Carbon Sequestration Risks and Hazards: What we know and what we don't know

S. Julio Friedmann

Carbon Management Program APL Global Security Principle Directorate, LLNL friedmann2@llnl.gov http://co2.llnl.gov/

Conclusions

Current knowledge strongly supports carbon sequestration as a successful technology to dramatically reduce CO₂ emissions.

"We know enough to site a project, operate it, monitor it, and close it safely and effectively. We do not yet know enough for a full national or worldwide deployment."

The hazards of CO₂ sequestration are well defined and the associated risks appear small and manageable

Site characterization, monitoring, and hazard assessment & management are keys to safe and successful deployment

There are tremendous available resources, applicable learnings, works in progress

- IPCC Special Report
 - 2004 snapshot
 - High level of technical detail
- CO₂ Monography (SPE)
- MIT Report: Future of Coal
- DOE Basic Research Needs (2007)
- IOGCC draft guidelines (2007)
- NAS study (in progress)
- WRI CCS draft guidelines
- EPA draft regulations
- Many DOE documents
 - N. America CO₂ Atlas
 - Annual Roadmap
 - FutureGen selection criteria

What Could Go Wrong?

Potential Release Pathways

- Well leakage (injection and abandoned wells)
- Poor site characterization (undetected faults)
- Excessive pressure buildup damages seal

Crystal Geyser, UT represents an analog for well leakage, fault leakage, & soil leakage

Drilled in 1936 to 801-m depth initiated CO_2 geysering.

CO₂ flows from Aztec sandstone (high P&P saline aquifer)

Oct. 2004, LLNL collected flux data

- Temperature data
- Meteorological data
 - Low wind (<2 m/s)
- 5 eruptions over 48 hrs
- Four eruptions and one preeruption event sampled

The risks of leakage appear to be both small and manageable

Wells present a challenge to integrity and monitoring which could be resolved through technology application & regulation

There have been other CO₂ well failures with larger release rates

Location	CO ₂ release rate (original units)	CO ₂ release rate (kg/sec (t/d))	Date	Reference
Wyoming	100 million cubic feet/day	60 (~5000)		S. Stinson, personal comm. 2007
Sheep Mt., CO	At least 200x10 ⁶ scf/day	120 (~10,000)	March 17-April 3, 1982	Lynch <i>et al.</i> (1985)
Torre Alfina geothermal field, Italy	300 tons/hour	76 (~6500)	1973	Lewicki, Birkholzer, Tsang (2007)
Travale geothermal field, Italy	450 t fluid/hr	113	Jan. 7, 1972	Geothermics Lewicki et al. (2007)
Leroy Gas Storage, WY	3e6 m3/year	0.2	1976-1981	Lewicki et al. (2007)
Edmund Trust #1-33, Kingfisher, OK	45 million cubic feet of gas/month	0.9	Dec. 2005-Jan. 2006	Lewicki et al. (2007)
Crystal Geyser, UT	2.6 to 5.8 kg/sec	2.6 to 5.8	Continuing	Gouveia & Friedmann (2006)

Almost all these events were detected quickly and stopped

Simulations of the largest hypothetical event suggest leakage appears to be manageable

 Max. CO2 flow rate:

 7" inside diameter well

 Depth Flow rate Flow rate

 (ft)
 (kg/s)
 (ton/day)

 5036
 225
 1944

 4614
 217
 1875

 5102
 226
 1952

~2x Sheep Mt. event ~50x Crystal Geyser

1935

224

4882

Simulated hypothetical Max. flow rate event Great plains: no wind

Simulated hypothetical Max. flow rate event Great plains: average wind

2005 Tele Atlas and/or LUNE.

The HSE consequences from catastrophic well failure do not appear to present an undue or unmanageable risk.

Acute (Short-Term) Effects				
Description	(ppm) Extent Area	Population Fatalities Casualties		
>TEEL-3: Death or irreversible health effects possible.	>40,000 71.5 m 6,840 m2	0 N/A N/A		
>TEEL-2 and TEEL-1: Serious health effects or impaired ability to take protective action.	>30,000 87.3 m 9,515 m2	0 N/A N/A		

Note: Areas and counts in the table are cumulative. Casualties include both Fatal and Non-Fatal effects.

The Lake Nyos event is not analogous to possible CCS leakage

The worst CO₂ release event in modern history

- CO₂ accumulated in lake floor over 100's of years
- Released all at once: >1000 people died

Two million tons CO₂ released overnight (probably in an hour) • ~1000x bigger than Sheep Mt.

Several million Crystal Geysers

The Lake Nyos event is not analogous to possible CCS leakage

- The crust has great strength and great mass
 - catastrophic overturning not possible
 - flow rates from geological formations can't be this fast
- No deep lakes exist near any potential storage site in any OECD country
- This type of occurrence is easily detected and mitigated

Little Grand Wash Fault soil surveys suggest fault leakage flux rates are extremely small

Allis et al. (2005) measured soil flux along the LGW fault zone.

Overall, concentrations were <0.1 kg/m²/d.

Integrated over the fault length and area, this is unlikely approach 1 ton/day.

At Crystal Geyser, it is highly likely that all fault-zone leakage is at least two orders of magnitude less than the well. This may be too small to detect with many surface monitoring approaches

It is worth noting that the risks at present appear to be very small and manageable

Analog information abundant

- Oil-gas exploration and production
- Natural gas storage
- Acid gas disposal
- Hazardous waste programs
- Natural and engineered analogs

Operational risks

- No greater than (probably much less than) oil-gas equivalents
- Long experience with tools and methodologies

Leakage risks

- Extremely small for well chosen site
- Actual fluxes likely to be small (HSE consequences also small)
- Mitigation techniques exist

Benson, 2006

Bogen et al., 2006

Source: LLNL

Initial concerns about induced seismicity and associated leakage are likely to be misplaced

Raleigh et al., 1976

An experiment at Rangely field, CO, attempted to induce earthquakes in 1969-1970. It did so, but only after enormous volumes injected over long times on a weak fault

- Mean permeability: 1 mD
- Pressure increase: >12 MPa (1750 psi) above original
- Largest earthquake: M3.1

There were no large earthquakes The seal worked, even after 35 years of water and CO₂ injection Most injection sites are less severe than this one This phenomenon can only be studied at scale

The M6.8 Chuetsu earthquake did not cause leakage at the Nagaoka CO2 injection project

http://www.rite.or.jp/English/lab/geological/demonstration.html

To identify the earthquake's impact on the storage site, the conditions of the wells, the reservoir, and the injection facility were inspected and tested

Following these tests & inspections, the conditions of the wells, reservoir, and facility were found intact after the earthquake, and injection was resumed.

• Oct 23, 2004, 17:56 Mid-Niigata Chuetsu Earthquake occurred.

• Automatic halt of injection due to loss of power supply (Cumulative amount at the time of injection halt: approx. 8,950 t- CO2)

Conclusions

Current knowledge strongly supports carbon sequestration as a successful technology to dramatically reduce CO₂ emissions.

"We know enough to site a project, operate it, monitor it, and close it safely and effectively. We do not yet know enough for a full national or worldwide deployment."

The hazards of CO₂ sequestration are well defined and the associated risks small and manageable

Site characterization, monitoring, and hazard assessment & management are keys to safe and successful deployment

