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Executive Summary
Agricultural soils globally represent an important opportunity for greenhouse gas (GHG) 
reductions and removals which can contribute to meeting climate goals. However, changes 
in GHG emissions and soil organic carbon (SOC) stocks in agricultural soils are costly to 
measure directly at scale, and GHG and SOC accounting frameworks for these types of 
projects increasingly rely on the use of process-based biogeochemical models. 

The application of process-based models to measurement, monitoring, reporting, and  
verification (MMRV) schemes in large-scale contexts, such as carbon markets and supply 
chain accounting, has highlighted several challenges, and their use has raised important 
questions about — and in some cases mistrust in — the process-based model quantification 
process. Inconsistencies in approaches between modeling groups and individual projects, 
including modeling workflows and uncertainty quantification methods, contributes to the 
confusion and variation around modeled results. This report helps guide through these 
challenges by providing important context and recommendations for process-based model 
implementation in agricultural soil GHG and SOC projects to increase consistency,  
transparency, and confidence in this integral portion of the MMRV process. 

First, the report describes the main project steps in which process-models are used:  
calibration, validation, project predictions, and true-up as well as the processes of scaling 
process-model predictions to the project level, estimating project-level uncertainty, and the 
modeling workflow (which includes initialization). In doing so the report shines light on 
the realities and shortcomings of process-model approaches for soil GHG and SOC proj-
ects that must be considered when designing protocols to guide rigorous and transparent 
process-model usage.

Second, the report highlights recommendations for improvements to existing protocols for 
process-model use in soil GHG and SOC projects. These recommendations are based on 
expert knowledge and direct experience of the authors of the report, as well as thorough 
review of existing protocols (including Verra’s VM0042 and VMD0053; Climate Action  
Reserve’s Soil Enrichment Protocol and related Requirements and Guidance for Model  
Calibration, Validation, Uncertainty, and Verification; and the “Estimating soil organic carbon 
sequestration using measurement and models method” under the Australian Carbon Credit 
Unit Scheme) and publicly-available model validation reports. In addition to these main 
recommendations, several other recommendations are made throughout the report and are 
summarized in a convenient table format at the end of the main report text.

Finally, the report includes two appendices with critical background information and  
further discussion of select modeling workflow components (including model initializa-
tion), and spatial and temporal relationships in measurements and model prediction errors. 
These topics were found to be missing or underrepresented in current protocols, current 
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applications, and discussions of process-model usage in soil GHG and SOC projects; yet 
both topics are critically important to ensuring consistency and rigor in process-model use 
in this context and many of the recommendations in the report relate directly to them.

Main recommendations for improved process-based  
model guidance
1. The modeling workflow, encompassing all aspects of how a model is set-up and run, 

and results are processed, should be kept as consistent as possible within a project. 
Differences in modeling workflow between validation and other project steps, such 
as project prediction, introduce additional uncertainty and present opportunities for 
gaming. Consistency across all project steps should be ensured as part of the validation 
process; critically, it is not only the model version and parameter set that must  
be validated, but the entire modeling workflow. 

2. The data used for validation ultimately determines the context for which the model can 
be validated and reliably applied. Validation data must be sufficient to represent the 
project in scope and coverage, not only in terms of key biophysical variables such as soil 
texture, but also in the spatial distances and time spans of observations. 

3. Model prediction error increases with the time span over which predictions are being 
made, and this can be accounted for during the uncertainty estimation process. How-
ever, it must be done carefully to ensure conservatism and that any assumptions made 
are supported by the validation data. For example, plots of error versus time along with 
distributions of timescales of the validation measurements could be provided and used 
by expert reviewers to assess whether claimed relationships between model prediction 
error and time are reasonable and conservative. 

4. Current approaches and protocols often assume independence of measurement and 
model errors — which directly affects several project steps including how project-level 
uncertainty is calculated — without supporting evidence. Many factors can contribute 
to correlated measurement and model errors and because they are often spatially 
structured (e.g., at the field level or farm level), errors should be assumed to have spatial 
dependence unless sufficient evidence to support the assumption of independence is 
provided. Given that it may be hard to reach agreement on what “sufficient evidence” 
entails or how best to standardize requirements across projects, research on, and 
demonstrations of, potential approaches are needed.

5. Systematic model error (bias) is common for process-based models and must be 
handled thoughtfully during the validation process to avoid situations where it mani-
fests differently in the project than during validation. If systematic error is not detected 
during validation but becomes highly relevant during project modeling, it could result 
in overestimates of GHG emission reductions or removals for the project. Categorical 
groupings of validation data to assess systematic error under different contexts is useful 
and required by most protocols, but more innovative approaches could be used to 
borrow strength across crop functional types, soil properties, climatic regions, and other 
key variables to assess systematic errors across continuous gradients.

6. A shared benchmarking platform could be used to validate models against a common 
dataset, with many benefits including increasing transparency in the process; improving 
confidence in the performance and utility of different models; and reducing potential 
for gaming via cherry-picking of data or using the same data or sites for calibration and 
validation (independence of calibration and validation data is a requirement of proto-
cols, but in practice this can be difficult to enforce). Some efforts in this area are in their 
beginning stages and should be supported, coordinated, and potentially combined.
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Introduction
Agricultural soils worldwide have been identified as having major potential for greenhouse 
gas (GHG) reductions and removals because they cover 40% of the earth’s surface [1], are 
already actively managed, are major sources of the potent GHGs N2O and CH4 [2–4] and 
are depleted in soil organic carbon (SOC), some of which may be restored [5]. Changes to 
management practices such as efficient fertilizer use and water management can reduce 
emissions of N2O and CH4, both of which account for a significant component of current 
warming and need to be drastically reduced to meet climate targets [6]. And in many cases, 
SOC stocks can be increased through management changes such as cover cropping, peren-
nialization, and agroforestry [7–14], many of which have important co-benefits for agricul-
tural productivity [15–17], soil health [18], and ecosystem services [19]. With this in mind, 
various schemes such as voluntary carbon markets have emerged to encourage practice 
changes on agricultural soils while quantifying associated GHG benefits. This quantification, 
termed measurement, monitoring, reporting and verification (MMRV), must have the ability 
to isolate management-induced changes in GHG emissions and/or SOC stocks from other 
sources of variation such as climate and extreme weather events or changes that would have 
occurred regardless of the project initiation (i.e., the counterfactual). High-quality MMRV is 
critical to demonstrating the realized climate impacts of a given GHG mitigation project and 
is also the subject of considerable research, development, and debate [20–23].

Well-designed direct measurement over time remains the most reliable method of change 
quantification for agricultural soil GHG fluxes and SOC stocks, but it has several drawbacks 
[24]. Direct measurements are costly, time-intensive, and static in time (i.e., not for-
ward-looking). At best, measurements can be used to assess past changes, but in reality this 
is often complicated or impossible because past measurements may not meet the current 
bar for high quality (especially considering that process understanding and measurement 
technology continuously evolve), or the goals of measurement campaigns may have shifted 
over time resulting in mismatched sampling designs that aren’t directly comparable across 
time points. Further, the slow nature of SOC change coupled with its high spatial hetero-
geneity means that it is typically infeasible (sampling effort, cost) to detect any changes via 
direct measurement in under 5-10 years, especially at small scales [25]. Finally, the coun-
terfactual “baseline” scenario, or what would have happened without the change in man-
agement practice spurred by the project, which is required for complete quantification of 
project impacts, cannot be directly measured.1 That said, when direct sampling campaigns 
are well-designed and executed, they are irreplaceable and should remain an integral part of 

1  While one cannot directly measure the counterfactual scenario in a strict sense, measurements of representative 
areas under “business-as-usual” management can be used as baselines. However, finding these areas to use  
as baselines, which ideally match project sites in terms of key characteristics (e.g., soil type, climate, crop type, 
practices other than what the project focuses on etc.), can be difficult and time-intensive. See True-up section  
for further discussion.
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any high-quality MMRV scheme. Yet the costliness, inability to look ahead, relatively  
long time-periods required to detect change of SOC in particular, and difficulty of  
capturing counterfactual baselines leave room for other tools besides direct sampling to 
help in sampling optimization, project planning, and project impact quantification  
(especially in the short term).

Box 1.  

Guiding principles relevant for process-based modeling and GHG mitigation projects

Process-based models can help fill this gap. Such models can make forward-looking 
predictions in a context-specific way that accounts for anticipated conditions on the ground 
including weather and management schedules. For SOC, they can also be used to make 
predictions for short timescales over which direct sampling would not detect changes, 
making them particularly useful for programs that make annual payments or otherwise rely 
on estimates of change in the short term. They can be used to simulate baseline scenarios 
in the absence of certain management changes while keeping all else consistent with the 
project simulation. Perhaps most enticingly of all, they can be applied at relatively low costs 
and are seen as a cost-effective means to lessen or optimize sampling for direct field vali-
dation. The benefits of process-models make them extremely popular for agricultural soil 
GHG emission reduction and removal projects; these benefits include being able to predict 
whether proposed management changes will be beneficial; inform farmer and land manag-
er decision-making; inform on ideal project locations and scales; and determine payments 
to farmers and land managers on timescales that better align with their costs for implement-
ing practice changes (e.g., annually). 

However, models are imperfect and they must be used with caution and consideration. 
Increasingly, their use for agricultural soil GHG emission reduction or removal projects has 
come under scrutiny and many have criticized what they see as inadequate validation and 
overreliance on highly uncertain model results [26–29]. This has led to calls for increased 
transparency, rigor, and consistency in how models are being applied for these types of  
projects. It has also highlighted knowledge gaps around best practices for model use, especially 
in light of the need for conservatism and transparency in MMRV and GHG accounting to 
avoid perverse incentives, undesirable GHG outcomes (e.g., overcrediting), and loss of  
confidence in the various mechanisms being put forward to encourage agricultural soil 
GHG emission reduction or removal as a viable climate strategy.

In light of these issues, this report provides recommendations for improved approaches 
and research to address shortcomings and knowledge gaps in current modeling guidance. 
Specifically, we lay a foundation for shared understanding by providing background on  
key concepts and approaches in process-based modeling use in soil GHG emission reduc-
tion or removal projects; articulate difficulties and hurdles that currently limit modeling 

Consistency 

Standardization across 
protocols, between and 
within projects improves 
comparability and  
reliability of claims

Transparency 

Publicly-accessible,  
comprehensive  
information enables  
scrutiny and instills  
confidence in claims

Conservatism 

Decreases the risk of 
unanticipated adverse 
outcomes such as  
overcrediting and  
increases confidence in 
the reliability of claims

Robustness 

Ensures model  
performance is consistent 
across different systems 
or applicaitons

Anti-gaming 

Guards against  
purposeful manipulation 
of loopholes in standards, 
protocols, or oversight 
mechanisms to achieve  
a desired outcome
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capabilities and adherence to aspirational standards; and identify gaps and shortcomings 
in current guidance and protocols that are at odds with foundational principles of GHG 
mitigation projects (Box 1); and provide additional guidance and recommendations where 
possible to remedy these shortcomings, including for additional research2. 

Intended outcomes
The intended outcomes of this report are as follows:

1. Broaden understanding of key aspects of biogeochemical process-based model use  
in soil GHG MMRV protocols;

2. Improve consistency and comparability of implementations of biogeochemical  
process-based models for quantifying GHG changes across MMRV protocols;

3. Increase the quality of, and confidence in, process-based model implementation  
for producing scientifically credible GHG emission and SOC stock change estimates 
(and related uncertainty) using current data and knowledge; and

4. Encourage and enable research targeted toward knowledge gaps that currently limit 
abilities to achieve the above outcomes. 

This is a rapidly developing area of research and development across academic,  
government, private and non-profit sectors with new discoveries, proposed approaches, 
and innovative ideas emerging at a dizzying pace. We see a clear need for accessible summation, 
explanation, and analysis of ongoing developments in process-modeling approaches and 
applications to assist interested stakeholders in understanding the current landscape, 
guide decision-makers in the agricultural sector, and generally serve as a starting point for 
constructive discussions. We hope that this work clarifies relevant issues and helps to focus 
the discourse, bring more interested parties into the discussion, illuminate urgent research 
needs, and ultimately improve the rigor and consistency of MMRV across all types of  
agricultural GHG mitigation projects. 

Scope
This report focuses on process-based model usage in the context of agricultural GHG  
reduction or removal projects and related calculations of uncertainty (model prediction  
error and project-level uncertainty). The report does not explicitly consider statistical  
models, remote sensing applications, or machine-learning approaches, though any of these 
may be used in concert with process-based models to achieve the applications discussed 
here. For example, while there is currently no direct means of using remote sensing to mea-
sure changes in SOC, remote sensing can be invaluable in verifying that the management 
actions being credited are actually being undertaken and prescribing model inputs such as 
crop type, leaf traits, and phenology. 

With regard to process-based model use in agricultural GHG reduction or removal projects, 
this report covers aspects of calibration, validation (evaluation in the context of MMRV 
protocols), uncertainty assessment, data considerations, modeling workflow (including  
initialization), and integration of direct measurements of a project after its initiation (i.e., 
“true-up” or “reconciliation”). We do not discuss in depth the broader aspects of soil GHG 
and SOC project design such as stratification, sampling schemes, measurement approaches, 
or baseline design, though these are critically important topics worthy of similar scrutiny 
and discussion. Further, we do not discuss data collection and quality assurance/control 

2 Discussions of foundational principles and high-quality carbon removals can be found at https://blogs.edf.org/ 
climate411/2023/08/01/navigating-the-core-carbon-principles-and-the-landscape-of-guidance-toward-a-high- 
integrity-carbon-market/; https://icvcm.org/the-core-carbon-principles/; https://www.carbon-direct.com/ 
solutions-remove

https://blogs.edf.org/climate411/2023/08/01/navigating-the-core-carbon-principles-and-the-landscape-of-guidance-toward-a-high-integrity-carbon-market/
https://blogs.edf.org/climate411/2023/08/01/navigating-the-core-carbon-principles-and-the-landscape-of-guidance-toward-a-high-integrity-carbon-market/
https://blogs.edf.org/climate411/2023/08/01/navigating-the-core-carbon-principles-and-the-landscape-of-guidance-toward-a-high-integrity-carbon-market/
https://icvcm.org/the-core-carbon-principles/
https://www.carbon-direct.com/solutions/remove
https://www.carbon-direct.com/solutions/remove
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processes as the key considerations can be very application-specific and are typically  
covered in depth by protocols. Finally, this report focuses on the steps and key considerations 
in model application (i.e., after the model has been chosen), rather than the choice of which 
model to use, the strengths and weaknesses of different model structures, or the use of model 
ensembles. These are very important topics that are being actively explored elsewhere  
[e.g., 30–32].

The guidance and discussion herein is meant to be broadly applicable to any use of  
process-based models for soil GHG and SOC projects, including under different types of 
MMRV protocols, voluntary and regulatory markets, offsetting and within-supply-chain 
programs, emissions and removals, all appropriate biogeochemical process-based models, 
and all regions of the world. 3 However, given that there are significant limitations in data 
collection and availability in certain contexts (e.g., supply-chain accounting) and many 
areas of the world, adherence to these recommendations may not always be feasible. We 
do not necessarily recommend against approaches which may be the only option in such 
circumstances but aim to explain the limitations of those approaches to provide clarity and 
transparency in application, and avoid overconfidence in, or misuse of, modeled results. 

This report is meant to complement existing protocols and guidance for process-based 
model application in soil GHG and SOC projects, rather than to act as a stand-alone protocol 
or guidance document. The recommendations in the report are based on expert knowledge 
and direct experience of the authors, as well as thorough review of existing protocols (such 
as Verra’s VM0042 and VMD0053; Climate Action Reserve’s Soil Enrichment Protocol and 
related Requirements and Guidance for Model Calibration, Validation, Uncertainty, and 
Verification; and the “Estimating soil organic carbon sequestration using measurement and 
models method” under the Australian Carbon Credit Unit Scheme) and publicly-available 
model validation reports.

Given that there has been significant progress and activity using process-based models for 
soil carbon crediting (i.e., “Scope 1”), we use these types of projects and the general char-
acteristics of associated protocols [34, 35] as a starting place upon which this guidance is 
meant to build. While some of the details regarding protocol requirements and best practic-
es for model use covered here may be seen as too onerous, data-intensive, or strict for other 
types of applications (e.g., “Insetting” or “Scope 3”), the overarching principles we discuss 
are applicable regardless of the implementation framework for GHG mitigation and SOC 
sequestration in agricultural soils. Similarly, we focus on SOC in several places as a way to 
provide more concrete examples and explanations; however, the principles generally apply 
to any process-based model output, including N

2
O and CH

4
. 

3 See [33] for details on different types of GHG emission reduction and removal programs.
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The Project Steps
Background on the major steps in agricultural soil GHG projects 
involving process-based models 
Soil GHG emission reduction or removal projects come in many different forms, from 
market-based projects that generate carbon credits, to pay-for-practice programs aiming 
to quantify any associated reductions in GHGs, and beyond [33]. Regardless of the broader 
goal or implementation mechanism of these projects, process-based models can be used to 
estimate GHG outcomes of changes in agricultural practices, and the basic steps in doing so 
are broadly consistent and are conceptualized here as the “project steps” (Fig. 1). These are 
calibration, validation, project modeling, and direct project measurements (i.e., “true-up”).4 
During calibration, the set of model parameters is chosen which produces the best fit be-
tween model predictions and a set of observed values. Once calibrated, model performance 
is evaluated against a set of independent data, termed “validation” in many GHG mitigation 
protocols. Model validation is also the step during which model uncertainty (termed model 
prediction error) is assessed, based on the disagreement between model predictions and 
measurements at the same site(s). Once validated, the model is then used to make predic-
tions for the project, including baseline scenarios where dynamic modeled baselines are 
used. Critically, the exact same model that was validated must be used for the project (note 
that later we recommend this be expanded to include the full modeling workflow). Finally, 
direct measurements may be made for the project to improve the model for use in the  
project and/or to verify project predictions.5 These measurements will be conducted 
differently depending on the outcome of interest; in the case of SOC stocks, measurements 
may occur periodically after a prespecified amount of time (e.g., 5 years) has passed to allow 
detection of any changes. Data collection, selection, and processing is a critical component 
of all projects and supports multiple project steps, therefore we do not treat it as a separate 
step here. At any project step where the model is used, the modeling workflow (i.e., initial-
ization, data inputs, pre- and post-processing) will be invoked and should be kept consistent 
throughout the steps (see Modeling Workflow section and Appendix A). 

4 The initial choice of which model(s) to use is extremely important, but not our focus here. Helpful discussion of 
model choice for agricultural GHG mitigation projects is provided by Tonitto et al. [32].

5 Measurement of the project after initiation, or what some refer to as “true-up,” is the least understood of the 
project steps as it has not yet been performed for a registered soil GHG emission reduction or removal project 
and there is no consensus on what the end goal of making subsequent direct measurements should be (e.g., 
model improvement, updated project-level uncertainty estimation, credit recalculation), or how exactly the direct 
measurements should be used to achieve any of those goals (e.g., re-initialization, recalibration, revalidation, etc.). 
Direct measurements can be periodic (e.g., of SOC stocks every few years) or constant (e.g., flux towers for trace 
gas measurement). 
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Each of these steps feeds into and depends upon the others, and all must be done in a way 
that represents the scale and character of the project. For example, if a project is going to be 
done at a large scale where many fields are aggregated and stratified to reduce sampling and 
modeling costs, then the model calibration, validation, project predictions, and any subse-
quent measurements must all be done in a way that reflects that project design. The model 
calibration would have to ensure generalizability across all of the fields or strata included 
in such a project, including ranges of soil types, climate conditions, the different crop types 
and management practice changes represented, and outcome variables of interest (e.g., SOC 
and N2O). The model would then have to be validated in a similar manner using data from 
sites spanning ranges of key input variables, with outcomes assessed and uncertainty calcu-
lated for each output variable of interest (e.g., each unique GHG). Later, if any direct project 
measurements (e.g., to inform a true-up) were performed, the sampling scheme would need 
to account for the project design, with the project scale and stratification in mind. On the 
other hand, if a project were specific to one field (this is unlikely but useful as an example), 

FIGURE 1.

Overview of the main project steps in which process-based modeling is used 
At any project step where the model is used, the modeling workflow (including initialization, data inputs, pre- and post-processing) will be invoked 
and should be kept consistent throughout the steps. Further detail on each step is provided in the main text, including some of the current guid-
ance and ideas for the true-up procedure.

Calibration

Cross-validation

Validation
Project 
Modelling

Upscaling, 
Uncertainty

Re-calibration?

Re-validation + updated uncertainty?

Re-initialization?

Model prediction error

Project 
Measurement  
and True-up

Model parameters are 
adjusted to minimize 
prediction error against a 
calibration dataset.

Not typically required; an 
“off-the-shelf” model may 
be used without a new 
calibration if desired.

Calibrated model is used 
to simulate independent 
validation dataset.

Model prediction error  
is estimated based on 
model fit to validation 
dataset. 

Model validation report  
is generated and  
submitted to a standard 
body and reviewed by  
an independent expert.

Using validated model, 
project and baseline*  
simulations are initialized. 

Model is used to estimate 
GHG emissions or SOC 
stocks in project and 
baseline* scenarios. GHG 
emission reductions or 
removals are based on 
the difference.

*Not all projects use 
dynamic modelled  
baselines; static (not  
recommended) or  
measured dynamic  
baselines are options.

Model predictions are 
scaled to the project level.

Uncertainty of GHG 
emission or SOC stock 
changes for the project 
is calculated based on 
measurement, modeling, 
and scaling errors.

Model prediction error  
is calculated during 
the previous validation 
process.

Direct measurements of 
project GHG emissions or 
SOC stocks are conduct-
ed and may be used for 
different purposes, e.g., to 
ground-truth project-level 
predictions, update the 
model, and/or obtain a 
new uncertainty estimate 
for the project.

Current guidance on the 
“true-up” is inconsistent.

Cross-validation combines these steps, using data 
resampling to simultaneously calibrate and validate in 
an iterative process. Eventually, a single parameter set 
may be generated, e.g., the means across folds.
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each step would ideally be designed and performed to be relevant to that single field and its 
properties (e.g., soil type, weather, crop type, etc.). Though a more broadly applicable model 
could be used for a more specific application, it would likely be less accurate and precise 
than one calibrated in a more specific and relevant way.

Most MMRV and accounting use cases, such as for offset generation (i.e., voluntary 
carbon markets, carbon crediting), require additional steps that do not directly involve 
process-based modeling but inform or depend on the modeling activities. For example, in 
carbon crediting projects when the final carbon credits generated by a project are quanti-
fied, the uncertainty associated with the model predictions for the crediting period may be 
combined with other uncertainties to calculate an “uncertainty deduction” or “discount,” ef-
fectively penalizing larger uncertainty and increasing confidence that any credits are reliable 
and conservative estimates of the climate benefits. If project uncertainty is not estimated 
in a rigorous way, for example, underestimated due to omission of important uncertainty 
sources, the deduction will be inadequate and confidence in the resulting credits will be 
undermined, thereby violating the principle of conservatism (Box 1). In most cases, these 
non-modeling steps are outside the scope of this work, however, we do discuss upscaling 
and project-level uncertainty because they have implications for how the modeling might 
be done, how uncertainties are calculated, and how we think about the effects of different 
approaches on outcomes. In the example given above in which a more broadly applicable 
model could be used for a project focused on only one field, using such a model would al-
most certainly result in a larger uncertainty deduction than using a model calibrated to that 
specific field. Hence, understanding credit generation from model results in this case would 
affect one’s choice of model calibration and validation procedure.

While the project steps are broadly consistent across project types, exactly how each step 
is performed, and more specifically the level of rigor and detailed reporting ultimately 
required at each step, will depend on the type of project and end goal. For example, projects 
generating carbon credits for trading in a voluntary marketplace may be required to pass 
very high standards, while those meant to support claims of corporate supply chain GHG 
reductions (i.e., “Scope 3”) may have more lenient standards to enable action where granu-
lar data collection is currently considered infeasible. 

Model calibration
Calibration is the setting of parameter values that best enable the model to accurately 
simulate measured data. There are several methods of calibration available to the modeler 
which broadly fall into the categories of calibration by hand (i.e., tuning, trial and error) or 
statistical calibration which includes numerical optimization (e.g., maximum likelihood) 
and Bayesian numerical methods (e.g., Markov chain Monte Carlo, Sequential Monte Carlo 
[36]). The calibration process requires many decisions to be made by the modeler, such as 
which model parameters to focus on (it is common to focus on a subset of parameters for 
complex models with too many parameters to calibrate at once), some of which may be 
difficult to automate or standardize [30, 37]. In-depth discussions of common methods and 
key decisions made during calibration procedures are discussed in detail elsewhere [e.g., 
38]. We do not intend to review those discussions here, rather only to highlight the diversity 
of calibration methods, which means that rigid requirements around calibration procedures 
across diverse models and GHG projects may be impractical and unnecessary at this point 
in time.6 Perhaps more importantly, because the subsequent validation of the calibrated 
model serves as a checkpoint to assess the quality of the calibration regardless of the ap-
proach, the use of different calibration approaches across projects does not warrant concern 

6 An in-depth discussion of considerations for calibration approaches and potential to standardize them is provided 
by Wallach et al. [39].
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so long as the same parameter sets are used throughout the project steps and the validation 
is handled appropriately (including that the implications of the calibration approach for 
uncertainty propagation are accounted for).

Aside from the calibration approach used, the data used for calibration are extremely 
important to determining the performance and applicability of the calibrated model. 
Calibration requires datasets that include all model inputs along with measurements of the 
variables being calibrated against (which does not necessarily have to be the variable that 
is the focus of the GHG mitigation project), ideally in the context of the practice change(s) 
of interest for the project. The quality of the measurements is extremely important because 
systematic measurement error or low precision (where there are few data points) can lead to 
poor parameter estimates and flawed model predictions. Further, whenever predictions are 
being made over time (e.g., changes in SOC stocks or fluxes of N

2
O), calibration data should 

ideally include repeated measurements over similar time periods (that said, this point is 
even more important for validation, see Validation Data). Unfortunately, these requirements 
for calibration data represent a high bar and current datasets available for these uses are 
fairly sparse. For SOC stocks, high quality measurements over time to depths of at least 30 
cm, that also include all of the required input data to run a complex model, are relatively 
rare. For trace gas emissions, there is a well-recognized measurement challenge of captur-
ing “hot spots” in space and “hot moments” in time, as missed emissions pulses can cause 
cumulative field estimates to be biased low and can make model calibration challenging 
(e.g., if a model predicts a pulse during a period when no observations were made) [40, 41]. 
Currently, access to calibration data is a major limitation on model development and appli-
cation across contexts, especially for estimating contributions of CH

4
 and N

2
O to farm-level 

GHG accounting.

The robustness of a model across contexts is an important consideration in the context of 
GHG mitigation projects. Rather than using a single parameter set across all areas being 
modeled in an agricultural GHG mitigation project, it may be appropriate to model changes 
in parameters under different conditions, for example for geographical areas such as Land 
Resource Regions of the U.S., assuming the necessary data is available. However, performing 
too many separate calibrations of a model to different regions and environmental conditions 
typically leads to a model that extrapolates poorly to anywhere other than exactly where it 
has been calibrated (i.e., overfitting). While robustness is a general modeling principle (Box 
1), it is also possible that a model calibration could be too generalized (e.g., one global cali-
bration across all regions and conditions) with mediocre performance everywhere. In such 
circumstances formal statistical approaches for model selection (e.g., AIC, wAIC, predictive 
loss) represent best practice for determining what levels of aggregation, and for which 
grouping variables, are most parsimonious with the observations. For example, the choice 
to calibrate a model by crop type versus by soil type essentially represents a hypothesis test, 
with model selection metrics trying to find the most parsimonious hypothesis by balancing 
model fit and model predictive error based on some form of penalty for model complexity. 
In addition, hierarchical models represent an alternative to fitting models independently for 
different groups, as these approaches allow one to borrow strength across different groups 
while simultaneously constraining the extent to which the calibrations of different groups 
can diverge from each other [42–44]. Hierarchical models also allow one to formally dis-
tinguish between predictions to known locations and the greater uncertainty encountered 
when predicting to new locations. As such it is important that model verification statistics 
for hierarchical models be calculated for out-of-sample locations, as this is how models 
are generally applied when calculating carbon credits. It should be noted that while hierar-
chical models are well established in statistics, they have thus far had limited applications 
in biogeochemical modeling, so this is an area with high potential for improvement and 
innovation [45, 46].
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Overall, it is a well-known reality to modelers that we are limited in our collective ability to 
model all variables of interest under different management practices and across different 
environmental and geographical contexts equally well. We encourage the use of formal 
model selection to address over- and under-fitting and see hierarchical modeling as a  
research and innovation frontier. Rather than prescribing strict requirements around 
calibration, we suggest that protocols continue to leave room for innovative approaches 
but stress the critical need for transparency around data limitations and model calibration 
procedures, and to account for the resulting limitations on model accuracy, precision,  
and robustness during model validation.

Model validation
Once a model has been calibrated, its performance must be evaluated using a set of data 
independent from the calibration dataset. The term validation is currently used by GHG 
accounting or crediting programs to refer specifically to the formal performance evaluation 
procedure whereby a model is shown to pass predetermined requirements (e.g., thresholds 
for accuracy or precision) for approved use under a protocol.7 Models which pass this testing 
for a particular project or application are deemed “validated” for use in those contexts. For 
consistency, we use the term validation under this definition throughout this guidance. For 
GHG accounting or crediting projects, model validation is an incredibly important step [24] 
because it is used to determine whether a model will be approved for use in a project, identi-
fy where a model performs better or worse, and estimate uncertainty for the project predic-
tions (which can be used to adjust the final GHG emission reduction or SOC stock change 
estimate or credits generated, an “uncertainty deduction”)[47]. 

The rigor of the validation process ultimately determines the perceived trustworthiness of 
any GHG emissions reductions or removal claims made, or quality of any carbon credits 
generated using a process-based model. Given recent calls for consistency across GHG mit-
igation protocols and between projects to improve overall trust in GHG emission reduction 
or removal claims [22], model validation procedures across registries and projects should 
be as consistent as possible. At the same time, the diversity of process-based models and 
projects they are applied to, as well as the difficulty of obtaining high-quality datasets with 
enough information to reliably drive models (especially in certain geographies such as the 
Global South [27]) means that validation procedures need to be adaptable. Further, given 
that this is a rapidly developing area of research and development, GHG mitigation proto-
cols should allow room for innovation in modeling approaches. The validation process must 
reach a balance between flexibility to accommodate different approaches and consistency 
to ensure a base level of rigor by setting requirements that can be assessed under different 
project and modeling contexts. Further, the validation process must be designed to effective-
ly serve as a quality control checkpoint whereby any decisions that decrease the accuracy or 
precision of project predictions are accounted for or penalized appropriately, to incentivize 
toward model improvement and away from gaming (see Box 1).

In practice, setting exact thresholds for acceptable model performance is complicated by 
the fact that there are no universal rules for what “sufficient” model performance looks like, 
especially in terms of precision (model performance is more typically seen as a sliding scale 
from better to worse). This continuum is currently recognized in existing protocol modeling 
guidance (e.g., Climate Action Reserve, Verra) that set floors on model accuracy (bias and 
goodness-of-fit) but then penalize carbon credits in proportion to model precision, allowing 
imprecise models to participate while creating a positive incentive to increase model precision. 

7 In this guidance, validation does not mean a comprehensive evaluation of the worthiness or correctness of the 
model. Instead, validation has the narrow definition that the model meets the specific acceptability criteria of the 
authority who approves the estimates made by the model, such as a registry. Hence, the term “validation” is used 
here rather than the more encompassing term “evaluation.” 
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Validation data

While the scope and quality of the calibration data determine the applicability and accuracy 
of the model, the scope and quality of the validation data determine the level at which that 
applicability and accuracy can be assessed. If data for a given context are not included in 
the validation dataset, model performance can not be assessed for that context, and so the 
scope and quality of the validation data must be appropriate for the ultimate intended ap-
plication of the model. This means that the requirements for validation data are particularly 
specific. For example, while model calibration could be performed based on data for differ-
ent responses (e.g., crop yield), validation must be performed for the GHG emission or SOC 
stock and management action that is the focus of the project (e.g., SOC stock change over 
time in response to a change in cover crop). Protocols typically go a step further, requiring 
validation of the emission reduction or SOC stock, meaning the difference in GHG emission 
or SOC stock between the project and the baseline, which requires two separate data points 
(e.g., a treatment and a control) for validation. 

As with calibration, the limitation on available data suited to model validation represents 
a major limiting factor to the level of detail over which model validation can be performed. 
For validating changes in SOC stocks, studies with paired treatment and control measure-
ments (analogous to project activity versus business-as-usual baseline) that meet all of the 
previously suggested requirements for calibration data (e.g., depth, time series, precision) 
are very rare. Even though the critical need for this data has been widely acknowledged [e.g., 
48], additional data is slow to emerge in part because SOC stocks change slowly and it often 
takes decades to measure detectable differences between field treatments. By contrast, for 
trace gas emissions treatment changes may be quicker to emerge, but the aforementioned 
issues with temporal resolution and gaps over time remain as hurdles to developing com-
prehensive validation datasets. Given these limitations, cross-validation, where one dataset 
is resampled with different portions of the data used for either calibration or validation on 
each iteration or “fold,” has risen in popularity as a means to make the most of the limited 
data available [47, 49]. When cross-validation is used, the data for calibration and validation 
within each fold must still meet the requirement of independence from each other (e.g., 
time series measurements from a single site should not be split, different studies at the same 
site should not be split, etc.).

Given the limitations on acquiring validation data, particular attention must be paid to the 
nature of the validation data in terms of its quality and its representativeness of the project 
domain. If the project conditions are not well represented in the validation data, either 
because they make up a small proportion of the data, or are not included at all, poor model 
performance under those conditions is unlikely to be identified. An example of this would 
be a model that consistently underpredicts N

2
O emissions in clayey soils (e.g., with >70% 

clay). If that model were validated against a dataset that contains no sites with high clay 
contents, it might pass testing with ease. Yet if the project area contained sites with high clay, 
the model performance would be misrepresented and the actual GHG emission reductions 
for the project would be less than claimed. For this reason, it is important that validation 
data are comprehensive in terms of representing ranges of key variables present in the proj-
ect area, and that datasets are balanced with respect to those variables. Yet this is difficult 
to do in practice given the limited availability of high-quality validation data, and the latter 
suggestion might cause teams to discard validation data from over-represented conditions 
in efforts to compensate for small sample size under other conditions, which is clearly not 
ideal. Hence, current protocols tend not to have strict requirements in this area. Again, 
this highlights the importance of transparency, rigor, and acknowledgement of limitations 
during the validation process, as well as the potential utility of subsequent measurements 
for the project (see “True Up”). 
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Bias (systematic error) 

Bias is a measure of whether model predictions are consistently higher or lower than 
measurements (i.e., systematic error). It can be assessed in a general way by computing 
an average error of the model predictions versus the validation data, for example, using an 
unweighted mean of the biases for all individual observations or studies in the validation 
dataset [47]. If there is no systematic error, a model will be just as likely to over- and un-
der-predict given any particular set of inputs, and the calculated bias should be near or at 
zero (Fig. 2a, left and right columns). If instead the bias is larger than a set threshold (e.g., 
the average or “pooled” measurement error [PMU] for the validation data), the model will 
be deemed inaccurate and fail validation.8 An important implication of this approach is  
that a model can perform poorly for individual observations or sites (a few or even all of 
them) as long as it performs well on average (Fig. 2a, lower left panel and right column). 

 Because they are simplifications of reality, all models have some systematic errors due to 
misrepresentations of certain biological processes or biases in their calibration data [50], 
which tend to manifest in certain contexts where these shortcomings become relevant. For 
example, a model may not represent the effects of soil compaction on oxygen diffusion, 
resulting in flawed estimates of soil N

2
O responses to tillage. Identifying and diagnosing 

systematic errors is extremely important because they will lead to over- or underestimates 
that do not cancel out or diminish as projects increase in size in the same way that random 
error will.

Importantly, systematic error will only be apparent for the certain situation(s) where a given 
model shortcoming becomes relevant, highlighting the need for validation data that repre-
sent good coverage of the project domain. Yet even where validation data do span the ranges 
of key variables, assessing bias based on the overall average might obscure model bias in 
specific situations that become relevant for the project predictions (Fig. 2c). To demonstrate 
this point, consider an example of a model that has been validated for predicting changes in 
SOC in a broad manner, using validation data spanning several practice change categories 
(e.g., reduced tillage, cover cropping, organic amendments) and crop functional types (e.g., 
corn, wheat and soy) across the entire U.S. That model might tend to overpredict changes 
in SOC in certain settings, for example, for implementing reduced tillage in pasture sys-
tems, while it might tend to underpredict in other settings, for example, for implementing 
cover cropping in corn-soy systems. Given that both could be included during a very broad 
model validation, the overall bias of the model predictions would be lower than the specific 
bias for reduced tillage in pasture systems in the Southeast. If that model were then used 
for a project focused primarily on reduced tillage in pasture systems in the Southeast, the 
estimated uncertainty of the GHG mitigation claim for that project would be misrepresented 
as unrealistically low (Fig. 2c). 

Given that models commonly perform differently depending on the setting (especially for 
different practice changes, e.g., [51]), failing to evaluate model performance under different 
settings relevant to the project is very likely to give an inaccurate picture of model predic-
tion uncertainty for the project. At the same time, separating validation data into too many 
categories for bias assessment can result in low sample sizes and correspondingly unreliable 
validation statistics, so a practical balance must be reached or other means must be used 
to check for systematic errors. In an effort to protect against undetected bias relevant to the 
project, some protocols require that bias be assessed separately for different combinations 
of key factors such as management practice type and crop functional type in addition to 

8 One way to set a threshold on model accuracy is by requiring the average relative error be smaller than the  
validation data measurement error, sometimes termed the pooled measurement uncertainty (PMU). While this is  
a generally accepted method, its implication is that the less precise the measurements (larger PMU), the more 
likely a model is to be accepted as lacking bias. For this reason, it is important that protocols use other means  
to incentivize measurement precision, which we address below in “Estimating project-level GHG emission  
reductions and associated uncertainty.”
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showing that the validation data are distributed across relevant ranges of some biophysical 
variables (e.g., soil texture) represented in the project domain. These aspects are useful steps 
toward identifying relevant model bias but leave room for improvement and innovation 
which we discuss in our Recommendations for Improved Guidance and Future Research. 

FIGURE 2. 

Bias, goodness of fit, and model prediction error in the context of model validation 
The figure demonstrates the interplay between validation criteria and hypothetical examples of passing or failing validation tests (a). The 1:1 line 
(perfect fit) between measurements and model predictions is shown with a thin gray line, with a shaded gray area representing a hypothetical PMU 
distance from the mean in both directions. The line of best fit for the points is shown as a dotted blue line and light blue error bars are the model 
prediction error. The left and right lower panels of (a) with no bias overall but poor fits could pass the goodness-of-fit test if the model prediction 
error were wider, demonstrated in (b). Unidentified bias in right panels of (a) may impact potential predictions for a project where that bias is more 
relevant than for the validation dataset, shown in (c).
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Precision and model prediction error

Assessing a model’s precision (i.e., random error), in addition to its accuracy (i.e., bias), is 
important for understanding the risk of applying it to a GHG mitigation project. A model 
may be accurate overall but imprecise (Fig. 2a, bottom left), resulting in a high risk of poor 
predictions for a given point. In the context of GHG mitigation projects, the aim of assess-
ing model precision is to come to a generalized estimate of the model prediction error, or 
the uncertainty associated with predictions made for points within the associated project. 
Model prediction error is used in two distinct, but related, ways within mitigation projects. 
First, many registries have a validation criteria associated with model precision, often 
expressed in terms of model coverage (e.g., at least 90% of validation data must fall within 
the 90% predictive interval, see Goodness of Fit). Second, many current protocols impose 
an uncertainty deduction (e.g., reducing the final number of credits generated by a project) 
calculated based on model prediction error. Note that in both these cases it is essential that 
model prediction error account for both accuracy and precision — a model that is internally 
confident (high precision) but systematically biased (low accuracy) should have a high 
model prediction error and incur a large uncertainty penalty.9 Even where average bias is 
lower than a threshold set by a model validation criterion (e.g., the PMU), the bias compo-
nent of the model prediction error should not be ignored. Indeed, when averaging over a 
larger portfolio of sites, independent random errors will tend to cancel out quickly, while 
autocorrelated random errors cancel out slowly (see Appendix B) and systematic errors do 
not cancel at all. 

Model prediction error can be estimated in different ways, but broadly speaking there are 
two general approaches: by assuming that the model’s validation error in one context will 
apply to new predictions in another (validation-based) or by propagating model uncertain-
ties into new predictions (propagation-based). When working with process-based models 
these two approaches often map on to frequentist and Bayesian approaches, respectfully.10 
Validation-based approaches use the difference between model predictions and observa-
tions to compute errors (e.g., root mean square error, RMSE), which can then be used to 
calculate model error intervals. Validation-based approaches typically produce a single fixed 
error estimate — more sophisticated approaches to modeling error across space, time, and 
conditions could be employed but would require the introduction of additional models and 
assumptions. By contrast, propagation-based approaches aim to simulate predictive prob-
ability distributions. In classic statistical modeling the most common sources of error being 
propagated are uncertainties in the model parameters (e.g., confidence interval) and the 
residual error, but process-based modelers may also be propagating the uncertainty in the 
model’s initial conditions (e.g., SOC pool at the start of a simulation) and drivers (e.g., soil 
texture, meteorology), and hierarchical parameter variability (i.e., random effects)[52]. Such 
approaches capture that our confidence in predictions can vary depending on conditions, 
but it is critical that such predictive errors be validated to ensure their predictive coverage is 
not under- or over-confident.

As with accuracy, model prediction error will vary with the context and situation being mod-
eled. For cases where model validation error is used as the sole estimate of model prediction 
error, the reliability of the prediction error estimate for the project depends on how well the 
validation data represents the project, as well as the amount of data available  

9 Note that some current protocols allow the use of an error calculated based on the standard deviation of the  
model residuals, not the RMSE. In this calculation, the mean of the residuals (i.e., the bias) is subtracted off and  
therefore not included in the error. In other words, as long as a model meets the bias validation criterion (e.g., 
mean bias < PMU), there is no penalty for model bias when issuing credits, despite the fact that biases are a riskier 
source of error, in the context of the portfolio effect, since they do not average out with increasing project size.

10 The approaches are not completely exclusive and aspects can be combined. For example, there are numerous 
frequentist approaches to error propagation (e.g., bootstrapping) and error propagation is used in most classic 
statistical models (this is why a regression predictive interval is hourglass-shaped rather than two parallel lines).
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to validate it under different contexts. One of the ways this becomes apparent is when  
comparing the duration of the experiments used in the validation dataset to the duration 
over which project predictions will be made. Validation data for SOC change typically span 
many different durations, from years to over a century. While matching the duration of  
validation data and project predictions might seem ideal, doing so can sometimes severely 
limit the amount of validation data available and be unnecessary because useful informa-
tion on model performance can be gained from validating it over different time periods. That 
said, the uncertainty in model predictions changes over time, so the relationship between 
the modeled duration and the model prediction uncertainty should be taken into account 
and conservative principles applied (see Appendix B). We provide further detail and  
recommendations on this topic below (see Recommendation #3).

Goodness of fit

Once calculated, the model prediction error may be used to further assess model performance 
by comparing predictive probability distributions to observations (goodness of fit). A model 
which passes bias testing may still perform poorly at matching individual observations  
(Fig. 2a, upper row), so checking the discrepancy between model predictions and individual 
observations or studies is a useful exercise and some protocols set thresholds for goodness 
of fit. An example is the coverage requirement that 90% of observations in the validation 
dataset fall within the 90% confidence interval of the corresponding model prediction.11 
Similar to the bias threshold above, the implication is that the model can perform poorly in 
some cases (10% in this example) if it captures the observation the majority of the time (Fig 
2a, upper right). Just as with bias, goodness of fit should ideally be investigated in relation 
to key variables and factors such as management practice categories to identify any specific 
shortcomings of the model that are relevant to the project. We discuss this further and 
provide recommendations below (see Recommendation #5).

Project prediction
Once a model has been validated for use in a given application, it can be used to produce 
predictions of changes in GHG emissions reductions or SOC stock changes for a project. 
Critically, the same model, parameter sets, initialization procedures, and model drivers used 
during validation must be used for project modeling, as a means to ensure that the accuracy 
and precision demonstrated in the validation report apply to the project predictions (we 
recommend that this include the entire modeling workflow, see Recommendation #1  and 
further description of the modeling workflow in Appendix A). Project modeling is typically 
done on a field or point basis, rather than at the landscape scale, and the predictions are 
scaled up to the landscape or project level later on.12 The modeled points may represent 
every field or land unit enrolled in a project, or may represent a smaller sample of those 
units which is more typical for large projects (also known as “aggregated” projects). Where 
dynamic modeled baselines are used, two predictions are produced for each point: the 
project scenario where a practice change has occurred, and the business-as-usual scenario 

11 The implication of requiring a certain proportion of observed values to fall within the corresponding model 
prediction confidence interval is that the less precise the model prediction (larger confidence interval), the more 
likely a model is to be accepted as having a good fit. For this reason, it is important that protocols use other means 
to incentivize model precision, which we address below in “Estimating project-level GHG emission reductions and 
associated uncertainty.”

12 Though landscape scale models such as Landscape-DNDC are being developed, see https://ldndc.imk-ifu.kit.
edu/

https://ldndc.imk-ifu.kit.edu/
https://ldndc.imk-ifu.kit.edu/
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representing the counterfactual baseline to which project emissions are compared.13 Each of 
these must be run with the same model inputs except those representing the management 
changes made. The input data used to drive the model can be forecast to obtain predictions 
for the future,  but this introduces additional uncertainty that is not accounted for during the 
model validation and would need to be added to the total uncertainty in the predictions (see 
discussion on error propagation in the above section on Precision and Model Prediction 
Error). Alternatively, project predictions can be made by looking backward, typically in short 
time increments to allow for quantification of outcomes (and any payments) on convenient 
timescales. For example, after the first year of a project, observed input data can be used to 
produce predictions that are more reliable than forecasts because they are based on direct 
observations, which have much lower uncertainty.

Modeling workflow
Each of the steps described above requires running the model, and that in itself includes 
several steps that we refer to here as the “modeling workflow.” While workflows may differ 
across models or projects, examples of common steps include initialization (which may 
include spin-up, see Appendix A: Model Initialization), prediction and post-processing  
(Appendix A, Fig. A1). At each step in the project when the model is run (calibration, valida-
tion, and project modeling, Fig. 1), these modeling workflow steps are performed. However, 
they could be performed in different ways, creating inconsistencies within the project. For 
example, if a different initialization method is used during validation versus project mod-
eling, the validation modeling procedure would not fully represent the project modeling 
procedure and the model may perform differently for each of those applications. The same 
issue applies to data curation for model drivers (e.g., source of meteorological drivers, 
algorithms for gap-filling and down-scaling, soil texture, management history) and model 
parameters, though only the latter (model parameter constancy) is explicitly discussed in 
most current protocols. Critically, if one understood the implications of certain deviations in 
model workflow steps between project steps for predictions of GHG differences, one could 
make strategic choices to maximize crediting outcomes (i.e., “gaming,” Box 1). An example 
of this would be using input data with lower uncertainty during model validation (e.g., 
site-level meteorology and soils data) than is available for project prediction (e.g., gridded 
soils and meteorology), and thus validating a lower model prediction error and bias than is 
achievable in practice. Changes in workflow could also be less intentional, such as a bug in 
pre- or post-processing that differs between validation and project prediction. Therefore,  
we see value in recognizing that the validation applies not only to a model version and  
parameter set, but also to the entire modeling workflow (see Recommendation #1). We 
provide further detail on key steps in the modeling workflow and a case study of differing 
approaches to model initialization in Appendix A. 

Estimating project-level outcomes and associated uncertainty
Once project locations have been modeled individually, and predictions of the change in 
GHG emissions from the baseline for each point have been calculated, the predictions must 
be combined and scaled to come up with GHG mitigation estimates for the full project. 
Given that these points may represent only a portion of the project, scaling to the full project 
introduces additional uncertainty (scaling error or “sample error” in some protocols). To-
gether, the scaling error combines with the observation/measurement errors and the model 
prediction error to produce the precision of estimated GHG emission reductions or SOC 
stock changes for the project. 

13 Different approaches to quantifying the counterfactual baseline scenario exist, including static measured 
baselines, dynamic measured baselines, and dynamic modeled baselines. We recommend dynamic baselines, and 
generally assume the use of dynamic modeled baselines in this report.
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Depending on the application, the estimate of precision for the project may be used to  
calculate an uncertainty deduction to the final credits generated or allowable GHG emis-
sions reduction or removal claim. This represents an extremely important opportunity to 
penalize imprecision and inaccuracy and guide toward more precise quantification in  
general, which may be lacking in other project steps. Remember that during model valida-
tion, there may be benefits to having lower measurement precision (less likely to identify 
model bias when the criterion for identifying excessive bias is whether it is larger than 
the measurement error, Fig. 2a), and higher model prediction error (more likely to pass 
goodness-of-fit testing when the criterion is that measurement values fall within the model 
prediction error bounds, Fig. 2b), so precision is not effectively encouraged or incentivized 
by that process. However, when total uncertainty (including observation error, model pre-
diction error, and scaling error) leads to a penalty, precision is encouraged.

Given that the approach for estimating uncertainty for a given project has big implications 
for the ultimate claims or payments allowable under a protocol, it has been the subject  
of much scrutiny and debate. Ultimately, to be “reliable,” the uncertainty estimate must  
not omit any relevant sources of uncertainty, and it must be properly propagated based  
on spatial and temporal considerations (e.g., non-independence). The latter aspect  
encompasses some of the biggest concerns among the scientific community with regards  
to how uncertainty has been treated in GHG accounting and MMRV thus far [53], and are 
thus the focus of this discussion, with related recommendations provided below (see  
Recommendation #2).

Combining errors in a robust way to produce a reliable estimate or project-level uncertainty 
may not be straightforward and requires consideration of the relationships between  
measured and modeled points for a given project. Specifically, how do model errors relate 
and can modeled points be considered independent? The answer to this question deter-
mines how the errors combine and has especially important implications for projects that 
rely on large numbers of modeled points to decrease their relative uncertainty deductions 
(i.e., the portfolio effect). Current modeling guidance for agricultural GHG mitigation 
projects lacks in-depth discussion of these issues. We therefore provide an overview of these 
considerations in Appendix B to support our recommendations (see Recommendation #4) 
for improvements to future guidance and areas for research on this topic.

True-up with direct project measurements
We have thus far highlighted the difficulties in obtaining rich validation datasets that can 
be used to rigorously test model performance and identify systematic errors across broad 
ranges of biophysical conditions. Further, even where validation data exist, they may have 
shortcomings that lead them to be imperfect representations of conditions within projects. 
One key shortcoming is that much of the existing validation data comes from research/
experimental farms where treatments have been imposed and maintained in ways that may 
not be consistent with how real working farms are managed. Similarly, validation data from 
small, plot-scale experiments or strip trials may not be fully representative of effects that 
would manifest if practices were carried out at the larger field-scale. For trace gas fluxes, 
much existing validation data comes from chamber or other snapshot-like methods that (1) 
do not collect data consistently through time and are very likely to miss hot moments, and 
(2) are limited in their spatial coverage, likely missing hot spots, both of which have been 
shown to represent significant portions of total fluxes [54–56]. Added to this are the compli-
cations of adapting data from studies to match the needs for running the model; variations 
and mismatches in depth increments and time increments, missing input data, and other 
inconsistencies are common. These are only some examples of how available validation 
data may fall short of representing the actual effect sizes that will be realized when practice 
changes are implemented in projects on working farms under different biophysical conditions. 
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Given the shortage of appropriate validation data across geographies and biophysical 
contexts and the fact that there will always be unknown unknowns regarding mismatches 
between validation sites and the project area, validation with independent data can not 
guarantee accurate representation of model performance and uncertainty for a project. 
Because of this, there is general agreement that some form of direct measurement of the 
project after its initiation to “true-up” model predictions is necessary to instill confidence in 
project predictions. Beyond this however, the exact aim and best use of these measurements 
is subject of debate. Direct measurements of the project area could be used to (1) verify or 
“ground truth” the model predictions, or (2) improve the model for continued use in the 
project, for example, by performing an updated validation to obtain new uncertainty esti-
mates for the project predictions, by recalibrating the model to improve subsequent predic-
tions, or by using the measurements to reinitialize the model to base future predictions from 
a more realistic starting point. Some combination of (1) and (2) is also possible. The debate 
inevitably depends on a few considerations, including the reliability of measurements ver-
sus model predictions and the sampling effort needed to support different approaches (with 
additional considerations for the handling of the baseline scenario).

First, the idea of using direct measurements to ground truth model predictions or update 
a model introduces considerations of measurement quality, specifically accuracy and 
precision. It is commonly assumed that measurements are better reflections of the truth 
than model predictions, yet this may not be the case if the measurements are biased. Many 
common mistakes in soil sampling, soil sample preprocessing, and SOC measurement can 
contribute to measurement bias, thereby making measurements unreliable. Measurements 
may also be highly variable (imprecise), but this is less problematic so long as that error is 
known and accounted for. That said, measurement precision relates directly to the ability to 
detect changes over time, with lower precision leading to higher sampling requirements or 
failure to detect changes where they do exist. When it comes to reconciling measurements 
and model predictions, it is not prudent to assume that one or the other is an inherently 
better representation of the truth, and rather the uncertainties in each should be rigorous-
ly accounted for. Assuming that a biased measurement is the truth is dangerous, just as 
assuming a biased model prediction is the truth is dangerous. Overall, the utility of true-up 
measurements depends on their quality (bias and precision), and how consistently the 
measurements are collected through time. 

The second consideration is the sampling effort and design required to carry out any given 
approach, but it is especially pertinent to ground-truthing GHG emission and SOC stock 
changes over time at the project scale. For SOC, detecting change over time is difficult due 
to its high spatial heterogeneity combined with its slow rate of change (low signal-to-noise 
ratio) leading many to dismiss altogether the possibility of ground-truthing model predic-
tions with measurements, especially over timescales of less than 10 years. However, recent 
research shows that change detection for SOC is possible given dense enough sampling 
over large enough numbers of sites [25]. Yet, because detecting change over time requires 
repeated measurements performed in a comparable manner, projects that did not execute 
high quality sampling at the onset are limited in terms of what they can do with repeated 
measurements later on. Further, some current protocols limit the number of sites that can 
be revisited for SOC sampling in an effort to randomize which sites are visited (and avoid 
gaming, e.g., by ensuring exceptionally large SOC gains at farms that will be sampled). 
Finally, direct measurements are costly, and the value they may add to the project must be 
balanced with the cost of collecting them. These issues complicate the possibility of using 
direct measurements to ground truth model predictions, which is problematic given the 
importance of direct measurements and ground-truthing for instilling confidence in project 
predictions. This represents a major area in need of consensus: should true-up measure-
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ments be used to ground truth model predictions, and how can they be designed to best 
accomplish that purpose? If ground-truthing is identified as a critical need, protocols should 
be designed and updated with change detection in mind and to encourage appropriate 
sampling campaigns with repeated measurements over time.

In addition to ground-truthing model predictions, direct measurements of the project area 
could be used to improve a model’s ability to make predictions for the project, and/or up-
date model validations to better represent the model’s accuracy and precision for the project 
(including baseline scenarios if applicable), and/or to re-initialize the model for  
subsequent predictions (Fig. 3). One of these or different combinations could be achieved, 
for example, using cross-validation approaches that improve the model calibration and 
validate model predictions simultaneously. The choice of which approach is ideal for a given 
project depends on several factors, including (1) the project design, especially the total 
number of sites, number of sites sampled, and whether there are repeated measurements 
over time; (2) the labor required to carry out a particular approach; (3) the anticipated 
reduction in uncertainty of the model predictions for the project (which would require 
revalidation); and (4) whether the nature of the measurements allow for revalidation. Im-
portantly, some approaches are more reliant on having repeated measurements at the same 
site than others, for example, revalidation is most likely to require measurements of changes 
over time, whereas recalibration or re-initialization could be done for a single time point.14 
It’s currently unclear whether recalibrating, re-initializing, or a combination will lead to larg-
er reductions in model prediction error and project-level uncertainty, but common sense 
among modelers suggests that the more updates (i.e., states and parameters) that can be 
made to the model based on sound data, the more the uncertainty will be reduced. There-
fore, where repeated measurements are available, it may be advantageous to both recali-
brate and revalidate the model to obtain an updated, more relevant (and possibly smaller), 
project-level uncertainty estimate. However, revalidation using project measurements could 
produce a higher project-level uncertainty estimate, in which case it may not  
be financially advantageous for project developers to do so, highlighting the potential 
importance of requirements in this area to maintain rigor and consistency across projects. 
Finally, regardless of whether measurements are repeated or not, it may be advantageous to 
use new measurements to initialize the model (re-initialize where they are resampled sites, 
initialize if they are sites measured for the first time; see Appendix A). However, re-initial-
ization may prove problematic from a crediting perspective and may not be allowed under 
some protocols. State data assimilation could be a viable alternative (see Appendix A) but is 
generally not covered in current protocols.

14 The need for repeated measurements also depends on what protocol is being followed as some may not require 
calibration or validation on changes over time, though we argue they should.
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It must be noted that in the strictest sense, project outcomes, specifically the difference 
between what happened under the project versus what would have happened without an 
intervention (counterfactual baseline), can never actually be directly verified or “trued-up” 
because a counterfactual cannot be directly measured.15 That said, measurements can be 
designed to approximate counterfactual baselines, e.g., by measuring sets of sites that are 
analogous to project sites aside from the changes in management spurred by the project. 
While it can be difficult to find analogs that match project fields exactly (the selection of 
baseline sites would be subject to the same potential shortcomings/mismatch as other 
validation sites discussed above), baselines could be measured at large (i.e., regional) scales 
and used in general ways, for example, to confirm whether directional trends in baseline 
GHGs and SOC predicted for the project area are correct. Another approach to measuring 
counterfactual baselines is to split individual fields into treatment (practice change) and 
control (business-as-usual) plots, though this can be onerous for the farmer and may also 
introduce bias, for example, if a non-random subset of farmers is willing to perform this 
type of splitting. Importantly, either of these potential measured baseline approaches would 
require strict guidance on the selection of baselines sites and/or regions to prevent gaming. 
Regardless of the approach taken with the measurement and modeling during the true-up, 
there is always the shortcoming that one can never know exactly how accurate the baseline 
predictions are or were. However, the amount of uncertainty this adds to a given project 
outcome can be managed in more or less reliable ways. In general, if a model is being 
recalibrated based on additional measurements from the project, it would be best practice 
not only to make updated predictions for project scenarios, but also for baseline scenarios. 
In theory, a model that is being improved in a general way (i.e., not overfitted via site-by-site 
calibration but over many sites) based on measurements should perform better for multiple 
types of scenarios, including baseline scenarios.

15 For this reason, some consider the term “true-up” to be a misnomer. 

FIGURE 3. 

Examples of possible true-up procedures
Many approaches to the true-up are possible. Two conceptual examples are demonstrated conceptually here: re-initialize and run model for follow-
ing period or recalibrate and re-run from the start of the project (i.e., time 0). In this hypothetical scenario, SOC measurements are being taken at 
the start of the project and repeated every five years.
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Recommendations for Improved 
Guidance and Future Research
1. Validation of the modeling workflow

The main purpose of model validation is to ensure a modeling approach is appropriate, 
accurate, and reliable for use in making predictions for a given project. Critically, it is not 
only the model structure and parameter set that are being validated, but the entire modeling 
workflow used to produce the model predictions that are then compared to observations. 
This includes data curation, model set-up, initialization, and any data assimilation methods 
that might be used. Two runs of the same model with the same parameter set but differing 
modeling workflows (e.g., initialization method) can give different predictions. While it 
may not be practical for protocols to prescribe exact approaches to any of these modeling 
steps, it is extremely important that they be documented in the validation report and kept as 
consistent as possible between the validation and project modeling. Otherwise, differences 
in modeling workflow between validation and project modeling will introduce additional 
uncertainty and present opportunities for gaming. 

2. Validation data domain/coverage

The data used for validation ultimately determines the context for which the model can 
be validated, including the applicable geographies, biophysical environments, land man-
agement practices, and spatial and temporal extents.  Ideally, datasets used for evaluation 
should span the full ranges of relevant input variables (soil texture, pH, aridity index, etc.) 
within the project domain, with relevance determined based on the process and geography 
being modeled. Yet it can be difficult or impossible to find validation data that match the 
project exactly in all of these aspects, and while this may not preclude model validation for 
use in a particular project, any mismatch between the character of the validation dataset 
and the project introduces additional uncertainty in the model predictions for the project. 
Additional research is needed to determine best practices for how to address this added 
uncertainty. Further, the extent of the validation data in terms of spatial and temporal ranges 
determines the level of rigor with which spatial and temporal relationships in model errors 
can be assessed, and consequently the assumptions that are justifiable during uncertainty 
estimation. Current protocols tend to focus on the “domain of applicability” as combina-
tions of geography (e.g., land resource regions), biophysical properties (e.g., crop functional 
groups and soil texture) and land management practices, yet the additional aspects of space 
and time (discussed below) are very important and have begun to receive more attention, 
including in a recent peer-reviewed publication [28] and model validation report [57]. 
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Considering time, validation data should ideally cover the maximum timescale of the 
project predictions or longer. This is because in general a model’s variance will increase 
with time, so any estimate of model prediction error based on a shorter time period than the 
project application will likely be an underestimate. For example, if the time scale of inter-
est is five years and the model assumes a constant variance (a common assumption and 
the default for some protocols), and that model is then validated based on data with time 
periods of < 5 years, the resulting variance will very likely be too low. In general, this should 
be achievable given that project prediction timescales are typically short (e.g., one to five 
years) relative to the duration of the long-term experiments available to be used for valida-
tion. However, where longer-term data are unavailable or where protocols use long project 
periods (e.g., 40 years), it may not be possible. In such cases, changes in model prediction 
error over time should be modeled (Recommendation #3), and any extrapolations of such 
time-dependent relationships into the future should be done in a conservative manner to 
ensure model prediction error is not underestimated. 

Beyond covering the maximum timescale of the project application, there are benefits to 
additional temporal and spatial coverage of validation data.  If validation data include a 
good representation of measurements on timescales similar to the project application, it 
allows for more informed modeling of temporal behavior (e.g., heteroskedasticity) of model 
prediction error, which will likely allow for tighter prediction intervals on shorter timescales. 
However, this is not guaranteed and the exact relationship of model error to time should not 
be assumed without formal analysis (which requires data at relevant timescales).  Further, 
the spatial scale of validation data is important for understanding spatial relationships in 
model errors. Ideally, validation data should include points at the same spatial scale as what 
is being modeled for the project (minimum and maximum distances), including the sub-
field scale as appropriate. Where validation data do not provide adequate sample size across 
different temporal and spatial scales to allow these analyses, assumptions about model 
prediction error over time and about the independence of model error across space, should 
be conservative. We expand on this idea in the following two recommendations.

3. Accounting for changes in model prediction error over time 

Given that GHG mitigation projects are modeled over time, temporal relationships in the 
data are very relevant for estimating the model prediction error. We include more in-depth 
discussion of these issues in Appendix B, and focus here on heteroskedasticity (i.e., change 
in variance) over time. It is important to consider the way this is handled during modeling 
and uncertainty assessment because the approach can cause bias in the model prediction 
error calculation. 

The most basic assumption (and the default in some protocols) is that model prediction 
error is constant over time, in which case the mean model prediction error over all of the 
timescales represented in the validation data could be used to represent model prediction 
error at any timescale for the project period (e.g., one year, five years, 10 years, etc.). A 
further assumption of some protocols is that this approach is conservative because model 
variance tends to increase with time, so using a mean that includes longer durations to 
represent error at shorter durations is likely an overestimate of the true error. However, this 
is not necessarily so. In reality, whether the mean model prediction error is a conservative 
estimate for a given time period depends on the nature of the relationship between model 
prediction error and time (Fig. 4 and see Appendix B). For example, the relationship could 
be concave or convex, each of which would give different estimates of model prediction 
error at shorter timescales (even with the same estimate at long timescales; Fig. 4). This 
may represent a relatively small issue for uncertainty accounting in most soil GHG and 
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SOC projects, but nonetheless should not be ignored, especially where non-conservative 
assumptions could be seen as gaming (Box 1). It is true that because model prediction error 
does tend to increase with time, project developers may benefit from modeling it as such 
rather than assuming it’s constant, but reliably determining the nature of that increase re-
quires adequate validation data spread across relevant timescales. Overall, current protocols 
generally do not include sufficient guidance or requirements on how to model variances 
over time or on what timescale the validation data must be relative to the application, which 
we see as an oversight. 

FIGURE 4.  

The relationship between model error and time dictates whether common assumptions  
are conservative
Example of potential relationships between model error (represented here as model prediction-measured value) and time for hypothetical  
validation data. The bottom panels show the difference between the mean error and the modeled error (line of best fit) at 10 years. Note that  
the mean error is the same in both of the bottom plots. 
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To better deal with model error over time, protocols could require plots of error versus time 
and/or absolute error versus time to assess the degree of heteroskedasticity and whether 
the error pattern is concave or convex along with a histogram showing the distribution 
of timescales of the validation measurements. A trained expert reviewer could use these 
plots to assess whether any claimed relationship between model prediction error and time 
is reasonable and conservative, especially if thresholds could be set to consistently guide 
their decision. Going a step further to model the error as a function of time would be better 
practice but may be too cumbersome for protocols to require it. 

4. Spatial dependence of model errors

Current guidance for estimating project-level uncertainty often operates under the assump-
tion that model errors are uncorrelated with the measurement values and are independent 
across samples. If this assumption is true, there is a strong expectation that errors will cancel 
out across many independent modeled points, and the relative uncertainty of the sum of 
modeled results for many independent points will be less than the mean relative uncertainty 
for a single point (see Appendix B). However, if model errors are not independent, they will 
cancel out much more slowly (if they are perfectly correlated they will not cancel at all). 
Many factors can contribute to correlated measurement and model errors and they are often 
spatially structured (e.g., at the field or farm level), manifesting as spatial autocorrelation 
of model errors. While assuming spatial independence of modeled points is beneficial for 
project developers, doing so without clear supporting evidence goes against both the princi-
ple of conservatism (Box 1) and standard practice in economic portfolio theory (regardless 
of the  sampling design).16,17 Rather, the most conservative approach, in the absence of an 
analysis of spatial autocorrelations, would be to assume perfectly correlated model errors 
(r=1) for modeled points when scaling up to the project level. In practice, however, the latter 
may be overly conservative and could render some projects economically unviable. 

One potential solution would be to investigate spatial autocorrelation of model errors (e.g., 
based on the validation data or true-up measurements) to determine the minimum distance 
at which points can reasonably be assumed to be independent, and then formally account 
for correlated errors at distances below this threshold. Further explanation of this approach 
is provided in Appendix B. Alternatively (or in addition), spatial correlation of model errors 
could be investigated in a more general way using benchmarking datasets with control 
and treatment pairs, potentially on a regional basis given that relationships of model errors 
will depend on the spatial patterns in key controlling factors such as soil type, climate, and 
topography. Such studies could be used to inform on “best practice” assumptions of spatial 
relationships in a general way across protocols. While some studies have investigated spatial 
relationships in relevant environmental variables (e.g., SOC and bulk density; see Table B1 
and [58]) with implications for modeling, we see a clear need for direct research on this topic 
and demonstration of practical approaches to assessing spatial relationships of model errors 
and the impacts of different assumptions on uncertainty calculations at various scales. 

16 Non-independence is especially likely for points within the same field, given likely overlaps in input data,  
similarities in soil types and management activities, etc. Additional discussion of this issue is provided in  
Appendix B.

17 Importantly, even where measurements and model points are chosen based on random sampling designs  
(e.g., simple or stratified random sampling), spatial autocorrelation could still exist and should be assessed  
regardless of sampling design.
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5. Context-dependence of systematic error

One of the pervasive concerns over using process-based models in GHG mitigation proj-
ects is whether the models are systematically overestimating GHG emissions reductions or 
removals (Box 1). The only way to address this is by rigorously identifying and diagnosing 
systematic model errors, and ensuring that there isn’t systematic overprediction for any giv-
en project (Fig. 2). In practice, this is impossible to guarantee unless every part of a project is 
measured and modeled, which obviously can not be done. Therefore, instilling confidence 
that claimed project GHG emission reductions or removals are not overestimates requires 
thoughtful attention to potential sources of systematic model error and whether these might 
manifest differently in the project than during validation.

Some current protocols attempt to safeguard against likely sources of systematic model error 
by requiring bias be assessed separately for combinations of practice change category, crop 
functional type, and outcome (i.e., GHG or SOC stock). But within these categories, sys-
tematic error (e.g., at certain soil textures) could still exist and potentially go undiagnosed. 
Slicing the data into more and more categories to check for bias in each is impractical, 
because one could end up with seemingly endless combinations of key variables to divide 
the data by, and there is unlikely to be enough existing data to populate many such catego-
ries. While it does make sense to separate validation data according to outcome (i.e., GHG or 
SOC stock) and management practice because these generally represent different processes, 
it may be possible to use more innovative approaches that borrow strength across crop 
functional types, soil properties, climatic regions, and other key variables to assess systemat-
ic errors across continuous gradients rather than categorical groupings. For example, model 
bias (and also precision or goodness of fit) could be assessed using statistical approaches 
such as generalized linear/additive modeling or machine learning (e.g., using a Gaussian 
Process emulator/surrogate to model bias as a function of key covariates [59]). 

Even the most sophisticated approaches can not guard against undiagnosed systemic error 
due to lack of relevant validation data. For example, a model might consistently underpre-
dict winter N

2
O emissions [e.g., 40], but this might not be apparent if the validation data 

do not contain many wintertime measurements. This issue also applies to time scales of 
measurements, for example, a model could be unbiased at longer time periods but be 
systematically biased at one year, which would not be apparent from a validation based on 
longer-term measurements. To a large extent, the potential for undiagnosed systematic error 
is simply the reality of current limitations in modeling capabilities and knowledge, which 
can only be overcome with additional research and model evaluation as more and better 
data become available. Yet it also highlights the potential issue of cherry-picking of valida-
tion data to avoid identification of model shortcomings, a major potential area for gaming 
(Box 1) which links to our final recommendation below. Regardless, this is an issue which 
deserves close attention from project developers, registries, and independent reviewers. 
Project developers must be encouraged to exercise due diligence and take reasonable steps 
to follow best practices, and independent model reviewers must be given clear instructions 
around systematic bias to ensure consistent interpretation and scrutinization of model 
validation reports.
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6. Benchmark validation data

Right now, project developers are tasked with amassing their own datasets for model 
calibration and validation. In many ways, this is logical because the data must be relevant to 
the application, which the project developer is determining. However, this opens the door to 
gaming via cherry-picking of data (see above) or using the same data or sites for calibration 
and validation (independence of calibration and validation data is a requirement of proto-
cols, but in practice this can be difficult to enforce). Further, it may preclude full transparen-
cy if project developers are unwilling or unable (e.g., for farmer privacy reasons) to share the 
complete details of the calibration and validation datasets, which has been common thus far. 

One potential way to ameliorate some of these concerns is through a benchmarking plat-
form that could be used to validate models against a common dataset. Doing so would help 
to increase transparency in the process and improve confidence in the performance and 
utility of different models. Such a platform could be designed to allow for splitting of the 
dataset by relevant conditions, for example, allowing a project focused in pastures in the 
Southeastern U.S. to validate against data relevant to those systems in terms of climate, plant 
types, soil types, etc. Further, such a platform could be designed to protect data privacy by 
allowing interaction without direct access to the data (i.e., a confidential consortium frame-
work), greatly increasing both the potential amount of data and the diversity of their sources.

While the benefits of a hypothetical benchmarking platform are clear, the difficulties in 
creating one are also very apparent. First and foremost, it isn’t clear who should spearhead 
the effort, host the platform or maintain it, all of which are monumental tasks that require 
funding, expertise, and dedicated personnel. It could potentially be led by a nonprofit, a 
public/private partnership or consortium, a registry, government, or international organiza-
tion.18 It is also not clear how to effectively encourage the sharing of existing data for use on 
the platform, especially where private datasets are seen as financial investments and assets. 
Finally, such a database would ideally need to be continually expanded and maintained as 
new data became available, and to support expansion into new applications and regions. 
Despite these challenges, we see this as a major priority to enable transparency, increase 
confidence, and generally advance process-based model use in soil GHG emission reduc-
tion and removal projects moving forward.  

18 Several efforts in this area are beginning or ongoing, see https://www.soilcarbonsolutionscenter.com/ecosys-
tem-modeling-and-data-consortium; https://www.nasaharvest.org/initiatives/sustainable-and-regenerative-agricul-
ture-sara; and https://cchange.research.iastate.edu/

https://www.soilcarbonsolutionscenter.com/ecosystem-modeling-and-data-consortium
https://www.soilcarbonsolutionscenter.com/ecosystem-modeling-and-data-consortium
https://www.nasaharvest.org/initiatives/sustainable-and-regenerative-agriculture-sara
https://www.nasaharvest.org/initiatives/sustainable-and-regenerative-agriculture-sara
https://cchange.research.iastate.edu/
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Summary table of recommendations

Topic/Concept Recommendation Included in Current Guidance? Relevant Section

Modeling Workflow 
Consistency  
(initialization,  
pre/post-processing, 
etc.)

The approach used should be clearly 
documented and performed consistently 
across the project steps, with any  
deviations justified 

Research is needed to understand  
how and why specific deviations  
lead to meaningful differences in  
model predictions 

Unclear (may be included in  
validation review and/or  
verification process, but not explicit 
in public-facing guidance)

The Project Steps:  
Modeling workflow

Recommendation #1

Calibration Calibration data should include repeated 
measurements over the time period  
of interest for the intended application

No, but shortcomings of the  
calibration will ideally be apparent 
during validation. Further, if true-up 
measurements are used to recalibrate 
the model, this recommendation 
will be met at that time.

The Project Steps:  
Calibration

Parameter Set The same parameter set used in  
the validation report must be used 
throughout the project

Yes The Project Steps:  
Project Prediction

Validation Data Validation data must be independent 
from what was used to calibrate the 
model, including for cross-validation 
methods (i.e., within folds)

Yes, though it can be difficult to  
fully confirm

The Project Steps:  
Validation data

Recommendation #6

Datasets used for evaluation should 
span the full ranges of relevant input 
variables (soil texture, pH, aridity index, 
etc.) within the project domain, with  
relevance determined based on the  
process and geography being modeled

Yes, but needs clarification  
(e.g. for which variables, how  
is coverage defined, etc.)

The Project Steps: Valida-
tion data

Recommendation #2

Recommendation #5

Validation data should include  
timescales that match or exceed the 
timescale of the project predictions

Where the above is not possible,  
assumptions about how model error 
relates to time should be clearly 
 justified and thoroughly reviewed

Unclear Appendix 2

Recommendation #2

Recommendation #3

Ideally, validation data should include 
points at the same spatial scale as what 
is being modeled for the project, including 
the sub-field scale if projects intend to 
model sub-field scale heterogeneity. 

No Appendix 2

Recommendation #2

Recommendation #4

Validation At a minimum, models must be  
evaluated separately by management 
practice type and outcome  
(i.e., GHG or SOC stock)

Yes, and some require additional 
splitting by crop functional type. 
However, exceptions to this  
requirement (i.e. less granular  
validation) have also been allowed.

Recommendation #5
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Topic/Concept Recommendation Included in Current Guidance? Relevant Section

Model Prediction 
Error

Model prediction error should account 
for both accuracy and precision, including 
when used to test goodness-of-fit and 
calculate uncertainty deductions

Changes in model prediction error over 
time should be modeled where possible, 
and unjustified assumptions avoided. 
What constitutes a conservative approach 
can not be generalized based on current 
knowledge.

Research is needed to determine  
whether generalized guidance for  
modeling changed in model prediction 
error over time is possible

No Appendix 2

Recommendation #3

Project-level  
Uncertainty

If spatial correlation of errors is not  
diagnosed, errors should not be  
assumed to be independent

If spatial correlation of errors is 
diagnosed, correlated errors must be 
accounted for in calculations, and where 
modeled points are closer/ farther than 
the minimum/maximum distance tested, 
they can not be assumed independent

Research is needed to better understand 
spatial dependence of model errors  
for these applications, identify practical 
approaches for assessment, and  
demonstrate the impacts of different 
assumptions on uncertainty calculations 

No. While spatial correlation is  
mentioned, no requirements  
for diagnosing it are given,  
and independence is a pervasive 
assumption.

Appendix 2

Recommendation #4

True-up Where repeated measurements are  
available, the model should be recalibrated 
and revalidated to obtain an updated 
project-level uncertainty estimate

If ground-truthing is identified as a 
critical need, protocols should require 
resampling aimed at detecting and  
verifying changes in GHG emissions and 
SOC stocks over time (i.e. repeated  
measurements with adequate precision)

No. While some require  
measurement of a proportion of  
the project after initiation (e.g.  
after 5 years), the details of how 
the measurements are to be  
used are unclear. Further, some 
protocols forbid remeasurement of 
a certain proportion of points  
within the project.

The Project Steps:  
True-up
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Background on Select Modeling 
Workflow Components
Model initialization
Here we define initialization to mean any method of establishing initial conditions of the 
model (including states). Initialization approaches can vary in several aspects, including 
whether and how a spin-up period is employed to inform or adjust initial values or con-
ditions, whether and how measured data are used to set state variables [60], and whether 
or not equilibrium conditions are assumed. Differences in model structures and behavior 
mean that an effective initialization approach for one model may not work well for another, 
and even within a given model, the same initialization approach may work better for certain 
sites and scenarios than others. 

Despite differences in initialization methods being commonplace [37, 61], existing protocols 
and model guidance documents typically do not cover initialization. This is problematic, for 
example, if one approach to model initialization is used during calibration and validation 
and a different approach is used when making project predictions. In the case of a carbon 
crediting project, it will no longer be clear whether the application will qualitatively meet the 
required accuracy and precision criteria, nor whether the correct uncertainty deduction is 
being applied. More generally, the relatively slow nature of soil carbon pool change means 
that initial condition uncertainty tends not to decline rapidly over time. Models will also be 
sensitive to how other model pools are initialized, such as soil moisture, soil nutrients, and 
vegetation carbon pools, though guidelines tend to provide even less information on how 
these pools should be initialized and updated (i.e., “true-up”) than they do for soil carbon.19

Model initialization is especially crucial in the context of agricultural GHG mitigation  
projects because it can influence whether model-predicted GHGs and SOC increase or 
decrease in the early years of a project [62–64]. For example, incorrect assumptions during 
initialization can produce fallacious trends in SOC stocks as the state variables drift back 
towards the model’s equilibrium [65]. In practice, this means that different initialization 
methods might generate meaningful differences in modeled SOC outcomes, particularly 
for the short-term projections (e.g., one to five years) that are used in many GHG mitigation 
projects, which can be highly sensitive to transient fluctuations post-initialization. 

Here, we use the example of initialization of SOC pools to describe some important  
differences between approaches, including a demonstration of how results can differ  
depending on the approach used. 

19 Note however, that for a model that simulates these types of highly temporally variables with short carryover 
effects of no more than a few years, such as ecosystem models like DayCent and DNDC, inaccuracies in their pool 
values after several years would suggest that the model is not well calibrated.

APPENDIX A
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Spin-up and equilibrium assumptions

Spin-up is a process of allowing a model to run over a period of time to reach a stable or 
“realistic” state prior to simulating the period of interest (e.g., the beginning of an experi-
mental treatment or GHG mitigation project; Fig. A1). Spin-ups are frequently a part of the 
initialization process as they are used to set the model up to run well during the period of 
interest and may be used to inform initial pool sizes and/or the relative allocation of total 
SOC among different SOC pools. The choice of whether or how to use a spin-up depends 
primarily on the model; for some a spin-up is uncommon because it does not typically  
improve model performance, while for others a spin-up is considered a prerequisite to 
running the model [30]. When used, a spin-up can help to overcome transient and unstable 
model dynamics, which result when model pools do not match the model’s tendency for 
that system, so that they do not affect the model run during the period of interest. For exam-
ple, a spin-up for a model representation of a grassland system might entail beginning with 
no SOC — which is obviously not realistic — and running the model with typical climatic 
conditions and plant C inputs until a steady-state (presumably more realistic) SOC level 
is reached. Then, a treatment change can be imposed in the model from a more realistic 
starting point in terms of system dynamics. A spin-up can also be used to put the model on 
the correct directional trajectory prior to the start of the period of interest. For example, if a 
system was recently converted from grassland to cropland, SOC stocks will be decreasing 
through time. As this trajectory will impact the trajectories of other model pools and fluxes, 
representing it in a spin-up may improve later model predictions. 

FIGURE A1. 

Different methods of running models may invoke spin-up periods or equilibrium assumptions
Representation of major steps in the modeling workflow (gray boxes) in relation to a conceptualization of a model run. Arbitrary time spans were 
chosen here; spin-up periods can be thousands of years long. In practice, each step can be attempted, evaluated, and iterated multiple times 
before a final approach is chosen and applied to the final model run in which all the steps are performed. Error propagation is not shown and is 
typically disregarded; if error is propagated through the spin-up process, the initial condition distribution can be very large.

Spin-up Prediction

Short-term predictions
(e.g., for �ve year project)

Initialization

Start of the 
period of interest
(initial state)

Equilibrium

Equilibrium

Equilibrium

Historical
land use change 
(e.g., grassland 
conversion)

Beginning 
of spin-up

Model pools
respond to 
modeled �uxes
(e.g., plant inputs
to SOC)

0
Years relative to project start

M
od

el
 p

oo
l s

iz
e

+30-150



Environmental Defense Fund | edf.org 35

If a spin-up is used, the length of time represented during a spin-up is at the modeler’s 
discretion, and several factors might influence the decision. Some may choose to run a rel-
atively long (i.e., 1000s of years) spin-up to ensure model stability (e.g., [66]), while in other 
cases such a long spin-up may not be necessary to achieve acceptable model performance, 
or a lack of computing power or historical data might dissuade the modeler from running a 
long spin-up. Designing a spin-up raises the additional questions of whether the assumed 
scenario and model inputs during the spin-up period accurately reflect the history of the 
site, and whether the system (or pools of interest) can or should be allowed (or “forced”) to 
reach equilibrium. Most approaches to model spin-up tend not account for the impact of 
these uncertainties in model parameters, drivers, scenarios, and process error, and those 
that explicitly propagate such uncertainties often produce extremely large initial condition 
uncertainties [67].  The shortcoming of unknown past conditions during the spin-up period, 
which may lead to inaccurate initial pool sizes, can be compensated for to some extent by 
initializing the model with direct site measurements (see Using Measurements to Set Initial 
States). For the assumption of equilibrium, there is considerable disagreement among 
modelers as to the best approach.  

For long-term SOC simulations, modelers often assume that SOC pools must be in equi-
librium or “steady-state” prior to application of experimental treatments or management 
changes [61, 68, 69]. But many argue this assumption is unrealistic because of widespread 
changes in climate, land use, agricultural practices, crop cultivars, and soil biota [70–72]. 
Soils that have been disturbed recently, or even centuries ago, are often in a transient state 
(rather than an equilibrium state) due to very slow rates of change of slower-cycling model 
pools (e.g., “passive SOM” in DAYCENT). Indeed, on multi-centennial timescales, historical 
climate is itself constantly changing rather than being at steady-state. Despite this, equilib-
rium conditions are often assumed at the outset by the modeler due to absence of requisite 
measured information to prove otherwise [73, 74], and its usefulness in avoiding spurious, 
transient model behavior.  Assuming equilibrium when it is not the case in nature can result 
in (1) model calibration outcomes that overestimate decay of the slow pool and (2) simulat-
ed equilibrium situations that overestimate stocks of recently disturbed sites. However, clear 
evidence for or against equilibrium assumptions is elusive, and there are mixed opinions 
and evidence for any one method over another. For example, in a recent inter-model com-
parison study, models that started with a 5 to 10 year spin-up could do as well or better than 
those that were forced through equilibrium to simulate SOC dynamics in long-term bare 
fallow soils [30]. Another study on relatively undisturbed grassland sites showed that the 
assumption of equilibrium did not significantly impact model results [75].

 Given that equilibrium assumptions are rarely, if ever, met, we caution against approaches 
that assume equilibrium for the reasons above. However, for some models a spin-up period 
run to equilibrium may be the best method of attaining more accurate model outputs,  
especially over shorter model prediction intervals. If equilibrium is assumed, so long as the 
same assumptions are used in the modeling done across all project steps including model 
validation, we do not see the assumption as reason enough to discount a particular approach.
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Using measurements to set initial states (initialize pools)

When modeling to predict soil carbon stock changes, some of the most important targets 
of initialization are the sizes of the SOC pools, including the relative distribution of total 
SOC amongst model pools with different dynamics (e.g., active, slow, and passive pools in 
DAYCENT), as this has major impacts on model behavior [63]. 20 Modelers can use direct 
measurements to initialize model pools at the start of the modeling period, and this is con-
sidered by many to be the best approach, as it may improve the accuracy of later predictions. 
Ideally, specific measurements corresponding to each SOC pool (rather than just total SOC) 
would be used to most accurately represent the starting distribution of total SOC among 
model pools. However, most common SOC models employ conceptual pools that don’t cor-
respond robustly to measurable entities, and the best way to use measurements to initialize 
model pools is not clear, especially across different models. There have been many efforts to 
understand whether and how soil samples can be partitioned (or “fractionated”) to produce 
measured proxies for conceptual model pools [71, 76–83] with some successes for specific 
models, but it is not always clear that doing so improves model outcomes [60, 84–86]. Given 
this, there has been a push for the development of new SOM models and updated versions 
of existing models based on measurable fractions (i.e., model pools and their dynamics are 
based on measurable entities rather than theoretical concepts) as a means to overcome this 
issue, and increase model-measurement compatibility for all aspects of the model workflow 
from initialization to evaluation [87–89], though these have not yet been deployed for large-
scale agricultural GHG mitigation projects. Further, soil organic matter fractionation is costly 
and time-intensive (though improvements in high-throughput quantification methods such 
as spectroscopy are being made), meaning that obtaining the necessary fraction data may 
not be feasible in many cases. 

Given these issues, measurements for initialization are often limited to just total SOC and 
estimates of its distribution amongst its constituent pools must be determined by other 
means. One way is to spin-up the model until its SOC pools add to match an initial mea-
surement of total SOC. This can be done in two ways: (1) the spin-up can be designed so that 
conditions are right for SOC pools to reach equilibrium levels that match the measurements 
(e.g., by altering the rate of plant C inputs; [90]) or (2) the total SOC after the spin-up can be 
manually adjusted to match the measurement (multiplying all SOC pools by the same scal-
ing factor) under “relaxed equilibrium assumptions” [62, 64]. Doing so results in a distribu-
tion of the total C among the pools that matches model predictions for the spin-up scenario. 
The use of spin-ups in any capacity raises the issues posed above of accuracy of the spin-up 
conditions and assumptions of equilibrium, which are likely to represent shortcomings of 
the approach.

Alternatively, the initial distribution of SOC amongst model pools can be set manually using 
defaults based on site attributes such as coarse land use history (e.g., long-term cropland 
versus long-term grassland) [91]) but doing so would ignore effects of any recent changes 
in land use or specific site attributes (e.g., soil texture) that might cause deviations in the 
distribution of SOC from the default values. 

Finally, iterative data assimilation approaches could be used to initialize SOC pools by 
statistically fusing ensemble model predictions with observations [92, 93]. This bears some 
similarity to the spin-up approaches described above but explicitly accounts for both model 
and data uncertainties, rather than treating what is usually a sparse sample of field measure-
ments as “truth” and updates unobserved pools based on the strength of their correlation 
with observed pools. Assimilation approaches don’t require an equilibrium assumption and 
would be particularly valuable for cases where repeat measurements are present.

20 A common distinction is made between the term “pool,” which is used to describe conceptual entities in a 
modeled context, while other terms may be used for measured entities. For example, for SOC, “fraction” is used to 
describe measured entities (which may be related to modeled pools).
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The above approaches assume that some direct measurements of total SOC or SOC fractions 
(proxies of model pools) are available to the modeler for initialization purposes, however, 
this may not always be the case. Without direct measurements, the modeler has several 
options for estimating SOC, but the associated uncertainty might be significantly higher 
than if direct measurements are used (and it must be accounted for). One option would be 
to acquire estimates of total SOC from an empirical model product such as SSURGO [94]. 
However, given that SOC can vary significantly across sites with similar characteristics, 
these estimates might be quite far from the true values [95]. In such cases the initialization 
uncertainty should be inflated to account for this, for example, through spatial statistical 
models that formally account for interpolation uncertainty (e.g., quantile regression [96, 97], 
kriging). Alternatively, a spin-up simulation could be run without any adjustment based 
on measurements, resulting in predictions of SOC pool values based on historical rates of 
plant inputs to SOC and climate, though the resulting initialization uncertainty might be 
relatively large [67]. If measurements are a future possibility, spatial statistical models could 
be used to construct informative Bayesian priors that are updated using site-specific field 
data, which could reduce initialization uncertainty over field sampling alone or allow for a 
comparable level uncertainty with reduced sampling effort.

In theory, if a model is designed well (with realistic processes accounting for climate, 
decomposition, plant inputs, soil texture, etc.), and the input data is relatively accurate for 
the period of interest, then even if the model starts at an unrealistically low or high SOC level 
it will self-adjust appropriately through time to reach more realistic levels. That said, many 
argue equilibrium spin-up assumptions are rarely, if ever, met in nature [71, 72] as discussed 
above (Spin-up and Equilibrium Assumptions). Hence, wherever possible, we recommend 
the use of site-specific measurements of total SOC or SOC fractions for initialization of any 
project aimed at predicting changes in SOC and note that some current protocols require 
this. Further, because SOC is a major control on CH

4
 and N

2
O fluxes to and from soil, we 

maintain this recommendation for any project aimed at quantifying those fluxes.

Beyond recommending that measurements be used, more specific recommendations on 
ideal initialization approaches are not necessarily warranted at this point in time. There is 
currently a lack of scientific consensus on best practices, and thus there is a need for further 
analysis, development, and innovation. We do not yet know how different initialization 
approaches affect the accuracy of model predictions across sites, especially in the context 
of agricultural GHG project MMRV (i.e., for baseline-project comparisons, short timescales, 
etc.). That said, we can recommend that regardless of the initialization approach taken, it 
should be documented clearly and kept consistent across the project steps (to the extent 
possible, with any deviations clearly explained and justified), because it is clear that ini-
tialization approaches can affect outcomes. Figure A2 shows an example of modeling the 
same site using different initialization approaches using data from a continuous wheat plot 
at Swift Current Research and Development Centre in Saskatchewan as described by He et 
al., [98]. The predicted SOC stocks can be very different depending on the assumptions and 
approaches taken when initializing the model. However, if the same assumptions are made 
for both the practice change and baseline scenario, the difference in outcomes (i.e., practice 
change minus baseline) between different initialization approaches is often relatively small, 
on the order of 1-5 Mg ha-1 over 20 years (data not shown but available upon request; see 
also [94]). That said, it is not zero and even small differences could have large implications 
for the economic feasibility of a carbon crediting project, for example. Further, differences 
could very well be larger for different sites, especially those with more responsive plant 
communities and faster-changing SOC stocks (note that the Swift Current, Saskatchewan 
site shown here has a fairly dry climate). Future research could explore the effects of initial-
ization approaches on modeled GHG emission reductions at additional sites, and with  
additional models, which could help to inform guidance on best practices and help to  
support rigorous review of model validation reports.
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Data assimilation
Iterative data assimilation is an approach to model initialization and/or calibration that 
is used operationally in many disciplines (e.g., weather forecasting, navigation), but has 
yet to have much application in GHG MMRV outside of a research context. In an iterative 
data assimilation system, models are used to make probabilistic forecasts from one point 
in time into the future, and then statistically update (i.e., analysis) and re-forecast as new 
observations are encountered.21 During the analysis step most data assimilation systems 
are designed to update model state variables (i.e., initial conditions) but some variants will 
also update model parameters or both parameters and states. Prior to model verification, 
the advantages of iterative data assimilation are related to computational efficiency and the 
ability to distinguish model process error from data observation error, but otherwise should 
give very similar parameter estimates as other methods (including the potential to include 
hierarchical variability). The real distinction with iterative methods is their ability to seam-
lessly continue to update states and parameters as one shifts from calibration to application.  
For modeled state variables, this provides a statistically optimal way of achieving true-up 
(e.g., updating SOC pools based on project verification measurements). On the param-
eter side, assimilation allows model parameters to continue to “learn” from verification 
measurements, including the potential to learn about local parameter deviations from 

21 Data assimilation has a forecast-analysis cycle. “Reanalysis” is used to describe a data product generated by 
a post-hoc run of a data assimilation system using cleaned data and observed drivers (i.e., it is a re-run of the 
analysis system).

FIGURE A2. 

Initialization approaches vary and affect final predictions
Demonstration of differences in SOC trajectories introduced by deviations in initialization approaches using the DayCent model. Black circles are 
field measurements with standard error bars. Colored lines are different model runs, each using a different initialization approach with variations 
in spin-up, manual adjustment of initial SOC pools, and cropping history. Such deviations in initialization approaches are common in practice 
depending on information available to the modeler (e.g., cropping history), which approach produces the best model performance after iterative 
attempts and evaluation, and other factors.
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the broader across-site calibration. While some protocols do allow the use of assimilation 
systems in concept, and such approaches have been used successfully in multiple re-
gional- to global-scale land data assimilation systems, to our knowledge they have not yet 
been adopted in practice. The ability of assimilation systems to update model parameters 
post-validation (current protocols are currently unclear in their guidance on this) also raises 
questions about what additional validation requirements should be placed on such systems 
to ensure that the underlying workflows continue to meet that market’s accuracy and preci-
sion requirements.22 

22 It is our understanding that state data assimilation might be permitted in some current protocols, but the  
guidance is vague and we have not seen it done under any existing protocols in practice. However, the guidance 
seems clear, as currently written, that parameter data assimilation would require the generation of a new  
validation report and independent model expert (IME) review, which can be a cumbersome and prohibitive process.  
A potentially valuable clarification is whether the assimilation algorithms could be verified in a way that would 
permit parameter learning without triggering a new review.
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Spatial and Temporal  
Considerations for Model  
Prediction Error and  
Project-level Uncertainty
When scaling model predictions in space and time to come to estimates at the project level 
for a given project period, the project-level uncertainty must be estimated. Doing so requires 
appropriate handling of model prediction error, which introduces considerations of rela-
tionships between errors of different modeled points. Here we focus on spatial and temporal 
autocorrelation and temporal heteroscedasticity of model prediction error. If errors in 
measurement or model errors are correlated, they will not cancel as quickly as uncorrelated 
errors during spatial upscaling, and the resulting uncertainty estimate will be higher than 
if the correlation were ignored. Measurement errors, including errors in change estimates 
based on two measurements in time, can also be autocorrelated, and this possibility should 
be accounted for when handling soil sample data, for example, during any initial sampling 
or true-up. If errors are spatially autocorrelated, more measurements across space would 
be needed to reduce relative uncertainty to the same level as when errors are uncorrelated. 
Importantly, even where measurements and model points are chosen based on random 
sampling designs (e.g., simple or stratified random sampling), spatial autocorrelation could 
still exist and should be assessed regardless of sampling design.

Spatial dependence of model errors
Typical SOC models are designed for the point scale, representing biogeochemical processes 
as either two-dimensional (time, depth) or as depth-averaged time-series. In practice, the 
point scale can be considered equatable to the small plot scale (in the order of 101~103 m2) 
or agricultural management research experimental area (i.e., the mean of multiple repli-
cate plots within an agronomic field experiment interspersed over 103 to 106 m2) since data 
collected at these scales are commonly used for calibration and validation of these models. 
The means for input data and modeled results are assumed to be representative for these 
practical point scales even though the plot or small experiment areas are not assumed to be 
completely homogenous. Modeling for a GHG mitigation project bigger than this scale (e.g., 
multiple fields or farms) requires upscaling the modeled results for the point scale to the 
scale of a project. A given project might involve many thousands or even millions of hectares 
and all land parcels within the project might not be contiguous. 

APPENDIX B
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The effect that spatial upscaling will have on application modeling uncertainty depends on 
how errors for modeled points within the project interact (i.e., their spatial dependence). If 
the errors of the model results (e.g., for SOC stock change) at different points in the project 
are independent (no spatial dependence), then they will often cancel out to some extent 
due to random variation in the uncertainty as the number of modeled points increases. In 
this case, if the predicted SOC stock change is overestimated at one point (positive error), 
there is an equal chance that it will be underestimated (negative error) at another point. 
Hence, there will be a strong chance that some of the errors will cancel out across many 
independent modeled points, and the relative uncertainty of the sum of modeled results 
for many independent points will be less than the mean relative uncertainty for a single 
point. Further, the relative uncertainty of the sum will decrease as the number of modeled 
points in the sum or project increases (this is true whether or not the points are modeled as 
independent, but if they are modeled as independent it will decrease more quickly)[52]. For 
example, if the independent points are an unbiased sample of size n from a population with 
a constant uncorrelated error s, the uncertainty of the mean will rapidly decrease towards 
zero as s/√n. Developers of large projects with many enrolled fields rely heavily on this 
cancellation of errors to reduce both their overall uncertainty penalties and their exposure 
to risk through what is known as the portfolio effect:

where w is the weight associated with a site (typically it’s fractional area relative to the whole 
project), s2 is the site-specific variance, and r

ij
 is the correlation between sites i and j. The 

second term accounts for spatial correlations, and is a standard part of portfolio theory, but 
has often been dropped from GHG accounting projects.

In contrast, if the errors are systematic in space (i.e., dependent, correlated, or non-random), 
then the error for different points would tend to be similar, and during upscaling (if done 
correctly) errors would cancel out much more slowly. Indeed, if spatial errors are perfectly 
correlated (r=1), then spatial errors won’t cancel out at all, leading to much greater uncer-
tainty about GHG sequestration. 

In relation to model errors, spatial autocorrelation is a measure of this degree of spatial 
dependence of model errors and in practice is often much closer to 1 than to 0.  Spatial 
autocorrelation in a model’s final predictions can arise from spatial autocorrelation in any 
(or all) of the uncertainties going into the modeling process, whether that be autocorrelated 
uncertainties in meteorological drivers, soil properties, carbon pool initial conditions, mod-
el parameter uncertainty (mean) and variability (random effects), model process error, and 
model structural assumptions. Indeed, in most cases all of these uncertainties have positive 
spatial autocorrelation. In practice it is not uncommon to attribute most (if not all) of the 
spatial error to the model residuals, though this can lead to some degree of scaling error 
(especially at larger scales) when the scales of autocorrelation are different for processes or 
have different spatial patterns.

Given the potentially large spatial scale of autocorrelation in key input variables in  
biogeochemical and ecosystem models used to predict soil GHG dynamics (e.g., climate, 
soil properties), it is inadvisable to assume without evidence that model errors will be  
independent across any scale, and therefore model errors should be assumed to be  
correlated until proven otherwise.
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Using a semivariogram to investigate spatial autocorrelation of model errors

One means of providing such evidence would be to investigate validation data for signs of 
spatial autocorrelation using a semivariogram approach during the validation process. A 
semivariogram plots semivariance (mean squared difference in response variable for any 
two points) as a function of the pairwise distance between locations. Typically, points closer 
together are more similar to each other (i.e., non-independent), and thus have lower semi-
variance, and then semivariance increases to an asymptote determined by the background 
(uncorrelated) variance. In this case we are interested in knowing when either the residual 
(validation and/or project) or predictive model errors are autocorrelated.

For the sake of the current discussion the semivariogram helps us determine three key 
thresholds: the range, the minimum valid distance, and the maximum valid distance  
(Fig. B1). The range is the distance beyond which errors can be treated as independent (i.e., 
the distance where the semivariogram asymptotes). At distances shorter than the range, 
the pairwise covariances between points should be modeled explicitly, usually by fitting a 
parametric model to the semivariogram, as is described in textbooks on spatial statistics, 
geostatistics, or kriging [99]. This will primarily impact the estimated uncertainty around  
the sum or mean when combining predictions within or across sites.

FIGURE B1. 

A semivariogram approach to investigate spatial autocorrelation of model errors 
Conceptualization of a semivariogram and its key properties. The nugget is the value of the semivariance when extrapolated to distance 0, which 
gives an estimate of fine-scale heterogeneity. The sill is the value of the semivariance at the asymptote, which is related to the “background” 
variance.  The range is the pairwise distance at which the sill is reached, which is interpreted as the distance at which errors can be treated as 
independent. Maximum and minimum valid distances are defined in the main text.
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The second key threshold is the minimum pairwise distance over which the semivariogram 
is valid (i.e., minimum valid distance). For example, if a validation dataset was well-sepa-
rated in space, such that the mean minimum distance between points was 100 km, then it 
is not possible to calculate semivariance over distances shorter than this, and thus it is not 
possible to know how autocorrelated errors at shorter distances might be. Note also that 
adding in two validation points that are 10 m apart to a dataset that is otherwise 100 km 
apart does not permit one to make inferences about autocorrelation on scales between 10 m 
and 100 km. Validation data should ideally provide adequate sample sizes across different 
spatial scales to allow for reasonably well-constrained estimates of semivariance and basic 
assessments of stationarity and isotropy (i.e., that the semivariogram itself isn’t dependent 
on location or direction). Fortunately, the number of pairwise distances among points in-
creases quadratically with the number of points, so the number of data points required need 
not be huge. Given that spatial autocorrelation can only be checked for a minimum distance 
of the sites included in the validation data, it is not possible to assume that any points within 
the project that are closer than that minimum distance would not have autocorrelated 
errors. Where modeled points in the project are closer than the minimum distance of the 
validation data, they must be assumed to be perfectly correlated unless proven otherwise. 
This would be true even if no autocorrelation was detected at scales larger than the mini-
mum distance threshold.  When modeled points are larger than that minimum distance but 
closer than the range, then a formal accounting of spatially autocorrelated error should be 
included for those points in uncertainty calculations.

The third relevant threshold is the maximum pairwise distance over which a semivariogram 
is valid (i.e., maximum valid distance), which is directly analogous to the minimum distance 
threshold but is determined by the upper end of the pairwise distances. This threshold 
determines the scale of the “background” variance that the semivariogram converges to. 
While this threshold is often less of an issue, as existing protocols already require validation 
datasets to span the range of observed variability, it is nonetheless worth checking, especial-
ly if the data appears to be clustered, as estimates of the range are sensitive to the choice of 
maximum distance. For example, if a dataset sampled soils only within a single 1 km2 block, 
one might conclude that the range of the model error is on the order of tens to hundreds of 
meters. One could not then apply this model over larger distances and argue that errors are 
independent, both because the model has not been validated for such extrapolations and 
because the model errors have not been shown to be independent when confronted with 
larger-scale environmental gradients (e.g., all points within the original 1 km2 block may be 
systematically biased [i.e., possess a shared spatial error] relative to these larger gradients). 

This raises a key point when interpreting Table B1, below: The ranges presented are limited 
by the maximum valid distances of those analyses and it cannot be assumed that errors at 
larger scales are uncorrelated. That model errors may be correlated at much larger scales 
than the maximum valid distance in Table B1 highlights the need for further research on 
error correlation at larger spatial scales. The relevant ranges in these cases may very likely 
be hundreds of kilometers rather than hundreds of meters. Further, it is currently unclear 
whether spatial error should be assessed separately for different contexts, (e.g., practice x re-
gion) or in a generalized way (e.g., for all of the continental U.S.). The answer may depend on 
how exactly the model was calibrated and validated, and the topic deserves further research.

Finally, it is worth noting that autocorrelated errors will not always result in a higher total 
uncertainty estimate. While positively autocorrelated errors do increase the uncertainty 
when calculating a sum, average, or spatial integral, they decrease the uncertainty when 
calculating a difference (e.g., change detection; [94]). For example, if the modeled error for 
two near-by sites is positively autocorrelated, that means that if one site is above or below 
average then the other is likely to be as well. In calculating the difference between sites, 
part of this shared error does cancel out, and indeed cancels out faster than independent 



Environmental Defense Fund | edf.org 44

errors, with the magnitude of this effect proportional to the strength of the correlation. This 
concept also applies to temporal autocorrelation and detecting change over time. That said, 
in typical agricultural soil GHG projects the aim is to sum over space to estimate total project 
outcomes, rather than to detect change over space (change detection is generally limited 
to single sites or fields, which are then summed over space). Further, measurements over 
time may be subtracted, as when calculating changes in SOC stocks, or summed, as when 
calculating total emissions of N

2
O or CH

4
.

TABLE B1. 

Examples of estimated spatial dependence of SOC and bulk density 
Note that the statistics calculated in these studies are limited by the maximum valid distances of the studies, and it therefore cannot be assumed 
that spatial autocorrelation does not exist beyond these distances (i.e., extrapolation to larger spatial gradients is unwarranted without direct 
investigation of those spatial scales). Further note that spatial relationships in SOC stocks are related but not equivalent to spatial relationships 
in the changes of SOC stocks over time relative to a baseline, which is the focus of soil carbon removal projects. Properties and typical units are 
stocks (Mg C ha-1), concentration (conc., g C g-1 soil), and bulk density (BD, g cm-3). The Nugget:Sill ratio gives an indication of the relative amount 
of fine-scale heterogeneity that is unaccounted for. 

Soil  
Property

Land  
Use Location Nugget:Sill 

Ratio Range (m) Max Valid  
Distance (m) Reference

SOC stocks  
(0-20 cm)

improved pasture Florida, USA 0.18 135 350 Xiong et al. [100]

BD (topsoil,  
2-5-7.5 cm)

Cropland Nottinghamshire, 
England

0.18 7 20 Lark et al. [101]

BD (subsoil,  
32.5-37.5 cm)

0.72 27

SOC conc., topsoil 0.57 43

SOC conc., subsoil 0.18 204

SOC stocks, topsoil 0.22 28

SOC stocks, subsoil 0.48 31

SOC mass, topsoil Cropland Manitoba,  
Canada

0.06 120 400 Bergstrom et al. [102]

SOC mass, A horizon 0.17 130

BD Grassland, site 1 Thuringia,  
Germany

0.76 131 200 Don et al. [103]

SOC conc. 0.22 199

SOC stocks 0.24 514

BD Grassland, site 2 0.58 247

SOC conc. 0.62 233

SOC stocks 0.47 86

SOC conc. Average of 10 farms

 

New South 
Wales,  
Australia, 2013

0.47 215 1000 Singh and Whelan 
[104]

SOC conc. 2015 0.70 238
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Soil  
Property

Land  
Use Location Nugget:Sill 

Ratio Range (m) Max Valid  
Distance (m) Reference

SOC conc. Cropland Maryland, USA 0.66 102 400 Lengnick [105]

SOC conc.  
(0-20 cm)

Watershed with 74%  
cultivated land 
(remainder grazing 
land, forest, and 
bush)

Ethiopia 0 381 375-490 Addise et al. [106]

 

SOC conc.  
(20-40 cm)

0 270

SOC stocks  
(0-20 cm)

0.16 276

SOC stocks  
(20-40 cm)

0 394

Spatial relationships at small scales

When modeling GHG responses in a single field or farm, it is possible to model multiple 
points within that field or farm, rather than a single point assumed to be representative of 
the entire area, in an attempt to capture fine-scale heterogeneity. For a project developer, 
one benefit of doing so might be increasing the number of modeled points with relatively 
small increases in labor of soil sampling (e.g., for initialization purposes) or input data 
gathering (e.g., through farmer surveys). This has the potential advantage of capturing and 
explaining some of the variability attributed to random sampling, thus reducing overall 
residual error and hence the project-level uncertainty estimate (and uncertainty deduc-
tion if applicable). However, there is good reason to believe that (1) process-based models 
calibrated at larger scales may not be effective at predicting smaller-scale heterogeneity (i.e., 
< 102 to 103 m) and (2) points within the same field or farm should not be treated as spatially 
independent points for uncertainty purposes. 

The first point highlights a shortcoming of many common validation procedures which do 
not test the ability of models to capture fine-scale heterogeneity. In part, this shortcoming 
is due to a lack of data to rigorously test model performance at the sub-field scale. Ideally, 
validation data should include points at the same spatial scale as what is being modeled for 
the project, including the sub-field scale as appropriate. As noted in the previous section on 
spatial autocorrelation, where this is not possible, modeled points closer than the minimum 
valid distance of the validation data should conservatively be treated as having perfectly 
correlated model error (r=1). 

The second point is discussed in more detail in the above Spatial dependence of model  
errors section. Expanding on that discussion, this sort of fine-scale modeling needs to 
account for spatially correlated errors in models at the fine scale, which includes not only 
residual errors but also shared parameter and driver/input errors (it is very common to use 
climate, soil property or other input data from spatial databases with coarse resolutions).  
If modeling protocols do not account for this sort of fine-scale spatial separation or this sort 
of more sophisticated modeling, it is impossible to verify that models are predicting this 
fine-scale heterogeneity correctly or accounting for the relevant uncertainties correctly. 
Again, the solution to this issue is that correlated errors must be accounted for in calcula-
tions of within-site heterogeneity, or modeled points must not be closer than the minimum 
validated distance. or other input data from spatial databases with coarse resolutions). If 
modeling protocols do not account for this sort of fine-scale spatial separation or this sort  
of more sophisticated modeling, it is impossible to verify that models are predicting this 
fine-scale heterogeneity correctly or accounting for the relevant uncertainties correctly. 
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Again, the solution to this issue is that correlated errors must be accounted for in calcula-
tions of within-site heterogeneity, or modeled points must not be closer than the minimum  
validated distance.

Temporal relationships of errors
Given that GHG mitigation projects are modeled over time, temporal relationships in the 
data and model uncertainties are also relevant. Errors for a given point in space may display 
autocorrelation and/or heteroskedasticity (i.e., change in variance) over time.

Different models handle prediction variance over time differently or can be set to handle 
it in different ways. For example, in a random walk model with an independent process 
error, the variance of the predictions increases linearly with time (i.e., RMSE increases as 
the square root of time). If the model has internal stability, the increase is slower than linear 
(and in some cases will converge to a steady state), while for unstable/chaotic models the 
increase is faster than linear. The presence of autocorrelation in the model’s process error 
will also affect the rate at which the predictive uncertainty grows, with positive autocorrela-
tion increasing the rate and negative autocorrelation decreasing it. For example, a random 
walk model with a perfectly positive autocorrelation (r=1) in error would have a constant 
additive bias added each time step, causing the error to grow linearly (variance to increase 
quadratically), while with a perfect negative autocorrelation (r=-1) the error at each time 
point would change sign and cancel out the error from the previous time point.

  It is important to consider the way that the relationship between model prediction error 
and time is handled during modeling and uncertainty assessment because the approach 
can cause bias in the uncertainty calculation. Consider a hypothetical example of a project 
with a time period of interest of five years, using a model validated against data covering a 
mix of time spans that bracket five years (e.g., 1-15 years, mean = five, median = three). Some 
current guidance suggests that because the reporting period is “shorter than the median 
length of experiments in the validation dataset, a single mixed-duration estimate of model 
error is a conservative estimate of model prediction error” (Climate Action Reserve Soil 
Enrichment Protocol, Verra VM0042). Due to Jensen’s Inequality, the magnitude and direc-
tion of the bias in the calculation of model error for five-year predictions will depend on the 
curvature of the relationship between uncertainty and time (concave versus convex, Fig. 4). 
In most cases, the accumulation of model prediction error over time is concave (e.g., a ran-
dom walk standard deviation grows as the square root of time) in which case the mean error 
< error at the mean time.  In this example, if the relationship of RMSE versus time is concave 
and the mean time interval matches the period of interest (i.e., five years), then assuming a 
constant mean error will lead to an underestimated error (non-conservative). The use of the 
median (rather than mean) time introduces further complication for determining conserva-
tism, because it requires knowing not only whether the error function is convex or concave, 
but also whether the sample of time points are left or right skewed. In this example the me-
dian time < mean time, so the error at the median time is lower than at the mean time, but it 
is not clear whether it is conservative or not. Furthermore, if the samples are skewed in the 
other direction (median time > mean time) then there is even higher potential for underesti-
mation of the error. Determining what the mean or median sample period would need to be 
in order to be conservative depends on the exact curvature and how the sample points are 
distributed in time (variance, skew) and in ways that makes it difficult to make generalized 
predictions. Therefore, research is needed to determine whether generalizations regarding 
conservatism in handling model prediction error over time may be practical (e.g., if patterns 
in model prediction error through time are relatively consistent across applications). 
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