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1.1 Introduction

This appendix summarises the progress of employing the Breathe London monitoring data together
with regulated reference measurements to investigate the application of machine learning tools
to extract information with a view to quantifying measurement uncertainty. The Breathe London
project generates substantial data from the instrumentation deployed, and the analysis requires a
comparison against the established reference methods. The first task was to develop programs to
extract the various datasets being employed from different providers and to store them in a stan-
dardised format for further processing. This data curation allowed us to audit the data, establishing
errors in the AQMesh data and the AirView cars as well as monitor any variances in the data sets
caused by conditions such as fog/extreme temperatures.

This includes writing a program to parse the raw AirView data files from the high quality refer-
ence grade instruments installed in the mobile platforms (Google AirView cars), programs to commu-
nicate with and download data from the Applications Program Interfaces (APIs) provided by both Air
Monitors (AQMesh sensor systems) and Imperial College London (formerly King’s College London)
(London Air Quality Network), and a program that automatically downloads CSV files from the DE-
FRA website, which contains the air quality data from the Automatic Urban Rural Network (AURN).
This part of the development has had to overcome significant challenges including the accommo-
dation of different pollutant concentration units from the different database sources, different file
formats, and the incorporation of data flags to describe the data ratification status.

The successful completion of this task now means that data processing and downloading of pol-
lutant measurements from various sources can now be performed with improvements in speed that
are orders of magnitude faster than would have been possible using the raw data files. It also al-
lows anyone with an NPL network connection to access them using a standard networked laptop
computer, allowing several people to easily access a standardised dataset.

The data is stored in an INFLUX database, which allows for a range of simple analytical functions
to be applied that, when queried, can return averages, standard deviations, percentiles across time
ranges (seconds to days) and across different measurement sites in the Breathe London Network
(fixed and mobile) and the reference networks. This database can also be set to only return cate-
gories of measurement data associated with a certain type of flag (for example, the Valid flag that
the algorithm from Air Monitors has determined to be reliable data). Utilising this tool means that
the data used across different analyses is in a standard format, ensuring reliability across the suite
of analysis software and other programs developed in house. This work was necessary not only to
be able to quickly access the Breathe London data in a standardised way, but also the LAQN data it
is being compared to.

In order to have any confidence in the measurements made by a sensor, we need to know the
uncertainty on what they report. Traditional reference instruments require certification, stating
their uncertainties. However, low-cost sensor systems are currently not beholden to any kind of
regulation, meaning it can be difficult to ascertain the data quality of these instruments in a real
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world scenario. Any uncertainty values are also subject to change due to the baseline drifting over
time, as well as the degradation of components. To have any confidence in the measurements you
not only have to regularly recalibrate these instruments, you also need to regularly assess their
associated uncertainties. This is traditionally carried out by moving the sensor systems to either
a laboratory or reference monitoring site and comparing the sensor systems to the high quality
instruments in a collocation study and/or using reference gases in a laboratory to determine both
the accuracy and precision of the measurements. For a high capacity network like Breathe London
with over 100 sensor systems, this is very impractical and would incur huge labour costs and large
delays as a result of moving the equipment back and forth. To increase the feasibility of low-cost
sensor networks, an alternative is needed.

Pollution levels at monitoring sites across an area like London can be reasonably approximated
to a sum of two components, local emissions and a regional background. By assessing periods where
the pollution levels being recorded are only a product of the regional background, we can ascertain
times where sensor systems are seeing the same pollution levels and treat these periods as a pseudo-
collocation study, where it is as if the sensor systems are next to each other even if they are several
kilometres apart.

However, directly comparing measurements between sensor systems is difficult as they may have
drifted apart. Without regular re-calibration it can be difficult to ascertain when sensor systems
are seeing the same pollution levels. Unless they have all been calibrated at the same time, low-
cost sensor systems tend to have variations in their scaling caused by drifts in their baseline as
well as unique defects that cause variation between the same types of components. To be able to
determine when two measurements by two different sensor systems are measuring the same thing
their scaling has to be adjusted so they report the same measurements. This is done by standard
scaling sections of the data (subtracting the mean and dividing by the standard deviation). Two
standard scaled measurements from different sensor systems are roughly comparable as long as
most of the measurements aren’t significantly influenced by local emissions.

1.2 Technical Details

1.2.1 Download and Parse Data

The measurements from individual sensor systems needed to be standardised in order to ensure
that they aligned by time. That data was stored in an InfluxDB database, to access it it had to be
downloaded from an internal server at the National Physical Laboratory. The data was queried with
aid from the InfluxDB library for Python which simplified downloading and parsing the data substan-
tially. The following query was sent to the database:

SELECT {Operator}({Pollutant}) AS "measurement" FROM "{"NPL Server"}"."autogen"."{Breathe
London Database}" WHERE time >= {time_start} and time < {time_end} AND {Flag} = {"Valid"}
AND {Sensor}=’ {Sensor Name} GROUP BY time({Measurement Period}),’ {Sensor}’

This query then returned valid measurements made by a sensor for a specific timeframe, the

1.2.2 Standard Scale Data

As ’raw’ low-cost sensor measurements provided by the manufacturer often come with an unknown
scaling factor, it’s very difficult to know exactly how the sensor systems are scaled relative to each
other. To be able to determine periods of agreement between a majority of sensor systems, it’s im-
portant to ensure the measurements of individual sensor systems are scaled to each other, allowing
us to isolate trends. This will allow us to separate background measurements from local variances.
To standardise the data, it is standard scaled (Also known as z-score normalisation or standardisa-
tion). The standard scaled data obtained from Algorithm 2 will then be fed in to Algorithm 3 to
classify the measurements.
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Algorithm 1: Download and Parse Data

Input: Sensor System Type (e.g AQMesh) to Download Data For (x), Measurement Start
Date (ts), Measurement End Date (te), Maximum Allowed Value (max), Minimum
Allowed Value (min), Slope (m), Offset (c)

1 s = Sensor systems in x measuring between ts and te
2 f = Flags assigned to measurements by Air Monitors
3 for s sensor systems do
4 a = Measurements made by sensor s in x

5 for t measurements in a do
6 if fs,t == ’Valid’ AND max > dt > min then
7 bs,t = m * at + c

8 else
9 bs,t = None

10 dtr = Measurement timestamps from Influx Database
11 for t measurement periods in [15 min (q), 1 hour (h), 1 day (d), 7 days (w)] do
12 It = Empty list
13 Append Index 0 to It
14 Previous Time = dtr[0]
15 for Current Time in dtr do
16 if Current Time - Previous Time >= t Time Range then
17 Append Current Time Index to It
18 Previous Time = Current Time

Output: JSON containing data outputs of algorithm

Code Key Description

b Measurements Measurements received from InfluxDB database, split by key repre-
senting sensor ID (s)

dtr Dates Timestamps of measurements in %Y-%m-%d %H:%M:%S format

Iq Quarter Hourly
Indices

Indices that separate 15 minute measurement periods

Ih Hourly Indices Indices that separate 1 hour measurement periods
Id Daily Indices Indices that separate 1 day measurement periods
Iw Weekly Indices Indices that separate 1 week measurement periods

Table 1.1: Keys present in JSON Output of Algorithm 1

Algorithm 2: Standard Scale Data

Input: Sensor System Measurements (b) from s equivalent spatially disperse sensor systems
measuring x pollutants

1 for x pollutants do
2 for s sensor systems measuring x do
3 Split bs,x in to y sets of measurement period t using indices in It
4 for y sets in as,x do
5 cs,x,y = (bs,x,y - bs,x,y) / σ(bs,x,y) /* Standard scale data */

Output: JSON containing data outputs of algorithm

1.2.3 Measurement Classification

The first stage of the measurement classification section takes the standard scaled split measure-
ments and assigns categories based on their values relative to the network. The first check utilises
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Code Key Description

c Split Measurements (Stan-
dard Scaled)

as with standard scaling applied, split in to y measure-
ment periods

Table 1.2: Keys present in JSON Output of Algorithm 2

Algorithm 3: Measurement Classification (First Round)

Input: Split Measurements c
1 for t sets in cy do
2 for m minute measurements in cy,t do
3 CV = cy,t,m / σ(cy,t,m) /* Coefficient of Variance */
4 if CV < 0.5 then
5 upper_limit = cy,t,m + (∗σ(cy,t,m))
6 lower_limit = cy,t,m - (∗σ(cy,t,m))
7 for x sensor systems measuring y do
8 if upper_limit > cx,y,t,m > lower_limit then
9 measurement_type_ax,y,t,m classified as "Background"

10 else
11 measurement_type_ax,y,t,m classified as "Local variance"

12 else
13 measurement_type_ay,t,m classified as "Poor network agreement"

Output: Classification of measurements at m minutes for x sensor systems measuring y

pollutants as background, local variance or poor network agreement

Code Key Description

measure-
ment_type_a

Classification of
measurements

Measurement labels for measurement in as as "Back-
ground", "Local variance" or "Poor network agreement"

Table 1.3: Keys present in JSON Output of Algorithm 3

the coefficient of variance (CV).If the coefficient of variance is above the user-set limit, it’s assumed
there are too many variances in the sensor readings to be able to confidently determine the regional
background. The measurement is then classified as being in a period of "Poor Network Agree-
ment"

If the coefficient of variance (CV) is lower than the user-set limit, the algorithm then decides
whether the measurement is of the "Background" or is affected by "Local Variance". Local vari-
ances can be caused by local emissions of pollution, noise, environmental factors or malfunctions.
They should be unique to that sensor and the effects should not be seen across the network. "Back-
ground" measurements are determined if the standard scaled value exists within a small window
around the mean, otherwise the value is assumed to be a "Local Variance".

The second stage of the measurement classification section linearly extrapolates between two
background measurements in order to increase the amount of information available. It does this by
selecting gaps between two background measurements that don’t exceed 60 minutes and fill them
with values moving linearly from one measurement to the other. This makes two assumptions, that
the regional background doesn’t change significantly within an hour and that any change would be
largely linear with no sudden step changes. These extrapolated background measurements are then
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Algorithm 4: Measurement Classification (Background Extrapolation)

1 dy = List of None values of equivalent length to by
2 for t sets in by do
3 for m minute measurements in by,t do
4 if measurement_type_ay,t,m == Background then
5 if Background in measurement_type_a[m+1:m+60] then
6 n = Index of next background measurement after m
7 dy[m:n+1] = Linearly extrapolation between background measurements

Output: Extrapolated Background Measurements

Code Key Description

d Extrapolated
backgrounds

Linearly extrapolated measurements between two back-
ground measurements within an hour of each other

Table 1.4: Keys present in JSON Output of Algorithm 4

used in Algorithm 5 to determine the local variances caused by noise.

Algorithm 5: Measurement Classification (Background Extrapolation)

1 ey = List of differences between extrapolated background and measurements
2 for t sets in by do
3 for m minute measurements in by,t do
4 if dy,t,m != None then
5 ey,t,m = by,t,m - dy,t,m

6 if abs(min(ey)) < abs(max(ey)) then
7 max_noise = abs(min(ey))
8 measurement_type_b = measurement_type_a
9 for t sets in by do

10 for m minute measurements in by,t do
11 if measurement_type_by,t,m = "Local Variance" then
12 if abs(dy,t,m) <= max_noise then
13 measurement_type_by,t,m = "Noise"

14 else
15 Sensor is assumed to be malfunctioning

Output: Secondary Classifications for Sensor Measurements

Code Key Description

measure-
ment_type_b

Classification of
measurements

Measurement labels for measurement in bs as "Back-
ground", "Local variance", "Noise" or "Poor network
agreement"

Table 1.5: Keys present in JSON Output of Algorithm 5

The third and final stage of the measurement classification algorithm separates "Noise" mea-
surements from other "Local Variance" measurements. The differences between measurements
made by the sensor systems and extrapolated background measurements are calculated. If the
minimum (most negative difference) is greater in magnitude than the maximum (most positive) dif-
ference, the sensor is assumed to be malfunctioning. This is most prominently seen in the PM2.5 data
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where the laser regularly misfires.
If the minimum difference is lower, it is assumed to be the highest variance caused by noise. Any

"Local Variance" measurements that lie between the extrapolated background and the calculated
noise variance is reclassified as "Noise", increasing clarity between two variances that were intially
classified under the same banner.

1.3 Uncertainty Calculation

The same background classification technique cannot be performed on available reference data as
there is no currently available reference data recorded at minute frequency. Therefore, we need a
well-calibrated set of measurements to compare the other measurements to. Ideally, several sensor
systems would be used, however the only long-term collocated ones with usable data were 1505150
and 1506150 which were collocated at the Teddington Bushy Park AURN/LAQN site, which could
only be calbrated for PM2.5 and PM10. To determine the uncertainty, the following actions are per-
formed:

Calibrate Collocated System Measurements

The collocated sensor systems are calibrated against the reference standard. This is most commonly
done with least squares regression, though Bayesian Linear Regression is implemented in this algo-
rithm as it gives more information about the uncertainty between the reference measurements and
the low-cost sensor.

uCollocated
Uncertainty between reference measurements and low-cost sensor measurements

The uncertainty of the reference instrument is also needed.

uReference
Uncertainty between reference measurements and low-cost sensor measurements

Compare Other Systems to Calibrated Collocated System

The collocated system with the lowest uncertainty against the reference equipment (l) is then chosen
to be the "well-calibrated" system, with all other systems then calibrated against it in the established
pseudo-collocation study. The errors between the measurements are then determined, first being
averaged to 15 minute intervals then averaged again for the month.

uPseudo-collocation
Uncertainty between calibrated sensor measurements and other low-cost sensor measurements via psuedo-collocation

study

Calculate Uncertainty on Individual Systems

By summating these uncertainties, as well as the uncertainty of the reference instrument (l), the
uncertainty of the individual sensor measurements (s) can be determined.

Us = uReference,l + uCollocated,l + uPseudo-collocation,s
Uncertainty budget
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1.4 Results and Discussion

1.4.1 Background Classification

The background classification algorithm performed well visually. This can be seen in an area of
high PM2.5 pollution such as Greenwich Church Street (Figure 1.1). The algorithm has captured
the distinction between local emissions and background levels well, despite the extremes between
the two. The same can also be said for environments with less PM2.5 pollution such as Triangle
Adventure Playground (Figure 1.2). The few local emissions present are captured well, showing
either extreme can be classified well for PM2.5.

Figure 1.1: PM2.5 Background Classifications for Greenwich Church Street

Figure 1.2: PM2.5 Background Classifications for Triangle Adventure Playground

The performance of the background classification is more difficult to quantify for NO2 as the
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electrochemical sensors are far more susceptible to noise. This can be seen in the graph for Trianle
Adventure Playground (Figure 1.3).

Figure 1.3: NO2 Background Classifications for Triangle Adventure Playground

1.4.2 Malfunction Flagging

The standard scaled data used to classify backgrounds can also be used to detect poor measurement
quality in comparison to the network, caused by a wide range of potential issues. This can be used
to detect several different events, as well as probe the long term drift of sensor systems in relation
to the network.

The adjusted background graphs are plotted using the first weeks standard scaling parameters
(µ and σ) to scale the remainder of the data. All sensor measurements are then centred around zero
each minute, with the mean of the network background measurements at that minute subtracted
from each individual measurement.

Sensor Change

Changes in low-cost sensing elements cause a slight change in the scaling of the sensor as they each
have unique responses to their target gases. This can be difficult to see in real data but is much
more easy to see in the standard scaled data (Figure 1.4). There is a clear step change in the data as
well as an increase in magnitude of the baseline drift, an event corresponding to a change in sensor
element.

Sensor Change

Short term malfunctions occasionally occurred in sensor measurements, causing large overreads
in the data. This is easy to spot in the measurements but even easier in the standard scaled data
(Figure 1.5).

Baseline Drift

Long term baseline drifts can also easily be identified with the standard scaled data, including an
oddity seen in the following PM2.5 data (Figure 1.6). The baseline appears to shift in a non linear
fashion upwards before decreasing, a trend not seen in other PM2.5 sensors which tend to slowly
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Figure 1.4: NO2 Sensor Change Event

Figure 1.5: NO2 Malfunction Event

drift in one direction. The cause of this is unknown, but it is much easier to identify when using the
standard scaled data.
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Figure 1.6: PM2.5 Baseline Shift

1.5 Conclusion

The background classification algorithm performs well on data from the Breathe London Network
as there are many periods of agreement between sensor systems, despite the fact they’re far apart.
These periods of agreement can then be used in the development of a pseudo-collocation study to
determine both the uncertainties of individual systems as well as easily identify events that cause
biases and drifts in the measurements. Any uncertainties determined through this method will be
higher than if they were calculated via traditional methods as you not only have the contribution
from the pseudo-collocation study, but also from calibrating the "well-calibrated" system. The addi-
tion of an extra uncertainty component (uCollocated,l) increases the overall uncertainty. However,
this technique exponentially reduces the labour costs involved with network size as well as net-
work downtime and increases the frequency of calculations that can be performed, trading higher
calculated uncertainty for increased flexibility.

The highlighting of malfunctions and other events via standard scaling works especially well
with sensor changes, short term malfunctions and long term drifts all highlighted far more clearly
than in the measurement data. This makes the automation of detecting malfunctions and calibration
changes much simpler as these events stand out far more. This benefits of this increase drastically
with network size, particularly if error detection was automated via the adjusted backgrounds.

By classifying individual measurements, the possible pseudo-collocation studies open up a wide
range of possibilities, from calculating the uncertainties of individual sensor measurements to de-
termining biases and long term drifts in sensor data. Though these techniques do not have the
advantage of accuracy that traditional methods do they significantly reduce the labour involved, al-
lowing for huge increases in network size with minimal overhead on quality control. This is becoming
ever more important as awareness around the problems of poor air quality increases.
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