-day, more natural gas is on the margin, leading to lower
marginal emissions rates during those hours relative to winter mid-day.
Thus, given the current grid composition, summer marginal emissions
are highest during the evening hours of low demand.

Because the marginal emission rates are derived from data that
excludes non-fossil fuel fired generators and generators less than
25 MW regardless of fuel type, the model assumes that a fossil fuel
fired generator greater than 25 MW is operating on the margin at all
times. This is generally true as non-dispatchable generators like solar
and wind do not respond to changing demand, and other non-fossil
fuel generators such as hydroelectric and nuclear generators generally
operate as base load generation due to very low marginal costs. Addi-
tionally, deriving and assigning average marginal emission rates based
on total hourly grid generator load quantile bins is utilized because
the relative position in the generator dispatch order at any given
time—as represented by the quantile bins—will more directly deter-
mine the marginal emission rate than other parameters such as overall
system demand, time of day, or season.

While the observed marginal emission rates generally decline with
increasing load, the analysis may not reflect an increase in marginal
emission rates during the small number of hours of the highest demand
when particularly inefficient and dirty natural gas plants are dispatched
to fulfill load. Because themethodology is regression-based, it measures
average marginal emissions for a relatively large block of hours
(approximately 438 h per quantile bin). Thus, it would not adequately
capture the fact that during “critical peak” hours (i.e., a number of small
hours throughout the year where demand spikes very rapidly, such as
in heat waves), very dirty and inefficient natural gas plants may be
dispatched to provide for this spike in demand. Fig. 7 plots the average
CO2 rates for generators depending on how many hours they operated
during the study period. As demonstrated in the figure below, generators
that run only a few hours per year produce greater CO2 emissions.15

However, due to the limited hours that these dirty generators run,
the emissions associatedwith these plants will have only a small impact
on the average marginal emissions rate calculated for the top 95%
centile bin of demand; thus, we find that on average, high demand
hours are associated with lower marginal emission rates.
15 Generators that operated during the most hours showed increased average CO2 rates
as well reflecting the fact that coal generators generally have high capacity factors.



Fig. 8. Average fuel/technology type marginal proportion as function of total hourly generator load for fiscal year 2014.
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4.2.2. Average marginal water consumption rates
To estimate average marginal water consumption rates, we derive

weighted water consumption rates based on the proportion of various
generator types operating on the margin in each hour.

We first estimate the proportion of coal steam turbines, natural
gas steam turbines, natural gas combustion turbines, and natural gas
combined cycle power plants operating on the margin using a similar
methodology as employed to estimate average marginal CO2 emission
rates. To do so, we calculate the change in total hourly grid generator
load by generator type (Δ loadg,t), where g represents generator type
and t represents hour. By generator type, we then regress the vector
of hourly change in each combination's load onto the vector of total
hourly change in load. The generalized specification is shown in
Eq. (5).

Δloadg;t ¼ θg;0 þ θg;1Δloadt þ εg;t ð5Þ

The coefficient θg,1 is interpreted as the average proportion of gener-
ator type g operating on the margin for the given set of data. Similar to
how we estimated average marginal CO2 emission rates, we apply the
linear regression model to each grid generator load quantile bin to
Fig. 9.Marginal water consumption rates during summer and winter.
estimate an average generator type marginal proportion for each hour.
Finally, we assign average marginal proportions (θg,1,bin[t]) for each
generator type to each hour based on the quantile bin of the given
hour of the given fiscal year.

Using water consumption rates reported by Scanlon et al. (2013),
we derive average marginal water consumption rates for each hour
weighted by the average marginal generator type proportions. Scanlon
et al. provide water consumption and withdrawal at a more detailed
level than our data provide including water consumption rates by
power plant cooling system (pond or tower). However, our data do
not specify cooling system type. Thus, we calculate weighted average
consumption and withdrawal for the overall technology type (coal,
natural gas combined cycle, natural gas combustion turbine, and
natural gas steam turbine) weighted by the 2011 net generation for
that source in TX as shown in Table 3. Importantly, natural gas
combustion turbines consume no water, and therefore do not appear
in the table below.

Given the numbers in Table 3, we calculate the marginal water
consumption weighted by the generator technology was producing in
that particular hour:

Θt ¼
∑gθg;1;bin t½ � � WAWCg

∑gθg;1;bin t½ �
ð6Þ

where t refers to the hour of the day, g refers to the generator type, Θt is
themarginalwater consumption at time t,WAWCg refers to theWeighted
AverageWater Consumption from the last column in Table 3, and θg,1,bin[t]
refers to the marginal proportions as described earlier.

Fig. 8 shows the estimated average fuel/technology type marginal
proportion as a function of total hourly generator load for Fiscal Year
2014. As generator load increases, natural gas represents a larger
proportion of the marginal fuel. At very high levels of load, natural gas
steam turbine (NGST) is used more than natural gas combined cycle
Table 4
Upper and lower bound gasoline-fueled emissions.

Counterfactual vehicle MPG VMT Gallons/year lbs CO2/year

Upper bound Average light-duty
vehicle

21.6 11,400 527.78 10,340.91

Lower bound Chevy Volt
(gasoline powered)

37 11,804 319.02 6250.39



16 https://www.fueleconomy.gov/feg/noframes/31618.shtml.
17 All Chevy Volt model years (from 2012 to 2015) have a combined MPG of 37 when
driven on gasoline.
18 A slightly higher VMT for more fuel efficient vehicles is consistent with a small re-
bound effect, or a moderately elastic demand for gasoline (Gillingham et al., 2015).
19 Nissan Leafs are fully electric and therefore no extra analysis needs to be conducted on
these households.

Fig. 10. Daily CO2 grid emissions avoided due to a 5.61 KW PV array in absolute and percentage terms, by month.
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(NGCC); as described in Table 2, NGST uses much greater quantities of
water per kWh than NGCC, on par with water consumption from coal
generation. Thus, given the current composition of the grid, during
times of greatest demand and load, water consumption peaks.

Fig. 9 shows marginal water consumption rates for summer and
winter. During the winter, when demand and generation are low,
coal is on themarginmore frequently; thus, water consumption is overall
high hour to hour. However, during the highest moments of generation –
summer midday – NGST is currently being utilized much more
frequently; therefore, we see a spike in water consumption during
these hours of the summer, climbing above winter's midday water
consumption (times when coal and NGCC are on the margin).

4.3. Estimating avoided emissions from electric vehicle ownership

To calculate the avoided emissions from EVs, we first estimate the
amount of increased grid electricity due to charging. Households charge
their vehicle during different times of the day, leading to different levels
of CO2 emissions and water consumption. Given the results from
Table 2, during generating hours, grid consumption will increase by
1.5% of the amount generated. Thus, for all households with EVs, we
use the following equations to calculate household hourly emissions
(in lbs) and water consumption (in gallons/kWh) associated with the
charging of EVs:

Grid Emissionsi;t ¼ 0:015 ∗ geni;t þ EVchargingi;t
� � � β1;t ð7Þ

Grid Wateri;t ¼ 0:015 ∗ geni;t þ EVchargingi;t
� � � Φt ð8Þ

Although EVs increase grid emissions through charging (exacerbated
by the solar rebound effect), the benefit they provide is by reducing the
amount of gasoline that otherwise would have been consumed through
driving a gasoline vehicle. However, choosing the correct counterfactual
vehicle takes some thoughtful consideration. Two factors are key in
choosing a counterfactual vehicle: that vehicle's fuel efficiency and how
many miles it is driven.

With respect to the counterfactual vehicle's fuel efficiency, using an
average mile per gallon (MPG) of all passenger light-duty vehicles
would not be a conservative approach. Essentially, when households
choose to purchase a vehicle, they need to choose amongst a portfolio
of different options, each with a different bundle of attributes. At the
same production price point, there is a technical tradeoff between fuel
efficiency and other attributes, such as horsepower, weight, and size
of the vehicle (Klier and Linn, 2016). This means that for the same
price, vehicle buyers are likely going to have to choose between a
more efficient vehicle and a more powerful one. To illustrate this
tradeoff, we utilize a range of efficiencies starting from the 2012 average
light duty efficiency and ending at the Chevy Volt's efficiency when it is
driven on gasoline alone (recall that the Chevy Volt is a PHEV and
thus can be driven on gasoline; when done so, it achieves a combined
efficiency of 37MPG16).17

The second consideration has to do with the miles driven, which is
important given the existence of a rebound effect, whereby households
with more energy efficient vehicles may drive longer distances due to
the lower utilization cost. We utilize a range of vehicle miles traveled
(VMT), and assign different miles to the different MPG range. For the
lowMPG range, we utilize a VMT of 11,400, the average distance driven
by passenger vehicles in 2012 (US EPA, 2014). For the high MPG range,
we instead apply the U.S. Department of Energy's 2012 annual average
vehicle miles traveled by hybrid and plug-in EVs: 11,804 (United States
Department of Energy, 2015a, 2015b).18

Using the EPA's estimate of 8887 g of CO2 emissions per gallon of
gasoline consumed (US EPA, 2014), we calculate the range of lbs. of
CO2/year consumed by the alternative gasoline vehicles, as reported in
Table 4.

In our sample from the Pecan Street dataset, there are 6 Nissan Leafs
and 27 Chevy Volts. Pecan Street monitored four of these Chevy Volts
during the sample period to record information on 1447 vehicle trips,
including total VMT and the usage of gasoline on each trip. They report
that the Chevy Volts utilized gasoline on 17.03% of the trip miles trav-
eled; however, we do not have information on whether gasoline was
used for the entire trip or only for a fraction of the trip. To be conserva-
tive, we assume that gasoline was utilized fully on the trip miles that
record some usage of gasoline, andmultiply 17.03% by 11,804 to calculate
the average number of miles the Chevy Volts in our sample19 would be
driven on gasoline (2010 miles/year). Given the MPG of 37 for the
gasoline-powered Volt, this corresponds to 54 gal gasoline/year, or
1064.35 lbs. CO2/year, consumed by each Volt-owning household.

https://www.fueleconomy.gov/feg/noframes/31618.shtml


Fig. 11. Daily grid-related water consumption avoided due to a 5.61 KW PV array in absolute and percentage terms, by month.
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Thus, the overall change in yearly emissions for each EVhousehold is
the following:

AvoidedEmissionsi volt½ �
¼ GasolineEmissionsAV− GasolineEmissionsvolt þ GridEmissionsi volt½ �

� �

ð9Þ

AvoidedEmissionsi leaf½ � ¼ GasolineEmissionsAV−GridEmissionsi leaf½ � ð10Þ

GasolineEmissionsAV is the lbs. of CO2 emitted by alternative gasoline
powered vehicles, GasolineEmissionsvolt is the lbs. of CO2 emitted by the
Volt on 17% of VMT that use gasoline, and GridEmissions is the yearly
summed total lbs. of grid CO2 emissions induced from charging the
vehicles as calculated in Eq. (7).

To calculate the avoided water consumption, we need to take into
account not only the water consumed by the charging of the vehicle
(see Eq. (8)), but also the water consumed in creating the gasoline
used to fuel the Chevy Volts and the gasoline-powered alternative vehi-
cles. Appendix B calculates the water intensity of gasoline production;
we find that average total water usage for US gasoline production is
4.27 gal of water per gallon of gasoline.20 Thus, we use the following
equations to calculate the amount of water consumed by the Volt and
the Leaf:

CarWateri volt½ � ¼ 4:27 ∗ GasolineAV−Gasolinevoltð Þ−GridWateri volt½ � ð11Þ

CarWateri leaf½ � ¼ 4:27 ∗GasolineAV−GridWateri leaf½ � ð12Þ

where GasolineAV and Gasolinevolt are the gallons of gasoline used by the
alternative vehicle and the Volt, respectively, and GridWater is the
amount of water consumed from charging the vehicle as calculated in
Eq. (8).

5. Results and discussion

5.1. Solar PV

5.1.1. Avoided CO2 emissions
We find that solar PV households in our sample were able to avoid

between 2049 and 13,635 lbs. of CO2/year, with a mean of 8029 lbs. of
CO2/year. This translates to an average of 1453 lbs. per kW of installed
20 Thisfits inwellwith other estimates; see for exampleHarto et al. (2010)who estimate
a water intensity of 2–6 gal of water/gal of gasoline.
capacity. On average, we find that PV systems avoid 75% of yearly emis-
sions generated by the household's grid consumption. There is substan-
tial variation across themonths and seasons of the year, as somemonths
have greater emissions. As can be seen in Fig. 10 (see Appendix C for the
numbers underlying the figure), though more absolute emissions are
avoided during summer months, household summer electricity usage
is far higher than during other months. Therefore, PV offsets the lowest
proportion of households' grid electricity consumption and emissions
during the summer. Of note, during March and April, households' PV
generation exceeds their total grid electricity consumption (likely due
to decreased demand for A/C), such that PV contributes clean electricity
to the grid during these months, helping avoid the consumption of grid
electricity by other Austin Energy households.

5.1.2. Avoided water consumption
Solar PV households in our sample are able to avoid between 606

and 4013 gal of water consumption per year. Per kW of installed
capacity, the annual average amount is 424 gal; hence, the average PV
array of 5.61 kWconserves 2379 gal/year.21 On average, PV deployment
allows the household to avoid 77% of its annual grid-related water
consumption.

This amount varies over the course of the year, as demonstrated in
Fig. 11 (see Appendix C for the numbers underlying the figure). The
greatest amount of daily reductions occurs during the summer, due to
greater PV output.

5.2. Electric vehicles

The households with EVs in our sample are able to avoid 566 to
8409 lbs. CO2/year (or 9–81% of emissions relative to a gasoline-
fueled vehicle), whereas the gallons of water saved (in terms of water
consumption from electricity generation) varies between −196 and
1393 gal/year (or −14 to 77% of water otherwise consumed by a
gasoline-fueled vehicle). Figs. 12 and 13 show the total amount of CO2

emitted and water consumed by all four vehicle types (Chevy Volt,
Nissan Leaf, Average light-duty vehicle, and all-gasoline run Chevy
Volt), while Figs. 14 and 15 show the yearly percentage avoided CO2

and water from shifting to the EV depending on the counterfactual ve-
hicle. On average, EVs are able to avoid 42%–70% of CO2 emissions and
30%–62% of water. This range of average avoided emissions and water
21 As a point of comparison, a family of four on average consumes 8000 gal permonth for
domestic purposes, such as washing and drinking (http://www.sbunet.com/customer_
services/default.asp?CategoryNumber=8&SubcategoryNumber=4).

http://www.sbunet.com/customer_services/default.asp?CategoryNumber=8&amp;SubcategoryNumber=4
http://www.sbunet.com/customer_services/default.asp?CategoryNumber=8&amp;SubcategoryNumber=4


Fig. 12. Yearly total CO2 emissions by vehicle type (pounds).

Fig. 14. Average yearly % reductions of CO2 by vehicle type and counterfactual vehicle.
Note: *Upper bound scenario = Counterfactual vehicle is average light-duty vehicle;
**Lower bound scenario = Counterfactual vehicle is gasoline-driven Chevy Volt.

Fig. 15. Average yearly % reductions H2O by vehicle type and counterfactual vehicle. Note:
*Upper bound scenario= Counterfactual vehicle is average light-duty vehicle; **Lower bound
scenario = Counterfactual vehicle is gasoline-driven Chevy Volt.Fig. 13. Yearly total water consumption by vehicle type (gallons).
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depends on the fuel efficiency of the counterfactual vehicle: the benefits
will be larger by 4091 lbs. CO2/year and 891 gal/year if the counterfac-
tual vehicle has the efficiency of an average light-duty vehicle (such
as a Ford Escape) instead of the fuel efficiency of a gasoline-fueled
Chevy Volt. Thus, consumer preference for vehicle type can have a
statistically22 significant effect on both emissions and water consump-
tion. Importantly, this means that to maximize the environmental ben-
efit of electric vehicles, policies should focus on incentivizing customers
whowould have otherwise chosen less efficient vehicles to purchase an
electric vehicle instead. Somemanufacturers are nowproducing electric
SUVs, making the shift to a more efficient vehicle less of an attribute
tradeoff for these customers. Furthermore, as SUVs tend to be more ex-
pensive (see kbb.com for a comparison across vehicle types), these
households may very well be the ones who can most afford the electric
vehicles. Thus, as technology advances, the ability of policymakers to in-
centivize owners of inefficient vehicles to shift to EVs may improve.

The fact that EVs can consumemore water from charging than their
gasoline-fueled counterpart highlights the importance of increasing the
amount of cleaner electricity used to power the central grid, especially
as EVs become more prevalent in society.
22 The differences between the upper and lower bounds in avoided CO2 and water
(representing the difference in counterfactual vehicle) are statistically significant, with a
p-val of 0 for both differences not equaling zero (including separately for each type of
vehicle).
5.3. Implications for households

5.3.1. Solar panel decisions
Because households can choose which direction to face their solar

panels, the orientation of the panels will substantially impact a
household's level of PV generation and corresponding total emissions
avoided. Pecan Street records orientation of the solar panels (“South &
East” facing panels implies that one panel faces south and another
faces east; “South & West” and “West & East” orientations are labeled
correspondingly).We show in Table 5 the breakdown of total emissions
avoided for households with panels facing south and east, south, south
andwest, andwest. In the second column,we present the avoided emis-
sions per 1 kW capacity, as homes with panels facing south and west
tend to have larger PV arrays.

In comparing the generation capability of different panel orienta-
tions, we proceed with some caution, as malfunctions of panels occa-
sionally happen and panels can have different efficiency levels. Thus, it
may be the case that the two householdswith south & east facing panels
happened to have had fewer panel malfunctions during FY2013 and/or
they could have panels that are relativelymore efficient than those of PV
owners whose panels face other directions. Therefore, although we
report these values, we do not attempt to draw conclusions from the
south & east facing panel outcomes. Given the relative sample sizes of
the different panel orientation categories, we will therefore only com-
pare panels of three orientations: south & west; south; and west.
Table 5 demonstrates that, per each kW of installed capacity, south-
facing panels result in greater avoided emissions and water than facing

http://kbb.com
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Fig. 16. CO2 emissions and water consumption in summer and winter.

Table 5
Avoided emissions by panel orientation.

Avg yearly avoided lbs. CO2

emissions
Avg yearly avoided lbs. CO2

emissions/kW capacity
Avg yearly avoided gallons
of water

Avg yearly avoided gallons of
water/kW capacity

Number of
households

South & east 9931.97 1537.00 2896.65 448.24 2
South & west 8586.41 1461.93 2511.62 427.60 72
South 7740.93 1529.52 2253.65 445.17 33
West 7116.42 1354.84 2093.35 398.43 17
West & east 7897.50 1215.00 2299.80 353.82 1
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panels south & west or west. Per kW of installed capacity, this orienta-
tion avoids 4.4% more emissions and 3.9% more water than facing the
panel south & west,23 and 11.4% more emissions and 10.5% more
water than facing the panels west.24 This is likely due to the fact that a
south-facingpanelwillmaximize overall generation, aswell as generating
more power during thewinter than do panels facing other directions, and
winter is the season during which marginal emissions rates are highest
(see Fig. 6 in Section 4.2.1).

However, it is important to note that other reasons may drive the
orientation of solar panels (apart from rooftop viability). For example,
it can be beneficial to the distribution system to have panels facing
west; given that residential demand may spike in the afternoon/
evening, having west facing panels can help reduce the reliance on
grid electricity at times of higher demand. In 2013, Pecan Street con-
ducted a study to estimate the benefits of different panel orientations,
and identified a much larger total benefit from west-facing solar, due
to its ability to reduce more peak demand (54% vs 65%) during the
summer months (McCracken et al., 2013). This reduction at peak due
to solar generation can have many benefits to society, such as reduced
investment in infrastructure to meet peak demand. In fact, due to this
benefit of west-facing solar, Pecan Street incentivized these households
23 The differences in both CO2 and water are significant, with p-vals of 0.06 and 0.08
respectively.
24 The differences in both CO2 and water are significant, with p-vals of 0.01.
to have west-facing panels, by providing a $0.75/watt rebate to these
customers (compared to a $0.50/watt rebate for south-facing panels).25

Because of the large system benefits that west-facing solar can provide,
it remains to be seen whether the increased environmental benefits of
south-facing solar are enough to overcome the benefits of facing the
panels west. Importantly, if west-facing rooftop solar can provide a
significant direct benefit to utilities, there may be less resistance to PV
deployment from these distribution companies, resulting in greater PV
adoption overall; and thus, greater environmental benefits in the long
run.
5.3.2. EV decisions
With respect to EVs, households can reduce their emissions by

choosingwhen to charge their vehicle. In our sample, charging a vehicle
for a full hourwill require between 3.72 and 6.75 kWh26 (not taking into
account any rebound effects), with an average consumption of
3.76 kWh. For this part of our analysis, we utilize the average amount
to represent what it takes to charge a vehicle over the course of an
hour. In the summer, with respect to CO2 emissions, the cleanest hour
Monetary incentives verified over email by Pecan Street staff, 9/7/2016.
26 Hourly EV charging varies based on a number of different factors, including the size of
the vehicle's battery.We do not have data on battery size, and therefore calculate average
hourly consumption as the average maximum hourly battery consumption at the house-
hold level.



Fig. 17. Histogram of hourly charging and summer hourly CO2 emissions.
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on average is currently 2 pm (with average marginal emissions rate of
1.14 lbs/kWh), and the dirtiest hour is currently 2 am (the marginal
emissions rate at that hour is 1.38 lbs/kWh). Consuming 3.76 kWh at
2 pm instead of consuming 3.76 kWh at 2 am avoids 0.90 lbs of CO2.
However, the situation looks different during the winter, where the
marginal emissions rate has less variation across the hours but is higher
in levels than during the summer – marginal emissions rates range
between 1.32 at 8 pm to 1.42 at 2 am. This difference results in a benefit
of only 0.38 lbs. CO2 fromshifting onehour of charging from8pm to 2 am,
about a third of the benefit than during the summer.

On average, a household in our sample charges its EV for three full
hours in the day.27 Given this amount of charging, we can calculate
the potential maximum amount of emissions avoided. To do this, we
choose the 3 dirtiest hours, calculate the total lbs. CO2 and gallons of
water from grid charging; then we do the same with the 3 cleanest
hours of the day, and take the difference between these two sums.
Fig. 16 shows summer and winter's three cleanest and dirtiest hours
of the day for both CO2 emissions and water consumption.

If an EV owner were to somehow signal to its vehicle when the
greenest times of the day occur, and charge during these times instead
of dirtier times, it could save 2.58 lbs CO2 and 0.49 gal per day in the
summer and 1.10 lbs CO2 and 0.36 gal per day in thewinter; if the vehi-
cle is charged every day, then yearly these savings increase to an
average (across summer and winter savings) of 672.82 lbs CO2 and
156.10 gal of water. There is a tradeoff during the summer for water
and CO2 (as the greenest hours of the day do not align as well as during
the winter), though a household could do well by avoiding the dirtiest
hours of the day, which align for both emissions and water consump-
tion. Greatest savings could be achieved by implementing technology
that sends a signal to the vehicle to charge during the cleanestmoments
of the day, thereby automating this action by the customer. Of course,
this would also require customers to have charging stations at work,
where they are able to plug their vehicle to charge if those moments
coincide with the cleanest times of day. Austin Energy now has over
300 charging stations and rate plans that make charging while
at work increasingly doable.28 However, the charging stations do
not yet provide information about the cleanest times of the day for
charging.
27 We define “full charging hours” to be the number of hours where the vehicle is
plugged in for the entirety of the hour.
28 See http://austinenergy.com/wps/portal/ae/green-power/plug-in-austin/!ut/p/a0/
04_Sj9CPykssy0xPLMnMz0vMAfGjzOINjCyMPJwNjDzdzY0sDBzdnZ28TcP8DC09DfW
DU4v1C7IdFQF4CNQ8/.
Fig. 17 shows a histogram of the charging in the sample over the
course of the day, overlaid with the marginal emissions rate per hour.
A large portion of charging occurs after 6 pm and in the morning,
when emissions are highest, given the current generation mix.

The fact that chargingduring theday currently produces fewer emis-
sions than at nightmay seemcounterintuitive given the large amount of
wind being produced at night in TX. However, as discussed earlier,
because wind cannot be ramped up or down in response to changes in
load, any increase of load during the night will only result in changes
in dispatchable load (e.g., coal and natural gas). It is possible that wind
curtailments will decrease if there is greater load at night, especially
in Western TX near the wind farms; but given the sporadic nature of
these curtailments throughout the year and the low percentage of
hours when this occurs (see Footnote 4), incentivizing customers to
charge at night will likely not have a large enough benefit from reduced
curtailments to offset the increase in marginal emissions that occur
during moments of non-curtailment.29,30

It is important to point out in any case that the largest CO2 savings
for EVs comes from avoiding driving a gasoline-fueled vehicle, and
they are largest when a household switches from a large, inefficient ve-
hicle to an EV. Furthermore,multi-vehicle householdsmay own both an
EV and an SUV, serving very different purposes within the household
(such as using the EV for commuting and using the SUV to take the
kids to soccer practice). In this case, households can do very well in
terms of reducing emissions by using the EV asmuch as possible and re-
ducing the SUV's yearly miles traveled. Austin Energy has a rate struc-
ture for EV's that further incentives using the EV as much as possible.31
6. Conclusions and policy implications

ThePecan Street dataset provides a unique exploration of a variety of
demand-side resources that households can adopt to reduce their envi-
ronmental footprint. This paper contributes to the current literature by
analyzing a granular PV generation and EV charging dataset from actual
usage of these technologies. More specifically, due to this dataset, we
are able to estimate the following: both the lbs. of CO2 emissions and
gallons of water consumption that a household can avoid by investing
29 Unless the customer is located outside of a transmission constraint zone, such as in
Western TX near a wind farm.
30 Note the previous discussion about the possibility of increase curtailment as more
wind comes on line in the next few years.
31 See link in Footnote 28.

http://austinenergy.com/wps/portal/ae/green-power/plug-in-austin/!ut/p/a0/04_Sj9CPykssy0xPLMnMz0vMAfGjzOINjCyMPJwNjDzdzY0sDBzdnZ28TcP8DC09DfWDU4v1C7IdFQF4CNQ8/
http://austinenergy.com/wps/portal/ae/green-power/plug-in-austin/!ut/p/a0/04_Sj9CPykssy0xPLMnMz0vMAfGjzOINjCyMPJwNjDzdzY0sDBzdnZ28TcP8DC09DfWDU4v1C7IdFQF4CNQ8/
http://austinenergy.com/wps/portal/ae/green-power/plug-in-austin/!ut/p/a0/04_Sj9CPykssy0xPLMnMz0vMAfGjzOINjCyMPJwNjDzdzY0sDBzdnZ28TcP8DC09DfWDU4v1C7IdFQF4CNQ8/


Table 6
Avoided CO2 emissions due to PV in select literature.

Source Avoided Lbs of CO2/kW of installed capacity Region of study Emissions methodology employed

Siler-Evans et al. (2013) 1500–2400 lbs/kWa TX Marginal emissions analysis
Connors et al. (2004) 1780 lbs/kW ERCOT Hourly emissions rates, simulated PV production
Zhai et al. (2012) 1931 lbs/kW TX EnergyPLAN simulation
Spiegel et al. (2000) 2760 lbs/kW 29 PV sites across US Range of emissions profiles,b predominantly average

a These values are estimates based on a heat map of impacts across TX; accurate numbers not provided in source, but the Austin region is on the lower end of the spectrum in terms of
avoided emissions.

b Emissions profiles were provided (or not) by the relevant utility; generally thesewere average emissions, with the exception of Scottsdale, AZ. The large difference in findingsmay be
due to either the use of average emissions and/or the inclusion of non-TX regions.
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in clean technologies, the existence and magnitude of a solar rebound
effect, and the emissions and water consumption impact of solar panel
orientation and strategic charging behaviors.

We find that solar panels allow residential customers to avoid a
substantial amount of emissions: on average, a household with PV
avoids 8107 lbs of CO2/year (or 1453 lbs/kW of installed capacity on
average).32 Framed another way, on average, households can avoid
75% of yearly grid-related emissions. Though our results are within a
reasonable range of numbers found in the literature (see a selection of
literature in Table 6), our results are on the lower end of the spectrum.
However, our methodologies and data employed are quite different
fromwhat is used in the literature, in that we have paired actual PV per-
formance with a marginal emissions analysis. Most closely related to
our paper is Siler-Evans et al. (2013) who use a marginal emissions
analysis similar to ours; they estimate approximately 1500 lbs. avoided
CO2/kW of installed capacity in Austin (see Table 6 footnote a).

With respect to water consumption, we find that on average, house-
holds avoid 2369 gal of water consumption per year, or 77% of yearly
grid-relatedwater consumption, from installing solar panels. The litera-
ture related to the avoidedwater consumption benefit of solar panels is
extremely limited, and to the best of the authors' knowledge, this is the
first study to estimate the impact of actual installed household distribut-
ed solar panels.33

We alsofind that households can further decrease their emissions by
11.4% and their water consumption by 10.5% (relative to the average
avoided emissions and water consumption) by choosing to face the
panels south instead of west; however, the large majority of the
homes (71%) in our sample choose to face their panels west or south
&west instead, potentially due to the larger system savings that a west-
ern orientationprovides. To the authors' knowledge, this paper provides
the first estimate of realized (as opposed to simulated) environmental
benefits of panel orientation for distributed solar.34

For electric vehicles, we find that a household will avoid on average
between 2631 and 7285 lbs. CO2/year (42–70% of yearly fuel-related
emissions). These results are comparable to other estimates found in
the literature for studies in the US; see Table 7.
32 Importantly, these environmental impacts are short-run effects only, as in the long
run, the fuel mix is subject to change; as more DERs are deployed and integrated the grid,
there can be less reliance on dirty generators, leading to a cleaner and more efficient grid.
33 Wiser et al. (2016) simulate the avoidedwater consumption from the implementation
ofNREL's SunShot Vision Study's solar penetration, and find that solar panels decreasewa-
ter consumption by9% relative to a baseline. Though this number ismuch smaller thanour
findings, it is difficult to compare the two, as the Wiser et al. study is a result of a policy,
based on simulations, and utilizes different methodologies. Deetjen et al. (2016) also at-
tempt to estimate water consumption from solar panels, but only compare across three
different solar panels located in three different locations; see Footnote 34 for a more in-
depth description.
34 One exception is Deetjen et al. (2016). However, they simulate solar generation from
PVWatts rather than using observed solar panels as in this paper; they assign different ca-
pacities to each solar panel; and place each solar panel with a different orientation in dif-
ferent parts of TX (thewest-facing panel is located inWestern TX, the south facing panel is
in Central TX, and the east-facing panel is in Eastern TX). Furthermore, they do not de-
scribe how they calculate avoidedwater consumption,making it very difficult to compare
our results with theirs. Given our datasetwith observed distributed solar panels located in
the same neighborhood, we are able to minimize the differences across each panel that
may affect the results from Deetjen et al.
We also find that households can save between 410 and 1393 gal of
water usage per year (30–62% of yearly fuel-related water consump-
tion) by shifting to an EV, depending on the efficiency of the counterfac-
tual vehicle. The literature on this topic is limited, where most of the
papers attempt to estimate only the water consumption associated
with gasoline production (e.g., King and Webber, 2008; Wu et al.,
2009), or with vehicle manufacturing (e.g., Berger et al., 2012; Bras
et al., 2012). A few papers look at lifecycle water impacts of electric ve-
hicles. For example, Harto et al. (2010), Onat et al. (2014) and Kim et al.
(2016) estimate vehicle lifecycle water consumption and/or
withdrawals,35 and find that EVs have a higher water footprint than
their gasoline counterparts.36 However, none of these papers have
utilized information on actual charging patterns and have not relied
on marginal water consumption analyses, and are therefore likely
overestimating the water consumption associated with observed
vehicle use.

However, we do find that an EV has the potential to increase a
household's fuel-related water consumption by up to 14% depending
on the counterfactual gasoline-powered vehicle's efficiency. Although
customers can improve their environmental footprint by charging dur-
ing low marginal emissions times, the greatest impact a household can
have on emissions is by shifting away from their secondary, gasoline-
fueled vehicles and using their EVs instead (especially if that alternative
vehicle is very inefficient). This also supports the idea that policies in-
centivizing the purchase of electric vehicles should be targeted to cus-
tomers who would have otherwise purchased inefficient vehicles.
Understanding what vehicle a potential buyer would otherwise have
chosen may be difficult, but some programs can directly target these
customers (such as a specially-designed clunkers exchange program;
See Li et al., 2013 for a description and analysis of the 2009 “Cash-for-
Clunkers” program).

A finding of our paper is that strategic timing – whether it involves
charging an EV at hours with low marginal grid emissions and water
rates, or facing one's solar panels south to maximize generation during
the grid's emissions- andwater-intensive times – can improve environ-
mental outcomes. However, it is important to note that these findings
are dependent on the current generation mix. As the grid becomes
cleaner andmore renewables come online, themarginal emissions pro-
file will change. Specifically in TX, ERCOT foresees a drop in coal gener-
ation, though the magnitude of the drop depends on market dynamics
and the implementation of the Clean Power Plan and Regional Haze
Regulations (ERCOT, 2016).37 As a result, gas' role as a marginal gener-
ation fuel will likely increase while coal's will decrease, and these
fuels' timing as marginal power sources could shift both hourly and
seasonally.
35 Waterwithdrawals associatedwith electricity generation aremuch higher thanwater
consumption; the latter are estimated in this paper.
36 Lifecycle analysis will also increase the amount of water related to EVs, as it includes
water for creating the vehicle and battery, as well as water used for creating the solar
panels or other generators used to power the EV.
37 This remains a somewhat conservative prediction, as ERCOT assumes that the per-
centage of wind capacity will only increase by 2 percentage points over the next
15 years. A more ambitious advancement of wind capacity could increase the renewables
percentage of the grid mix over time well beyond 37.1%.



Table 7
Avoided emissions due to EVs in select literature.

Source Avoided emissions Region of study Emissions methodology

Archsmith et al. (2015) 2220–3980 lbs CO2/year for EVs relative to gasoline vehicle TRE NERC region Marginal emissions
Doucette and McCulloch (2011) 90% reduction in CO2 emissions for EV relative to gasoline vehicle USA Average emissions
Sioshansi et al. (2010) 25% reduction in CO2 emissions for PHEV relative to gasoline vehicle Ohio Marginal emissions
Blumsack et al. (2008) 2094–2931 lbs CO2/year for PHEV relative to gasoline vehicle ERCOT Average emissions
Duvall et al. (2007) 40–65% reduction in CO2 emissions for PHEV relative to gasoline vehicle USA Marginal emissions
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Such a re-shuffling of fuels on the margin will lead to changes in
optimal environmentally beneficial behaviors. Thus, utilities, regulators,
and policymakers should develop incentives for maximizing environ-
mental behaviors that consider the future, and, if feasible to do in a
transparent manner, dynamically adjust based on the composition of
the marginal generation mix.
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