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Climate change means more than a “warmer world” and melting polar ice caps.

Stabilizing the concentration of CO, means fundamental change to the global
energy system and therefore fundamental change to the entire global economy.

Technology is essential to addressing climate change and controlling the cost of
doing so.

A strategy to address climate change while simultaneously meeting all of
society’s other goals and aspirations must include:

m Development and subsequent global commercial deployment of advanced, cleaner
energy technologies

m Continued scientific research on the climate system and impacts
m Emissions limitations

m Adaptation to climate change.

There is no “silver bullet” for addressing climate change nor is there a “silver -~

bullet” for managing the negative consequences of a changing climate.
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US Temperature Change, 1901-2006

US Precipitation Change, 1901-2006
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» United Nations Framework
Convention on Climate Change has
nearly 200 member countries,
including the United States, and
establishes as its “ultimate objective”:

m ...the stabilization of greenhouse <«

gas concentrations...

m ...at alevel that would prevent
dangerous...interference with the
climate system...

® ...and to enable economic
development to proceed in a
sustainable manner.

47

Concentrations
not
Emissions

Don't
Know What is
Dangerous

Economic
Development
Matters
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» Stabilizing atmospheric
concentrations of greenhouse
gases and not thelr annual
emissions levels should be the
overarching strategic goal of
climate policy.

» This tells us that a fixed and finite
amount of CO, can be released to
the atmosphere over the course of
this century.

m We all share a planetary
greenhouse gas emissions
udget.

m Every ton of emissions released
to thé atmosphere reduces the
budget left for future generations.

m As we move forward in time and
this planetary emissions budget is
drawn down; the remaining
allowable emissions will become
more valuable.

m Emissions permit prices should
steadily rise with time.
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Global Carbon Emissions (GtC)
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Geological Storoge Options for CO,
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2 CO,-driven enhanced oil recovery

‘3 Desp saline formabaons
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3,900+ GtCO, Capacity within 230 Candidate

Geologic CO, Storage Reservoirs

»2,730 GtCO, in deep saline formations (DSF) with perhaps close
to another 900 GtCO, in offshore DSFs

»240 Gt CO, in on-shore saline filled basalt formations

»35 GtCO, in depleted gas fields

»30 GtCO, in deep unmineable coal seams with potential for
enhanced coalbed methane (ECBM) recovery

»12 GtCO, in depleted oil fields with potential for enhanced oil

recovery (EOR)

1,715 Large Sources (100+ ktCO,/yr)
with Total Annual Emissions = 2.9 GtCO,

* 1,053 electric power plants

» 259 natural gas processing
facilities

* 126 petroleum refineries

* 44 iron & steel foundries

* 105 cement kilns

* 38 ethylene plants

» 30 hydrogen production

» 19 ammonia refineries

34 ethanol production plants
» 7 ethylene oxide plants
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» It is important to realize that we

are in the earliest stages of the
deployment of CCS
technologies.

» The potential deployment of
CCS technologies could be
truly massive. The potential
deployment of CCS in the US
could entail:

m 1,000s of power plants and
industrial facilities
capturing CO,, 24-7-365.

m 10,000s of miles of
dedicated CO, pipelines.

m 100s of millions of tons of
CO, being injected into the
subsurface annually.
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Dispatch Cost
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In 2005, conventional fossil-fired
power plants were the
predominant means of generating
competitively priced electricity.

However, given today’s and (likely)
tomorrow’s higher natural gas
prices and the imposition of a
hypothetical binding greenhouse
gas control policy,

m  While renewables are likely to
grow substantially,
IGCC+CCS and nuclear
become -- in some regions of
the U.S. -- the dominant
means of generating low-

carbon baseload electricity. .~
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Potential CO: Storage Capacity

l Max: ~2 MICOz/km”
Min: Under 0.1 MtCOz/km’

ECAR region, its large, heterogeneous potential
geologic storage capacity and large (greater than 0.1 MtCO,/year)
stationary CO, emissions point sources by type

CO; Emissions Prices

2005$/MtCO2
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2010 2015 2020 2025 2030 2035 2040 2045
——CP2 —— Jump-to-CP2|
Jump to
CP2: Jumpto |CP2:
CP2: Base|lmproved |CP2: Base|lmproved
PC+CCS |PC+CCS [PC+CCS |PC+CCS
Existing (pre-2005) PC units
that are retrofit with CCS by
2045 (GW) 0 22 0 22
New (post-2005 builds) PC
units that adopt CCS by
2045 (GW) 0 0 0 17.7
IGCC+CCS by 2045 (GW) 81 70 72 57
Cumulative CO,, Stored in
ECAR by 2045 (MtCO,) 4,300 4,900 3,200 3,%/

MA Wise and JJ Dooley. 2008. “The Value of Post-Combustion Carbon Dioxide Capture and Storage Technologies in a World with
Uncertain Greenhouse Gas Emissions Constraints.” International Journal of Greenhouse Gas Control. In press.
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Surfaced Roads in U.S. (miles)
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»  The cost of capturing CO, is not the single biggest obstacle standing
in the way of CCS deployment.

>

When thinking about storing 100% of a large power plant’'s emissions
for 50+ years, there are a number of things that we would like to
know today but are likely to only learned through real world
operational experience:

Can the same injector wells be used for 50+ years?

Are the operational characteristics that make a field a good
candidate CO,-driven enhanced oil recovery similar to the
demands placed upon deep geologic formation that is being
used to isolate large quantities of CO, from the atmosphere for
the long term?

What measurement, monitoring and verification (MMV)
“technology suites” should be used and does the suite vary
across different classes of geologic reservoirs and/or with time?

How long should post injection monitoring last?

What are realistic, field deployable remediation options if
leakage from the target storage formation is detected?

Who will regulate CO, storage on a day-to-day basis? What
criteria and metrics will this regulator use?
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CCS technologies have tremendous potential value
for society.

CCSis, at its core, a climate-change mitigation 1+ WGORE ELEMENT OF A GLOGAL ENERY TEGHNOLOGY
technology and therefore the large-scale deployment S SRR SR
of CCS is contingent upon the timing and nature of
future GHG emission control policies.

The next 5-10 years constitute a critical window in
which to amass needed real-world operational
experience with CCS systems.

The electric power sector is the largest potential
market for CCS technologies and its potential use of
CCS has its own characteristics that need to be better
understood.

= el

Much work needs to be done to ensure that the
potential large and rapid scale-up in CCS deployment
will be safe and successful.

Paclific Northwest
NATIONAL LASORATORY



