Getting Nanotechnology Right the First Time

Presentation to the National Research Council
Committee to Review the National Nanotechnology Initiative
25 March 2005

Richard A. Denison, Ph.D.
Senior Scientist
Health Program

e

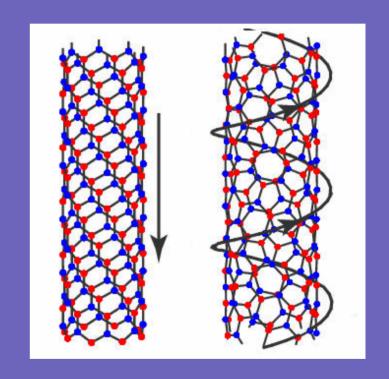
ENVIRONMENTAL DEFENSE

finding the ways that work

Introduction to Environmental Defense

- Founded in 1967
- 250 scientists, economists, attorneys and other professionals in 8 offices
 - Most PhDs of any environmental advocacy organization
- Funded by foundations, benefactors and 400,000 members
- Longstanding involvement, expertise in partnership approaches to promote environmental technologies and manage chemical risks
 - Catalyzed launch of US High Production Volume (HPV)
 Chemical Challenge program

At the nano-scale, materials act differently



Tiny changes make big differences

Novel Properties Will Bring Breakthroughs

...But May Also Bring Unexpected Risks: Preliminary studies raise concerns

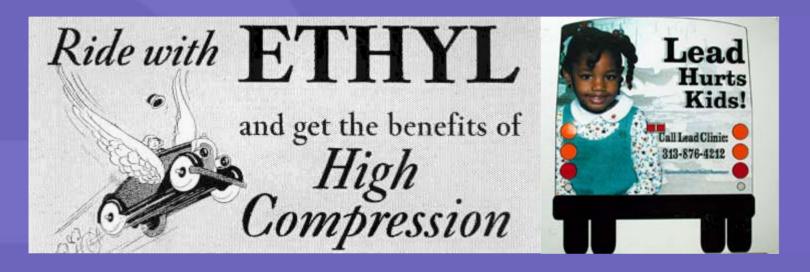
Mobility

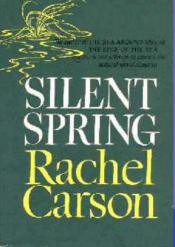
- Through groundwater?
- Bioaccumulation?
- Across blood-brain barrier?
- Across placenta?

Toxicity

- Aquatic toxicity?
- Cytotoxicity?
- Lung granulomas and fibrosis?
- Brain lipid peroxidation?

...Even to Everyday Products Available Now



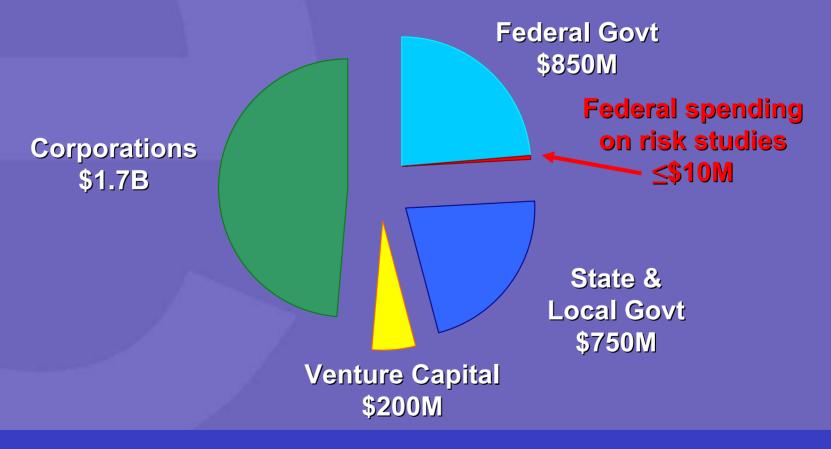


Why does this sound familiar?

Questions about nanotoxicity

- What is the fate of nanomaterials over their full lifecycle (production, use, disposal/ release)?
- Will nanoparticles build up over time?
- How will living organisms/systems respond if exposures occur?
- How mobile and persistent are these materials in the environment and organisms?
- Are their transformation (e.g., degradation) products more or less toxic?

Getting it right the first time


- Possibly transformative technology
- Potential significant downside
- Still at early stage of development

Four Keys to Responsible Nanotechnology Development

- Increase government risk research
- Develop clear government regulatory policies
- Implement proactive risk management standards
- Engage stakeholders in setting agenda

Increase Funding for Risk Studies

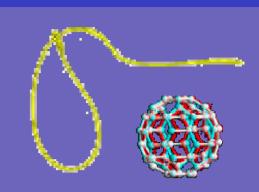
Annual U.S. Spending on Nanotech R&D

Total = \$3.5B

Is Our Current Regulatory System Up to the Task?

Breadth of applications

- Consumer products
- Personal care/cosmetics
- Medical applications
- Coatings
- Electronics
- Catalysts


Multitude of federal agencies

- Occupational Safety and Health Administration (OSHA)
- Environmental Protection Agency (EPA)
- Food and Drug Administration (FDA)
- Consumer Product Safety Commission (CPSC)

EPA: TSCA Complexities / Limitations

- When are nanomaterials "new" chemicals?
- Existing exemptions (e.g., weight threshold)
- No up-front data requirements for new chemicals
- Significant burden on EPA to require testing
- Poor basis for evaluating risk in absence of data on specific types of nanomaterials
- Nomenclature confusion

Close Regulatory "Nano-Loopholes"

- Many gaps in current regulations create uncertainty
 - Uncertainty about applicability
 - Few requirements for pre-market testing
 - Authority to respond to problems largely afterthe-fact

- Clear, protective regulations needed to set level playing field
 - Clarify, enhance authorities as needed
 - Adequate scrutiny before marketing
 - Apply use restrictions where necessary

Proactive Risk Identification & Management

- Acknowledge that nanomaterials are different
 - Hazards cannot be inferred from bulk materials
- Commit to up-front research and testing
 - Sufficient testing to identify risks prior to commercialization
- Take a responsible approach to managing risks
 - Risks addressed across the lifecycle
 - Protective interim risk management in advance of testing
 - Appropriate risk management in response to testing, monitoring
- Embrace transparency
 - Public disclosure of all risk-related information
 - Labeling, accurate MSDS disclosures

Responsible Interim Risk Management Approaches

- Interim worker safety steps
 - Assume toxicity until shown otherwise
 - Worker training, industrial hygiene, PPE
 - Workplace, worker health monitoring
 - Wastes treated as hazardous materials
- Interim environmental safety steps
 - Restrict dispersive uses until hazard and exposure/fate data available
 - Manufacturers assess and disclose lifecycle risks in advance of commercialization
 - Release/environmental monitoring

What should NSET be doing?

- Ensure more federal research dollars are spent on health & environmental implications of nanotechnology
 - At least 10-fold increase, to \$100 million/yr
- Oversee assessment of federal agency jurisdictions and regulatory authorities
 - Identify changes needed to address gaps, uncertainties
 - May require enhancing function/authority of NSET
- Actively engage stakeholders beyond industry, gov't.
 - Beyond "top-down" public education, risk communication
 - Acknowledge value of perspective, relevant expertise
 - Involve stakeholders in setting agenda

What can this Committee do?

- Request detailed figures on what is being spent on risk-related research across the various NNI agencies
 - Review adequacy relative to the tasks at hand
- Draw on expertise of the NRC Board on Env'l. Studies and Toxicology and other experts to review ongoing research and research plans
- Identify gaps in existing statutory authorities and regulatory programs
 - Call for creation of new authorities and programs as needed.
- Facilitate active engagement of stakeholders to help inform and guide the NNI and its research agenda
 - Incorporate interests and concerns of workers, consumers, health and environmental advocates