Electric Vehicle Total Cost of Ownership Analysis

Summary Report

Purpose of the TCO Analysis

Goal: Compare the Total Cost of Ownership for currently available EVs to similar gasoline vehicles

- This analysis compares the lifetime costs - over 10 years - of owning and operating selected EVs to the cost of comparable gasoline vehicles
- Costs include purchase of vehicle and home charger (for EVs), annual vehicle registration, maintenance, insurance, and fuel costs
- Assumed annual miles driven and driving style represent an "average" case for consumers in the United States.

Driving Miles	Driving Style	EV Charging	Financing
US Average	EPA Combined MPG	90% at Home	
$12,395 \mathrm{mi} / \mathrm{yr}$	(City/Highway)	10% Public DCFC	5-yr Auto Loan

Vehicle Comparisons

Electric Vehicles	Gasoline Vehicles	EPA Size Class
Chevrolet Equinox EV	Chevrolet Equinox RS	Small SUV 2WD
Volkswagen ID. 4 Pro (82kWh)	Volkswagen Tiguan SE	Small SUV 2WD
Ford Mustang Mach-E Premium \quad,	Ford Edge ST-Line	Small SUV 4WD
Ford F-150 Lightning XLT	Ford F-150 XLT	Standard Pickup Truck

Comparison gasoline vehicles are comparable to EVs in terms of size, style, function, and performance

Electric Vehicle TCO Cost Inputs

Key Takeaways

- Over 10 years, all of the studied EVs are estimated to be the same or less expensive to own and operate than the comparison gasoline vehicle
\triangleright Life-time savings of up to $\$ 18,440$
- Electric Vehicles have higher upfront purchase costs and insurance costs, but these are more than offset by fuel and maintenance cost savings - which make EVs more cost-effective over their life
- Federal \& State EV tax credits are significant in reducing the upfront cost of Electric Vehicles
- Federal tax credits range from \$3,750 to \$7,500
- State tax credits can be as high as $\$ 3,500$, which would increase EV savings compared to this analysis
- As production prices continue to decline over time due to falling battery prices and production economies of scale, the savings EVs enjoy over gasoline vehicles will increase

Life-time Cost Comparison

EV vs. ICE Cost Comparison - Total Costs after 10 years

Analysis Methodology \& Assumptions

Vehicle Costs

Vehicle Costs - EV Tax Credits

Federal

	Federal EV Purchase Tax Credits	Home Charger Purchase + Installation Credit
Chevrolet Equinox EV	$\$ 7,500$	
Volkswagen ID.4 Pro	$\$ 7,500$	30% of the cost of Purchase
Ford Mustang Mach-E	$\$ 3,750$	\& Installation
Ford F-150 Lightning	$\$ 7,500$	

- State \& Local Tax credits and purchase incentives were not included in this analysis
- State tax credits can be as high as $\$ 3,500$, which would increase EV savings compared to this analysis
- Some local municipalities also offer incentives for home charging infrastructure

Vehicle Costs

	MSRP	Sales Tax (US Avg. = 4.99\%)	Financing Costs (Interest)	Registration Fees (over 10 years)	Home Charger Costst	Trade In	EV Tax Credit	Home Charger Tax Credit	Total
Chevrolet Equinox EV	\$34,624	\$1,727	\$2,340	\$500	\$1,500	$(\$ 15,181)$	(\$7,500)	(\$450)	\$17,560
Volkswagen ID. 4 Pro 82kWh RWD EV	\$43,995	\$2,195	\$3,700	\$500	\$1,500	$(\$ 17,069)$	$(\$ 7,500)$	(\$450)	\$26,872
Ford Mustang Mach-E Premium EV	\$49,995	\$2,494	\$5,447	\$500	\$1,500	$(\$ 16,913)$	$(\$ 3,750)$	(\$450)	\$38,824
Ford F-150 Lightning EV*	\$67,514	\$3,368	\$7,851	\$500	\$1,500	$(\$ 17,508)$	$(\$ 7,500)$	(\$450)	\$55,276
Chevrolet Equinox RS ICE	\$30,700	\$1,531	\$2,918	\$500	-	(\$15,181)	-	-	\$20,469
Volkswagen Tiguan SE ICE	\$30,580	\$1,525	\$2,573	\$500	-	$(\$ 17,069)$	-	-	\$18,110
Ford Edge ST-Line ICE	\$43,100	\$2,150	\$4,850	\$500	-	(\$16,913)	-	-	\$33,687
Ford F-150 ICE**	\$59,800	\$2,984	\$7,749	\$500	-	$(\$ 17,508)$	-	-	\$53,525

- Trade In: this analysis applies the same trade-in value to the EV and ICE vehicle purchase. The analysis assumes a 5 -year-old version of the gasoline model with 60,000 miles in good condition
- MSRP prices are for the mid-trim level of each vehicle
\dagger Includes both purchase and installation costs for an L2 charger
*XLT Dual eMotor, Standard Battery
** XLT mid Supercab, 4WD, 3.5L Powerboost Hybrid, Sport appearance package

Fuel Costs

Cost Category

Motor Gasoline \& Residential Electricity	US Energy Information Administration (Annual Energy Outlook 2023 Reference Case)
Public Charging Station Electricity	Electrify America, EVGo and Tesla public charging networks published prices
Annual Mileage Traveled	2017 National Household Travel Survey
Vehicle Fuel Economy Ratings	Fuel Economy. Gov - Gasoline - MPG - EV - kWh per 100 miles

Fuel Economy and Costs

Fuel Economy - Electric Vehicles

kWh /100 miles	City	Highway	Combined
Chevrolet Equinox EV	26.7	32.2	29.3
Volkswagen ID.4 Pro	29.3	34.39	31.5
Ford Mustang Mach-E	34.0	39.2	36.2
Ford F-150 Lightning	44.3	55.2	49.6

Fuel Economy - Gasoline Vehicles

Miles per Gallon	City	Highway	Combined
Chevrolet Equinox ICE	24	30	26
Volkswagen Tiguan ICE	23	30	26
Ford Edge ICE	21	28	23
Ford F-150 ICE	17	23	19

| \$/Gallon | $\mathbf{2 0 2 2}$ | $\mathbf{2 0 2 3}$ | $\mathbf{2 0 2 4}$ | $\mathbf{2 0 2 5}$ | $\mathbf{2 0 3 0}$ | $\mathbf{2 0 3 2}$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motor Gasoline | 4.24 | 3.87 | 3.60 | 3.43 | 3.78 | 3.97 |
| Cents / kWh | $\mathbf{2 0 2 2}$ | $\mathbf{2 0 2 3}$ | $\mathbf{2 0 2 4}$ | $\mathbf{2 0 2 5}$ | $\mathbf{2 0 3 0}$ | $\mathbf{2 0 3 2}$ |
| Residential Electricity | 15.12 | 15.29 | 15.33 | 15.99 | 16.23 | 17.15 |
| Public Level 2 | 24.00 | 24.72 | 25.46 | 26.23 | 30.40 | 32.25 |
| Public DCFC Charging | 36.00 | 37.08 | 38.19 | 39.34 | 45.60 | 48.38 |

Insurance Costs

Insurance Costs are estimated using the Edmunds Total Cost of Ownership tool. The tool provides insurance cost data by vehicle make, model, year, and state of registration.

EV vs. ICE Cost Comparison - Total Costs after 10 years

Maintenance Costs

- Maintenance Costs are estimated using research conducted by the Argonne National Laboratory Energy Systems Division (ANL).
- The ANL assigns an average value for maintenance costs of:

$\$ 0.101$ per mile for

 gasoline vehicles\$ 0.060 per mile for EVs

EV vs. ICE Cost Comparison - Total Costs after 10 years

Additional Scenarios

- The Total Cost of Ownership Analysis includes analysis of different vehicle usage patterns. These scenarios simulate Rural and Urban driving patterns.
- In these scenarios, the analysis assumes these vehicle usage pattern values

Case Name	Mileage	Driving Style	Charging	Financing
Rural	$75^{\text {th }}$ Percentile State/Region	80% Highway \& 20\% Combined	90% Home 10% Public DCFC	$5-\mathrm{yr}$ Auto Loan
Urban	$25^{\text {th }}$ Percentile State/Region	80% City \& 20\% Combined	25% Public L2	5-yr Auto

- Even under diverse driving conditions, owning an EV is similar to or less expensive than owning a gasoline powered vehicle over the analysis period

Rural Scenario TCO Comparison

EV vs. ICE Cost Comparison - Total Costs after 10 years

Urban Scenario TCO Comparison

EV vs. ICE Cost Comparison - Total Costs after 10 years

